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iOS app no longer includes watch app 

Each device downloads its own app

Asset and variant thinning

Downloads are smaller





Ask to buy

Siri search

UpdatesSearch 
in-app

Purchase 
history

Purchase Pre-orders

Browse





Dependent Apps



Dependent Apps

Watch app download will install iPhone app to iPhone



Dependent Apps

Watch app download will install iPhone app to iPhone

watchOS app launch is blocked until iPhone app is installed
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Independent Apps

Watch app is installed independently

Can now uninstall the iPhone app and Watch app can remain

watchOS app with iOS app is backwards compatible

Watch-only app is watchOS 6 or later
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Xcode support 

Variants

platform-identifier key
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Migrate your existing Xcode project

Watch-only app

Simulator experience
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Simulator debugging is up to 10x faster

Device debugging is up to 2x faster

Proxied through iPhone
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Sign up

Terms & Conditions, use WKAlertAction API

Sign In with Apple 

Your own password sign in
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Sign In with Apple

Simple and secure

No forms

No new password

Two-factor authentication for every account

No email verification

Sign-in across devices

NEW
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Sign In with Apple

Use AuthenticationServices.framework

WKInterfaceAuthorizationAppleIDButton

Introducing Sign In with Apple Wednesday, 9:00

What’s New in Authentication Thursday, 11:00







TextField



TextField

Embed TextField



TextField

Embed TextField

Use placeholder to instruct user what to input



TextField

Embed TextField

Use placeholder to instruct user what to input

Set textContentType
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Password AutoFill Suggestions on iOS

Set the correct textContentType

Associated domains

User selection autofills both username and password
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Push Notifications

Watch as a push target

User-visible notifications

Background notifications

NEW
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apns-push-type

alert

background
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Push Notifications 
Registration and delivery

WatchKit for registration

UserNotifications

Background notifications delivered on WKExtensionDelegate

Notification service extension support















// WatchKit code for registration of notifications 

import WatchKit 
import UserNotifications 

class ExtensionDelegate: NSObject, WKExtensionDelegate { 

    func applicationDidFinishLaunching() { 
        let center = UNUserNotificationCenter.current() 
        center.requestAuthorization(options: [.alert, .sound]) { (granted, error) in 
            // Enable or disable features based on authorization. 
            if (granted) { 
                WKExtension.shared().registerForRemoteNotifications() 
            } else { /* Handle no access */ } 
        } 
    }
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// WatchKit code for handling background notifications 

import WatchKit 
import UserNotifications 

class ExtensionDelegate: NSObject, WKExtensionDelegate { 

    func didReceiveRemoteNotification(_ userInfo: [AnyHashable : Any], 
                                      fetchCompletionHandler: @escaping 
                                      (WKBackgroundFetchResult) -> Void) { 
        /* Handle background notification */ 
        fetchCompletionHandler(.newData) 
    }
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import WatchKit 
import UserNotifications 

class ExtensionDelegate: NSObject, WKExtensionDelegate { 

    func didReceiveRemoteNotification(_ userInfo: [AnyHashable : Any], 
                                      fetchCompletionHandler: @escaping 
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        /* Handle background notification */ 
        fetchCompletionHandler(.newData) 
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// WatchKit code for handling background notifications 

import WatchKit 
import UserNotifications 

class ExtensionDelegate: NSObject, WKExtensionDelegate { 

    func didReceiveRemoteNotification(_ userInfo: [AnyHashable : Any], 
                                      fetchCompletionHandler: @escaping 
                                      (WKBackgroundFetchResult) -> Void) { 
        /* Handle background notification */ 
        fetchCompletionHandler(.newData) 
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Details

apns-push-type is required

apns-topic is your WatchKit app bundle identifier

Alert Coordination for duplicate notifications when sent simultaneously
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import PushKit 

func registerForComplicationPushes() { 
    let pushRegistry = PKPushRegistry(queue: .main) 
    pushRegistry.delegate = self 
    pushRegistry.desiredPushTypes = [.complication] 
} 

func pushRegistry(_ registry: PKPushRegistry, 
                  didUpdate pushCredentials: PKPushCredentials, 
                  for type: PKPushType) { 
    /* Forward complication token to server */ 
} 

func pushRegistry(_ registry: PKPushRegistry, didInvalidatePushTokenFor type: PKPushType) { 
    /* Handle invalidated token */ 
}
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// Handle incoming complication push 

import PushKit 

func pushRegistry(_ registry: PKPushRegistry, 
                  didReceiveIncomingPushWith payload: PKPushPayload, 
                  for type: PKPushType, 
                  completion: @escaping () -> Void) { 
    /* Handle receiving complication push 
       Reload complication timeline */ 
}



// Handle incoming complication push 

import PushKit 

func pushRegistry(_ registry: PKPushRegistry, 
                  didReceiveIncomingPushWith payload: PKPushPayload, 
                  for type: PKPushType, 
                  completion: @escaping () -> Void) { 
    /* Handle receiving complication push 
       Reload complication timeline */ 
}
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URLSession

Migrate all WatchConnectivity usage to URLSession

Background sessions



WatchConnectivity



WatchConnectivity

Use WatchConnectivity for companion app specific interactions



WatchConnectivity

Use WatchConnectivity for companion app specific interactions

open var isCompanionAppInstalled: Bool { get }
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CKSubscription

CloudKit notifications

NEW

CloudKit Best Practices WWDC 2016
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CKSubscriptions

Subscribe to changes

Pushes tell you when to update

Retrieve only what has changed
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Data Data

✓ Subscription

APNs



// Background push 

let notificationInfo = CKSubscription.NotificationInfo() 

// Set only this property 

notificationInfo.shouldSendContentAvailable = true 

// CloudKit will deliver a push, listen for pushes via: 

func didReceiveRemoteNotification(_ userInfo: [AnyHashable : Any], 
   fetchCompletionHandler: @escaping (WKBackgroundFetchResult) -> Void) {…}
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let notificationInfo = CKSubscription.NotificationInfo() 
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Summary

Freedom and independence

System and developer capabilities

Make your apps independent



More Information
developer.apple.com/wwdc19/208

SwiftUI on watchOS Wednesday, 2:00

watchOS Independence Lab Wednesday, 9:00






