Integrating Apps and Content with AR Quick Look

Session 603

David Lui, ARKit Engineering
Dave Addey, ARKit Engineering

Overview

What is AR Quick Look?

Adopting AR Quick Look

Creating 3D models for AR Quick Look

What Is AR Quick Look?

What Is AR Quick Look?

NEW

Preview 3D content in AR

System-wide

Uses Quick Look technology

Available on iOS 12

AR Snapshots Plane detection Object placement with device movement

Haptics Translation gestures

Rotation manipulation Lighting

100% scale viewing Object scaling Contact shadows Skeletal animation

Transform animation Hit-testing File sharing VoiceOver Switch Control

Developer Benefits

No need to create your own

Really easy to integrate

Built-in AR setup

No understanding of AR technology required

'uscz' File

New file format for distributing
Packages a model and its textu
Based on Pixar's open-source U
Supported on iOS and macOS
usdz_converter tool in Xcode 10

Adopting AR Quick Look

AR Quick Look Integration

Website

AR Quick Look Integration

Website

Quick Look

Preview documents

Framework for previewing file formats

Control over transitions and presentation modes

Secure and private

Quick Look Previews from the Ground Up

WWDC 2018

Quick Look Preview Flow

Previewing 'usdz' Objects Using Quick Look

QLPreviewController

```
func preview(_ sender: Any) {
    let previewController = QLPreviewController()
    previewController.dataSource = self
    previewController.delegate = self

    // Present viewer modally
    present(previewController, animated: true, completion: nil)
}
```

Previewing 'usdz' Objects Using Quick Look

QLPreviewControllerDataSource

```
func numberOfPreviewItems(in controller: QLPreviewController) -> Int {
        // Viewer supports previewing a single 3D object
        return 1
func previewController(
  controller: QLPreviewController, previewItemAt index: Int) -> QLPreviewItem {
        // Return the file URL to the .usdz file
        let fileUrl = Bundle.main.url(forResource: "radar_aardvark", withExtension: "usdz")!
        return fileUrl as QLPreviewItem
```


Previewing 'usdz' Objects Using Quick Look

QLPreviewControllerDelegate

AR Quick Look Integration

Website

AR Quick Look Integration

Website

Previewing 'usdz' Content in Safari

Recommended image-based experience

HTML markup

Automatic badging

Provide thumbnai

Suppor Ind drop

HTML
Suppor Supports 10119-press

Better workflow

HTML Markup for Previewing 'usdz' Objects

 element

```
<a rel="ar" href="model.usdz">
  <img src="model-preview.jpg">
</a>
```


HTML Markup for Previewing 'usdz' Objects

cture> element

```
<a rel="ar" href="model.usdz">
  <picture>
    <source srcset="wide-image.png"</pre>
        media="(min-width: 600px)">
    <img src="narrow-image.png">
  </picture>
</a>
```


HTML Markup for Previewing 'usdz' Objects

MIME type

AddType model/vnd.pixar.usd .usdz AddType model/usd usdz

AR Quick Look Integration

Website

Creating 3D Models for AR Quick Look

Creating 3D Models

Placement

Physical size

Animation

Contact shadow

Appearance

Transparency

Optimizing and exporting models

Place objects facing towards the camera (facing +z)

Base of object should sit on the ground plane (y = 0)

Pivot point should be at the origin (x, y, z = 0)

Placement

Placement

Placement

Physical Size

Physical Size

Physical Size

Animation

Provide an "idle" animation to add life to the object

Animations always loop

Animations can be a mix of skeletal animation and transform animation

Animation Tips

Choose animations that enhance AR immersiveness

Don't animate objects away from the origin

Keep a consistent bounding box throughout an animation

Prefer animations that make sense at a static location

Or create animations as self-contained scenes

Contact Shadow

AR Quick Look provides a contact shadow for you

- Can turn the shadow on and off
- Can apply ambient lighting conditions

Don't bake a contact shadow into the model

First animation frame is used for shadow creation

Model Appearance

AR Quick Look uses a Physically Based Rendering (PBR) shader

- Albedo (base color)
- Metallic (conductor or insulator)
- Roughness (rough or shiny)
- Normal (surface details)
- Ambient occlusion (internal shadows)
- Emissive (emits light)

Albedo

Metallic

Roughness

Normal

Ambient Occlusion

Emissive

Use a separate material for transparent and non-transparent parts of the model

Provide an albedo texture with transparency in its alpha channel

Use transparency for see-through areas, not for cutouts

Texture Formats

- Albedo (RGB/RGBA)
- Metallic (Grayscale)
- Roughness (Grayscale)
- Normal (RGB)
- Ambient occlusion (Grayscale)
- Emissive (RGB)

Any image format supported by iOS

Textures should be square powers of 2 (2048, 1024, 512...)

Supporting All Devices

System-wide extension that shares system memory with applications

Optimize and test your models for high-memory devices

- iPhone 7 Plus, iPhone 8 Plus, iPhone X
- iPad Pro 12.9"

AR Quick Look will dynamically downsample textures for other devices when needed

Meshes and animations are not modified

Size Limits

Many factors affect a model's memory requirements

- Mesh and animation complexity
- Texture size and count

As a guide, for a model with a single PBR material

- 100k polygons
- One set of 2048 by 2048 PBR textures
- Ten seconds of animation

Always test your model on a real device

Optimizing Models

Freeze transforms and merge adjacent vertices

If possible, use a single material/texture set for the entire model

Don't include textures you don't need

Spend your texture budget on areas that add most value and realism

Remember that pixels have a physical size in AR

Balance texture size and quality against download size

'usdz' Converter

Command line tool to convert 3D models to .usdz format

Ships with Xcode 10

Maps PBR textures to meshes and submeshes

Input formats

- OBJ file
- Single-frame Alembic (ABC) file
- USD file (either .usda or .usdc)

Anatomy of a 'usdz' File

A .usdz file is an uncompressed zip archive

First file in the archive is a .usdc file (model, animation, material definitions)

Remaining files (if needed) are image files

RetroTV.usdz

https://graphics.pixar.com/usd/

// Call usdz_converter with xcrun.
xcrun usdz_converter RetroTV.obj RetroTV.usdz

```
// Call usdz_converter with xcrun.
xcrun usdz_converter RetroTV.obj RetroTV.usdz
```

```
// PBR textures can be applied to groups (meshes and submeshes) with the -g option.
xcrun usdz_converter RetroTV.obj RetroTV.usdz
    -g RetroTVMesh
    -color_map RetroTV_Albedo.png
    -metallic_map RetroTV_Metallic.png
    -roughness_map RetroTV_Roughness.png
    -normal_map RetroTV_Normal.png
    -ao_map RetroTV_AmbientOcclusion.png
    -emissive_map RetroTV_Emissive.png
```

```
Call usdz_converter with xcrun.
xcrun usdz_converter RetroTV.obj RetroTV.usdz
// PBR textures can be applied to groups (meshes and submeshes) with the -g option.
xcrun usdz converter RetroTV.obj RetroTV.usdz
   -g RetroTVMesh
   -color_map RetroTV_Albedo.png
   -metallic_map RetroTV_Metallic.png
   -roughness_map RetroTV_Roughness.png
   -normal_map RetroTV_Normal.png
   -ao_map RetroTV_AmbientOcclusion.png
   -emissive_map RetroTV_Emissive.png
```

// Use the -v option to print out group names and other verbose information during conversion. xcrun usdz_converter RetroTV.obj RetroTV.usdz -v

Summary

A system-wide way to view AR content in the real world

Can be integrated into your own apps and websites

Uses the .usdz file format for 3D model distribution and sharing

Supports PBR, animation, and transparency

usdz_converter tool in Xcode 10 to convert existing models to 'usdz'

More Information

https://developer.apple.com/wwdc18/603

ARKit Lab	Technology Lab 5	Tuesday 12:00PM
ARKit Lab	Technology Lab 5	Wednesday 3:00PM
ARKit Lab	Technology Lab 5	Friday 9:00AM

ÓWWDC18