
#WWDC18

© 2018 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

•Your Apps and the Future 
of macOS Security

Pierre-Olivier Martel, Security Engineering Manager
Kelly Yancey, OS Security
Garrett Jacobson, Trusted Execution

•System Security Improvements
•User Consent for Data Access
•Enhanced Runtime Protections
•Developer ID and Notarized Apps

•System Security Improvements

System Security Improvements

Extension to System Integrity Protection
• Stronger code signing enforcement for platform binaries
• Libraries/Frameworks/Plugins loaded by system processes  
must be signed by Apple

Exceptions for legacy system extension points

Trusted Event Dispatching

Most security decisions are made through system UI
• User intent (open/save dialogs, drag and drop)
• User consent (security dialogs, configuration changes)

Need to differentiate between the user deciding and software impersonating them

New approval mechanism for users to enable software controlling the UI 
on their behalf

Configurable in the Security and Privacy preference pane, in the Accessibility list

Trusted Event Dispatching

Trusted Event Dispatching

Impacted APIs

IOHIDPostEvent(…);
IOHIDSetMouseLocation(io_connect_t connect, int x, int y);

CGEvent.post(tap: CGEventTapLocation)
CGEventTap.tapCreate(…, options: CGEventTapOptions, …) // when called without .listenOnly

apple-reference-documentation://hcC82CrDj-

Safari / WebKit

Safari
• Sandbox adoption for the app and satellite processes

WebKit
• Audit and removal of risky dependencies from existing sandboxes
• Heap and JIT hardening (isolated heaps, …)

What’s New in Safari and WebKit Executive Ballroom Friday 2:00PM

Enhanced Runtime Notarized AppsUser Consent

Kelly Yancey, OS Security

•User Consent for Data Access

User Data Protections
Prompting categories

Location Services

Contacts

Calendars

Reminders

Photos

User Data Protections
Prompting categories

Location Services

Contacts

Calendars

Reminders

Photos

User Data Protections
Prompting categories

Location Services

Contacts

Calendars

Reminders

Photos

// User Data Protections - Prompting on Filesystem Access

let picturesURL = try FileManager.default.url(for: .picturesDirectory,
 in: .userDomainMask,
 appropriateFor: nil,
 create: false)
if let enumerator = FileManager.default.enumerator(atPath: picturesURL.path) {
 enumerator.forEach({ (entry) in
 guard let path = entry as? String else { return }
 ...
 })
}

// User Data Protections - Prompting on Filesystem Access

let picturesURL = try FileManager.default.url(for: .picturesDirectory,
 in: .userDomainMask,
 appropriateFor: nil,
 create: false)
if let enumerator = FileManager.default.enumerator(atPath: picturesURL.path) {
 enumerator.forEach({ (entry) in
 guard let path = entry as? String else { return }
 ...
 })
}

User Data Protections
Pre-approval NEW

User Data Protections
Prompting with purpose

User Data Protections
Prompting with purpose

• NSLocationUsageDescription

• NSCalendarsUsageDescription

• NSContactsUsageDescription

• NSRemindersUsageDescription

• NSPhotoLibraryUsageDescription

User Data Protections
Info.plist keys

User Data Protections
Prompting categories

Location Services

Contacts

Calendars

Reminders

Photos

User Data Protections
All data categories

Location Services

Contacts

Calendars

Reminders

Photos

Mail

Messages

Safari Browsing History

HTTP Cookies

Call History

iTunes Backups

Time Machine Backups

User Data Protections
All data categories

Location Services

Contacts

Calendars

Reminders

Photos

NEW

Mail

Messages

Safari Browsing History

HTTP Cookies

Call History

iTunes Backups

Time Machine Backups

User Data Protections
All data categories

Location Services

Contacts

Calendars

Reminders

Photos

Mail

Messages

Safari Browsing History

HTTP Cookies

Call History

iTunes Backups

Time Machine Backups

User Data Protections
Accessing mail data

Mail Data

tell application "Mail" ...

Mail AppApp

X

User Data Protections
Accessing mail data

Mail Data

tell application "Mail" ...

Mail AppApp

X

?

User Data Protections
Accessing Mail data

Mail Data

tell application "Mail" ...

Mail AppApp

X

?

User Data Protections
Automation

User authorization required to automate other apps via Apple Events

Exceptions, including:

Manageable via the Security and Privacy preference pane

NSWorkspace.shared.openFile(“/var/log/system.log”)

NEW

NSWorkspace.shared.open(URL(string:"https://developer.apple.com/wwdc/")!)

NSWorkspace.shared.launchApplication("TextEdit")

https://developer.apple.com/wwdc/

User Privacy
Camera and microphone NEW

User Privacy
Camera and microphone

Initiating capture requires user authorization similar to iOS

Applies to devices supported by built-in drivers

AVFoundation provides API for querying authorization status

let status = AVCaptureDevice.authorizationStatus(for: .video)

let status = AVCaptureDevice.authorizationStatus(for: .audio)

User Privacy
Camera and microphone

public enum AVAuthorizationStatus : Int {

 case notDetermined

 case restricted

 case denied

 case authorized
}

User Privacy
Camera and microphone

AVFoundation provides API to pre-flight authorization

AVCaptureDevice.requestAccess(for: .video) { (authorized) in
 // ...
}

AVCaptureDevice.requestAccess(for: .audio) { (authorized) in
 // ...
}

User Privacy
Info.plist keys

• NSCameraUsageDescription

• NSMicrophoneUsageDescription

User Data and Privacy Protections
Recap

Location Services

Contacts

Calendars

Reminders

Photos

Mail

Messages

Safari Browsing History

HTTP Cookies

Call History

iTunes Backups

Time Machine Backups

Camera

Microphone

Automation

User Data and Privacy Protections
Recap

Location Services

Contacts

Calendars

Reminders

Photos

Mail

Messages

Safari Browsing History

HTTP Cookies

Call History

iTunes Backups

Time Machine Backups

Camera

Microphone

Automation

User Data and Privacy Protections
Recap

Location Services

Contacts

Calendars

Reminders

Photos

Mail

Messages

Safari Browsing History

HTTP Cookies

Call History

iTunes Backups

Time Machine Backups

Camera

Microphone

Automation

User Data and Privacy Protections
Testing your apps

tccutil reset Calendars

tccutil reset Contacts

tccutil reset Reminders

tccutil reset Photos

tccutil reset AppleEvents

tccutil reset Camera

tccutil reset Microphone

tccutil reset All

User Data and Privacy Protections
Summary

Ensure approval prompts are presented in context

Add Info.plist keys explaining the reason your app needs the user's data

Access approval-gated resources from threads other than the main thread

Gracefully handle failure to access approval-gated resources

Be responsible with the user's personal data

Pierre-Olivier Martel, Security Engineering Manager

•Enhanced Runtime Protections

Enhanced Runtime

New opt-in mechanism available with the 10.14 SDK

Enables additional protections similar to those enabled on system binaries

Configurable with unrestricted entitlements

Manageable from Xcode

Safe to enable on binaries deployed on older versions of macOS

Versioning scheme in place to support future revisions of the policies

NEW

Enhanced Runtime
Code signing

All executable pages must be backed by a valid code signature

com.apple.security.cs.allow-jit Enable access to a JIT region (MAP_JIT)

com.apple.security.cs.allow-unsigned-executable-memory Enable executable mapping without a signature

com.apple.security.cs.disable-executable-page-protection Disable all code signing protection

Enhanced Runtime
Library validation

The signature for all libraries, frameworks, and plugins validated at runtime

By default, only code signed by Apple or by the same Team ID is allowed

com.apple.security.cs.disable-library-validation
Allow loading of libraries signed by different
Team IDs

Enhanced Runtime
Debugging

Applications cannot debug other apps or be debugged themselves unless they
explicitly declare that capability

com.apple.security.get-task-allow Allow your app to be debugged

com.apple.security.cs.debugger Allow your app to debug other apps

com.apple.security.cs.allow-dyld-environment-variables Enable DYLD variables for your apps

Enhanced Runtime
Resource access

Attempts to access protected resources without predeclaring intent 
will result in a crash

Add the appropriate entitlement for each protected resource that your apps 
needs to access

Access still subject to user approval

Enhanced Runtime
Resource access

com.apple.security.device.audio-input Audio input and microphone

com.apple.security.device.camera Any camera exposed via AVFoundation

com.apple.security.personal-information.location Location

com.apple.security.personal-information.addressbook Contacts

com.apple.security.personal-information.calendars Calendars and Reminders

com.apple.security.personal-information.photos-library Apple Photos library

com.apple.security.automation.apple-events Sending Apple Events to other apps

Developer Workflow
Xcode

Developer Workflow
Xcode

// Developer Workflow – Terminal

Signature
$> codesign --sign “Developer ID” --options runtime WatchGrassGrow.app
WatchGrassGrow.app: signed app bundle with Mach-O thin (x86_64) [com.acme.WatchGrassGrow]

Verification
$> codesign --display --verbose=2 WatchGrassGrow.app
Executable=WatchGrassGrow.app/Contents/MacOS/WatchGrassGrow
Identifier=com.acme.WatchGrassGrow
Format=app bundle with Mach-O thin (x86_64)
CodeDirectory v=20500 size=566 flags=0x10000(runtime) hashes=11+3 location=embedded
Signature size=4605
Info.plist entries=22
TeamIdentifier=XXXXXXXXXX
Runtime Version=10.14.0
Sealed Resources version=2 rules=13 files=20
Internal requirements count=0 size=12

Garrett Jacobson, Trusted Execution

•Developer ID and Notarized Apps

Identify and Block
Malicious Software

App Notarization

Block malicious software before distribution

Keep the flexibility of the Developer ID program

Notary Service

Performs automated security checks on Developer ID content

Optional extension to Developer ID program

Developers upload distribution-ready content

Development workflow prior to distribution is unchanged

NEW

Not an App Review

Development Process

Local development Distribution signing 
and testing

Distribute via  
website, etc

Development Process

NEW

Local development Distribution signing 
and testing

Distribute via  
website, etc

0100
1011

Apple Notary
Service

No malicious software

All executables properly signed

Opted into the enhanced runtime

Security Requirements
For new apps

Notarizing Applications
Xcode

Notarizing Applications
Xcode

Notarizing Applications
Xcode

Notarizing Applications
Xcode

Notarizing Applications
Xcode

Notarizing Applications
Xcode

Notarizing Applications
Xcode

Notarizing Applications
Xcode

Notarizing Applications
Upload

•Notary service accepts zip files, packages, and disk images

From Terminal
$> xcrun altool --eval-app “Watch Grass Grow.dmg” --primary-bundle-id com.acme.WatchGrassGrow  
 -u developer@acme.com -p @keychain:AppleIDAccount
...
RequestUUID = 892d6d9e-2f64-495e-b027-8e7bd73fa674.
$>

Notarizing Applications
Status

From Terminal
$> xcrun altool --eval-info --uuid <UUID> -u developer@acme.com -p @keychain:AppleIDAccount
RequestUUID: 892d6d9e-2f64-495e-b027-8e7bd73fa674
 Status: 0
 StatusStr: success
 LogFileURL: <very long link>
$>

•Status output includes a log URL with helpful details

Notarizing Applications
Stapling

•Staple tickets directly to applications, disk images, and installer packages

•Stapler combines ticket retrieval and attaching in one step

•

From Terminal
$> xcrun stapler staple “Watch Grass Grow.dmg”
...
The staple and validate action worked!
$>

First Launch

Developer ID App Notarized Developer ID App

First Launch

Developer ID App
Notarized Developer ID App

First Launch

Malicious App

Notarization Timeline

Start uploading
your apps

Signing issues will
become errors

Gatekeeper
highlights notarized

applications

Gatekeeper requires
notarized applications

by default

Today Soon Mojave Future

Summary

Test your app against the new user data protections

Be transparent to the user about the data you need to access

Adopt the new hardened runtime for additional protection

Start submitting your apps to the notary service today!

More Information
https://developer.apple.com/wwdc18/702

Security Lab Technology Lab 1 Tuesday 3:00PM

Security Lab Technology Lab 2 Wednesday 9:00AM

Signing and Distribution Lab Technology Lab 10 Thursday 9:00AM

