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•Vision with Core ML 
•Powerful Computer Vision made easy 
• Session 717
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•Custom Image Classification 
•Worth more than a thousand pictures
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The Storyline

Create an app helping shoppers identify items
• Train a custom classifier
• Build an iOS app
• Keep an eye on pitfalls
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Under the Hood

Transfer Learning 
• Starts with a pre-trained model
- This is the heavy load
• Use that model as a Feature Extractor
• Train a last layer as a classifier with 
your labeled data

Pre-trained Model

Transfer Learning

Custom Model

Feature Vector
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Vision Frameworks FeaturePrint for Image Classification
• Available through ImageClassifier training in Create ML
• Trained on a very large dataset
• Capable of predicting over 1000 categories
• Powers user facing features in Photos 
• Continuous improvement 
- You might want to retrain in the future
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Vision FeaturePrint.Scene

Already on device 
• Smaller disk footprint for your custom model

Optimized for Apple devices

Resnet Squeezenet Vision

98 MB

5 MB <1MB
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Using registration 
• Cheap and fast 
• Camera holds still 
• Subject is not moving

VNTranslationalImageRegistrationRequest
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Refining the App 
Always have a backup plan

Classifications can be wrong

Even when confidence is high > plan for it

Alternative identification 
• Barcode reading

Training 
Class



•Demo 
•Build the RobotShop
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Using Registration for Scene Stability

Use the VNSequenceRequestHandler with VNTranslationalImageRegistrationRequest

Compare against previous frame:

sequenceRequestHandler.perform([request], on: previousBuffer!)

Registration is returned as pixels in the alignmentObservation.alignmentTransform
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Recap

Analyze only when scene is stable

Create an VNImageRequestHandler for the current frame and pass in the orientation

Perform Barcode and Image Classification together
try imageRequestHandler.perform([barcodeDetection, imageClassification])
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Manage your buffers

Some Vision requests can take longer

Perform longer task asynchronously 

Do not queue up more buffers than the camera can provide
• We only operate with a one deep queue in this example
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Vision does all the scaling and color conversion for you



•Object Recognition 
•I spy with my little eye



What and How

YOLO (You Only Look Once) 

Fast Object Detection and Classification 
• Label and Bounding Box 
• Finds multiple and different objects 

Train for custom objects 
• Training is more involved than ImageClassifier



A Guide to Turi Create WWDC 2018

What and How

YOLO (You Only Look Once) 

Fast Object Detection and Classification 
• Label and Bounding Box 
• Finds multiple and different objects 

Train for custom objects 
• Training is more involved than ImageClassifier



•Demo 
•Where is my breakfast
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VNRecognizedObjectObservation

Result of a VNCoreMLModelRequest

New observation subclass VNRecognizedObjectObservation

YOLO based models made easy

NEW



let mlModel = try MLModel(contentsOf: modelURL) 
let visionModel = try VNCoreMLModel(for: mlModel) 
let objectRecognition = VNCoreMLRequest(model: visionModel, 
                                        completionHandler: { (request, error) in 
    guard let results = request.results else { return } 

    for case let foundObject as VNRecognizedObjectObservation in results { 
        let bestLabel = foundObject.labels.first! // Label with highest confidence 
        let objectBounds = foundObject.boundingBox 

        // Use the computed values. 
        print(bestLabel.identifier, bestLabel.confidence, objectBounds) 
    } 
})
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Tracking

Tracking is faster and smoother than re-detection
• Use tracking to follow a detected object
• Tracking is a lighter algorithm
• Applies temporal smoothing

Object Tracking in Vision WWDC 2018



•Vision Fundamentals 
•The tripod to computer vision
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Image Orientation

Not all algorithms are orientation agnostic

Images are not always upright 
• EXIF orientation defines what is upright 
• When using a URL as input Vision reads the EXIF orientation from file

Live from a capture feed
• Orientation has to be inferred from UIDevice.current.orientation
• Needs to be mapped to a CGImagePropertyOrientation
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Vision Coordinate System

Origin is at the lower-left corner

All processing is in relation to the image in 
upright coordinates

Normalized coordinates 
• 0.0 to 1.0
• Landmarks are relative to the face rectangle
• VNUtils.h provides conversion utils into image 
coordinates like VNImageRectForNormalizedRect

0.0, 0.0

1.0, 1.00.0, 1.0

0.0, 1.0

0.2, 0.3

0.3, 0.5
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Confidence Score

A lot of algorithm can express how certain they are about the results

Confidence is expressed between 0.0 (low) and 1.0 (highest)

The scale is not uniform across request types
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Classification Example

Classification: 

StepperMotor 1.000 
ServoMotor 0.000 
Beam 0.000 
Microcontroller 0.000 
StepperMotorDriver 0.000
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Classification Example

Classification: 

sandbar, sand bar 0.395 

seashore, coast, seacoast, sea-coast 0.322 

parachute, chute 0.118 

airship, dirigible 0.067 

swimming trunks, bathing trunks 0.012
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Classification Example

Classification: 

ocarina, sweet potato 0.946 
harmonica, mouth organ, harp, mouth harp 0.020 
cellular telephone, cellular phone, mobile phone 0.008 
handkerchief, hankie, hanky, hankey 0.005 
flute, transverse flute 0.002
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Classification Example

Classification: 

web site, website, internet site, site 0.994 
monitor 0.002 
screen, CRT screen 0.002 
desktop computer 0.000 
hand-held computer, hand-held microcomputer 0.000 



Confidence Score Conclusions



Confidence Score Conclusions

Does 1.0 mean it is certainly correct? 
• It fulfilled the criteria of the algorithm but our perception can differ



Confidence Score Conclusions

Does 1.0 mean it is certainly correct? 
• It fulfilled the criteria of the algorithm but our perception can differ

Where the threshold is depends on the use case 
• Labeling requires high confidence—observe how your classifier behaves 
• Search might want to include lower confidence scores as they are probable



More Information
https://developer.apple.com/wwdc18/717

Vision Lab Technology Lab 11 Friday 3:00PM




