
© 2019 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC19

Neil Desai, watchOS Frameworks Engineer

•Creating Independent Watch Apps

Independent Watch Apps

Sign in and Sign up Push
notifications

CloudKit  
subscriptions

Permissions

DebuggingComplication
pushes

Installation

Installation

iOS app no longer includes watch app

Installation

iOS app no longer includes watch app

Each device downloads its own app

Installation

iOS app no longer includes watch app

Each device downloads its own app

Asset and variant thinning

Installation

iOS app no longer includes watch app

Each device downloads its own app

Asset and variant thinning

Downloads are smaller

Ask to buy

Siri search

UpdatesSearch 
in-app

Purchase
history

Purchase Pre-orders

Browse

Dependent Apps

Dependent Apps

Watch app download will install iPhone app to iPhone

Dependent Apps

Watch app download will install iPhone app to iPhone

watchOS app launch is blocked until iPhone app is installed

Independent Apps

Independent Apps

Watch app is installed independently

Independent Apps

Watch app is installed independently

Can now uninstall the iPhone app and Watch app can remain

Independent Apps

Watch app is installed independently

Can now uninstall the iPhone app and Watch app can remain

watchOS app with iOS app is backwards compatible

Independent Apps

Watch app is installed independently

Can now uninstall the iPhone app and Watch app can remain

watchOS app with iOS app is backwards compatible

Watch-only app is watchOS 6 or later

Enterprise Distribution

Enterprise Distribution

Xcode support

Enterprise Distribution

Xcode support

Variants

Enterprise Distribution

Xcode support

Variants

platform-identifier key

•Make Your Watch Apps Independent

•Demo

Apps in Xcode

Apps in Xcode

Migrate your existing Xcode project

Apps in Xcode

Migrate your existing Xcode project

Watch-only app

Apps in Xcode

Migrate your existing Xcode project

Watch-only app

Simulator experience

Debugging

Debugging

Simulator debugging is up to 10x faster

Debugging

Simulator debugging is up to 10x faster

Device debugging is up to 2x faster

Debugging

Simulator debugging is up to 10x faster

Device debugging is up to 2x faster

Proxied through iPhone

Sign In and Sign Up

Sign In and Sign Up

Sign up

Sign In and Sign Up

Sign up

Terms & Conditions, use WKAlertAction API

Sign In and Sign Up

Sign up

Terms & Conditions, use WKAlertAction API

Sign In with Apple

Sign In and Sign Up

Sign up

Terms & Conditions, use WKAlertAction API

Sign In with Apple

Your own password sign in

Sign In with Apple

Sign In with Apple

Simple and secure

NEW

Sign In with Apple

Simple and secure

No forms

NEW

Sign In with Apple

Simple and secure

No forms

No new password

NEW

Sign In with Apple

Simple and secure

No forms

No new password

NEW

Sign In with Apple

Simple and secure

No forms

No new password

NEW

Sign In with Apple

Simple and secure

No forms

No new password

NEW

Sign In with Apple

Simple and secure

No forms

No new password

Two-factor authentication for every account

NEW

Sign In with Apple

Simple and secure

No forms

No new password

Two-factor authentication for every account

No email verification

NEW

Sign In with Apple

Simple and secure

No forms

No new password

Two-factor authentication for every account

No email verification

Sign-in across devices

NEW

Sign In with Apple

Sign In with Apple

Use AuthenticationServices.framework

Sign In with Apple

Use AuthenticationServices.framework

WKInterfaceAuthorizationAppleIDButton

Sign In with Apple

Use AuthenticationServices.framework

WKInterfaceAuthorizationAppleIDButton

Introducing Sign In with Apple Wednesday, 9:00

What’s New in Authentication Thursday, 11:00

TextField

TextField

Embed TextField

TextField

Embed TextField

Use placeholder to instruct user what to input

TextField

Embed TextField

Use placeholder to instruct user what to input

Set textContentType

Password AutoFill Suggestions on iOS

Password AutoFill Suggestions on iOS

Set the correct textContentType

Password AutoFill Suggestions on iOS

Set the correct textContentType

Associated domains

Password AutoFill Suggestions on iOS

Set the correct textContentType

Associated domains

User selection autofills both username and password

TextField

TextField

TextField

TextField

TextField

Associated domains

TextField

TextField

Associated domains

Continuity keyboard

TextField

TextField

Associated domains

Continuity keyboard

One time code

Privacy Management

Calendar, contacts, motion

Privacy Management

Calendar, contacts, motion

Location

Privacy Management

Calendar, contacts, motion

Location

Health

Privacy Management

Calendar, contacts, motion

Location

Health

Privacy Management

Calendar, contacts, motion

Location

Health

Privacy Management

Calendar, contacts, motion

Location

Health

Privacy Management

Push Notifications

Push Notifications

Watch as a push target

NEW

Push Notifications

Watch as a push target

User-visible notifications

NEW

Push Notifications

Watch as a push target

User-visible notifications

Background notifications

NEW

Notifications

APNs request
header

Payload

APNs

Notifications

APNs request
header
Payload APNs

Notifications

APNs request
header Payload APNs

APNs Request Header

APNs Request Header

apns-push-type

NEW

APNs Request Header

apns-push-type

alert

NEW

APNs Request Header

apns-push-type

alert

background

NEW

Push Notifications
Registration and delivery

Push Notifications
Registration and delivery

WatchKit for registration

Push Notifications
Registration and delivery

WatchKit for registration

UserNotifications

Push Notifications
Registration and delivery

WatchKit for registration

UserNotifications

Background notifications delivered on WKExtensionDelegate

Push Notifications
Registration and delivery

WatchKit for registration

UserNotifications

Background notifications delivered on WKExtensionDelegate

Notification service extension support

// WatchKit code for registration of notifications

import WatchKit
import UserNotifications

class ExtensionDelegate: NSObject, WKExtensionDelegate {

 func applicationDidFinishLaunching() {
 let center = UNUserNotificationCenter.current()
 center.requestAuthorization(options: [.alert, .sound]) { (granted, error) in
 // Enable or disable features based on authorization.
 if (granted) {
 WKExtension.shared().registerForRemoteNotifications()
 } else { /* Handle no access */ }
 }
 }

// WatchKit code for registration of notifications

import WatchKit
import UserNotifications

class ExtensionDelegate: NSObject, WKExtensionDelegate {

 func applicationDidFinishLaunching() {
 let center = UNUserNotificationCenter.current()
 center.requestAuthorization(options: [.alert, .sound]) { (granted, error) in
 // Enable or disable features based on authorization.
 if (granted) {
 WKExtension.shared().registerForRemoteNotifications()
 } else { /* Handle no access */ }
 }
 }

// WatchKit code for registration of notifications

import WatchKit
import UserNotifications

class ExtensionDelegate: NSObject, WKExtensionDelegate {

 func applicationDidFinishLaunching() {
 let center = UNUserNotificationCenter.current()
 center.requestAuthorization(options: [.alert, .sound]) { (granted, error) in
 // Enable or disable features based on authorization.
 if (granted) {
 WKExtension.shared().registerForRemoteNotifications()
 } else { /* Handle no access */ }
 }
 }

// WatchKit code for registration of notifications

import WatchKit
import UserNotifications

class ExtensionDelegate: NSObject, WKExtensionDelegate {

 func didRegisterForRemoteNotifications(withDeviceToken deviceToken: Data) {
 /* Forward the token to your provider, using a custom method. */
 }

 func didFailToRegisterForRemoteNotificationsWithError(_ error: Error) {
 /* Disable remote notification features */
 }

// WatchKit code for registration of notifications

import WatchKit
import UserNotifications

class ExtensionDelegate: NSObject, WKExtensionDelegate {

 func didRegisterForRemoteNotifications(withDeviceToken deviceToken: Data) {
 /* Forward the token to your provider, using a custom method. */
 }

 func didFailToRegisterForRemoteNotificationsWithError(_ error: Error) {
 /* Disable remote notification features */
 }

// WatchKit code for registration of notifications

import WatchKit
import UserNotifications

class ExtensionDelegate: NSObject, WKExtensionDelegate {

 func didRegisterForRemoteNotifications(withDeviceToken deviceToken: Data) {
 /* Forward the token to your provider, using a custom method. */
 }

 func didFailToRegisterForRemoteNotificationsWithError(_ error: Error) {
 /* Disable remote notification features */
 }

// WatchKit code for registration of notifications

import WatchKit
import UserNotifications

class ExtensionDelegate: NSObject, WKExtensionDelegate {

 func didRegisterForRemoteNotifications(withDeviceToken deviceToken: Data) {
 /* Forward the token to your provider, using a custom method. */
 }

 func didFailToRegisterForRemoteNotificationsWithError(_ error: Error) {
 /* Disable remote notification features */
 }

// WatchKit code for handling background notifications

import WatchKit
import UserNotifications

class ExtensionDelegate: NSObject, WKExtensionDelegate {

 func didReceiveRemoteNotification(_ userInfo: [AnyHashable : Any],
 fetchCompletionHandler: @escaping
 (WKBackgroundFetchResult) -> Void) {
 /* Handle background notification */
 fetchCompletionHandler(.newData)
 }

// WatchKit code for handling background notifications

import WatchKit
import UserNotifications

class ExtensionDelegate: NSObject, WKExtensionDelegate {

 func didReceiveRemoteNotification(_ userInfo: [AnyHashable : Any],
 fetchCompletionHandler: @escaping
 (WKBackgroundFetchResult) -> Void) {
 /* Handle background notification */
 fetchCompletionHandler(.newData)
 }

// WatchKit code for handling background notifications

import WatchKit
import UserNotifications

class ExtensionDelegate: NSObject, WKExtensionDelegate {

 func didReceiveRemoteNotification(_ userInfo: [AnyHashable : Any],
 fetchCompletionHandler: @escaping
 (WKBackgroundFetchResult) -> Void) {
 /* Handle background notification */
 fetchCompletionHandler(.newData)
 }

Details

Details

apns-push-type is required

Details

apns-push-type is required

apns-topic is your WatchKit app bundle identifier

Details

apns-push-type is required

apns-topic is your WatchKit app bundle identifier

Alert Coordination for duplicate notifications when sent simultaneously

Complication Pushes on watchOS

Complication Pushes on watchOS

Update your app if complication is enabled on the active watch face

Complication Pushes on watchOS

Update your app if complication is enabled on the active watch face

PushKit now available on watchOS

NEW

Complication Pushes on watchOS

Update your app if complication is enabled on the active watch face

PushKit now available on watchOS

Registration and delivery

NEW

import PushKit

func registerForComplicationPushes() {
 let pushRegistry = PKPushRegistry(queue: .main)
 pushRegistry.delegate = self
 pushRegistry.desiredPushTypes = [.complication]
}

func pushRegistry(_ registry: PKPushRegistry,
 didUpdate pushCredentials: PKPushCredentials,
 for type: PKPushType) {
 /* Forward complication token to server */
}

func pushRegistry(_ registry: PKPushRegistry, didInvalidatePushTokenFor type: PKPushType) {
 /* Handle invalidated token */
}

import PushKit

func registerForComplicationPushes() {
 let pushRegistry = PKPushRegistry(queue: .main)
 pushRegistry.delegate = self
 pushRegistry.desiredPushTypes = [.complication]
}

func pushRegistry(_ registry: PKPushRegistry,
 didUpdate pushCredentials: PKPushCredentials,
 for type: PKPushType) {
 /* Forward complication token to server */
}

func pushRegistry(_ registry: PKPushRegistry, didInvalidatePushTokenFor type: PKPushType) {
 /* Handle invalidated token */
}

import PushKit

func registerForComplicationPushes() {
 let pushRegistry = PKPushRegistry(queue: .main)
 pushRegistry.delegate = self
 pushRegistry.desiredPushTypes = [.complication]
}

func pushRegistry(_ registry: PKPushRegistry,
 didUpdate pushCredentials: PKPushCredentials,
 for type: PKPushType) {
 /* Forward complication token to server */
}

func pushRegistry(_ registry: PKPushRegistry, didInvalidatePushTokenFor type: PKPushType) {
 /* Handle invalidated token */
}

import PushKit

func registerForComplicationPushes() {
 let pushRegistry = PKPushRegistry(queue: .main)
 pushRegistry.delegate = self
 pushRegistry.desiredPushTypes = [.complication]
}

func pushRegistry(_ registry: PKPushRegistry,
 didUpdate pushCredentials: PKPushCredentials,
 for type: PKPushType) {
 /* Forward complication token to server */
}

func pushRegistry(_ registry: PKPushRegistry, didInvalidatePushTokenFor type: PKPushType) {
 /* Handle invalidated token */
}

// Handle incoming complication push

import PushKit

func pushRegistry(_ registry: PKPushRegistry,
 didReceiveIncomingPushWith payload: PKPushPayload,
 for type: PKPushType,
 completion: @escaping () -> Void) {
 /* Handle receiving complication push
 Reload complication timeline */
}

// Handle incoming complication push

import PushKit

func pushRegistry(_ registry: PKPushRegistry,
 didReceiveIncomingPushWith payload: PKPushPayload,
 for type: PKPushType,
 completion: @escaping () -> Void) {
 /* Handle receiving complication push
 Reload complication timeline */
}

Networking

Networking

URLSession

Networking

URLSession

CloudKit

URLSession

URLSession

Migrate all WatchConnectivity usage to URLSession

URLSession

Migrate all WatchConnectivity usage to URLSession

Background sessions

WatchConnectivity

WatchConnectivity

Use WatchConnectivity for companion app specific interactions

WatchConnectivity

Use WatchConnectivity for companion app specific interactions

open var isCompanionAppInstalled: Bool { get }

CloudKit

CloudKit

CKSubscription

NEW

CloudKit

CKSubscription

CloudKit notifications

NEW

CloudKit

CKSubscription

CloudKit notifications

NEW

CloudKit Best Practices WWDC 2016

CKSubscriptions

CKSubscriptions

Subscribe to changes

CKSubscriptions

Subscribe to changes

Pushes tell you when to update

CKSubscriptions

Subscribe to changes

Pushes tell you when to update

Retrieve only what has changed

Data Data

Data Data

Data Data

✓ Subscription

Data Data

✓ Subscription

APNs

Data Data

✓ Subscription

APNs

Data Data

✓ Subscription

APNs

// Background push

let notificationInfo = CKSubscription.NotificationInfo()

// Set only this property

notificationInfo.shouldSendContentAvailable = true

// CloudKit will deliver a push, listen for pushes via:

func didReceiveRemoteNotification(_ userInfo: [AnyHashable : Any],
 fetchCompletionHandler: @escaping (WKBackgroundFetchResult) -> Void) {…}

// Background push

let notificationInfo = CKSubscription.NotificationInfo()

// Set only this property

notificationInfo.shouldSendContentAvailable = true

// CloudKit will deliver a push, listen for pushes via:

func didReceiveRemoteNotification(_ userInfo: [AnyHashable : Any],
 fetchCompletionHandler: @escaping (WKBackgroundFetchResult) -> Void) {…}

// Background push

let notificationInfo = CKSubscription.NotificationInfo()

// Set only this property

notificationInfo.shouldSendContentAvailable = true

// CloudKit will deliver a push, listen for pushes via:

func didReceiveRemoteNotification(_ userInfo: [AnyHashable : Any],
 fetchCompletionHandler: @escaping (WKBackgroundFetchResult) -> Void) {…}

Summary

Summary

Freedom and independence

Summary

Freedom and independence

System and developer capabilities

Summary

Freedom and independence

System and developer capabilities

Make your apps independent

More Information
developer.apple.com/wwdc19/208

SwiftUI on watchOS Wednesday, 2:00

watchOS Independence Lab Wednesday, 9:00

