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Setting Up the Stack

By name 
let container = NSPersistentCloudKitContainer(name: “CoreDataCloudKitDemo") 
container.loadPersistentStores { _, error in /* ... */ } 

With a model 
let container = NSPersistentCloudKitContainer( 
    name: "CoreDataCloudKitDemo", 
    managedObjectModel:model) 
container.loadPersistentStores { _, error in /* ... */ }
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try container.viewContext.setQueryGenerationFrom(.current)



Configuring Managed Object Contexts

Query generations provide stability 
try container.viewContext.setQueryGenerationFrom(.current) 

Automatic merging provides freshness 
context.automaticallyMergesChangesFromParent = true
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Using Managed Object Contexts

context.performAndWait { 
    /* ... */ 
} 

context.perform { 
    /* ... */ 
} 

container.performBackgroundTask { context in 
    /* ... */ 
}
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Apps Need Data!

  
context.perform { 
    let post = Post(context: context) 
    post.title = "Hello, world!" 
    try? context.save() 
} 

Use init(context:) to create individual managed objects



Apps need more data!



Batch Insertions

Insert many managed objects with a fraction of the overhead 
let rawPostsData: Data = // Server response ... 
if let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [[String : Any]] { 
    context.perform { 
        let insertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts) 
        let insertResult = try? context.execute(insertRequest) as! NSBatchInsertRequest 
        let success = insertResult.result as! Bool 
    } 
}
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Insert many managed objects with a fraction of the overhead 
let rawPostsData: Data = // Server response ... 
if let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [[String : Any]] { 
    context.perform { 
        let insertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts) 
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Batch Insertions

[ 
  [ 
    "content": "Lorem ipsum dolor sit amet…" 
    "title"  : "Hello, world!", 
  ], 
  [ 
    "content": "This post has no title!" 
  ], 
  [ 
    "title": "Content coming soon!" 
  ] 
]
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attachment 
tags

Post



Batch Insertions

Insert many managed objects with a fraction of the overhead 
let rawPostsData = // ... 
if let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [String : Any] { 
    moc.perform { 
        let insertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts) 
        let insertResult = try? moc.execute(insertRequest) as! NSBatchInsertRequest 
        let success = insertResult.result as! Bool 
    } 
}

NEW



Batch Insertions

Insert many managed objects with a fraction of the overhead 
let rawPostsData = // ... 
if let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [String : Any] { 
    moc.perform { 
        let insertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts) 
        let insertResult = try? moc.execute(insertRequest) as! NSBatchInsertRequest 
        let success = insertResult.result as! Bool 
    } 
}

NEW
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Fetching an Object
let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest() 

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName) 

if let tag = try? fetchRequest.execute().first { 

    tagLabel.text = tag.name 
    tagLabel.textColor = tag.color as? UIColor 

}
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Wiring Views
let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest() 

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName) 

if let tag = try? fetchRequest.execute().first { 

    nameSubscription = tag.publisher(for: \.name) 
                          .assign(to: \.text, on: tagLabel) 

    colorSubscription = tag.publisher(for: \.color) 
                           .map({ $0 as? UIColor }) 
                           .assign(to: \.textColor, on: tagLabel) 

}



let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest() 

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName) 

if let tag = try? fetchRequest.execute().first { 

    nameSubscription = tag.publisher(for: \.name) 
                          .assign(to: \.text, on: tagLabel) 

    colorSubscription = tag.publisher(for: \.color) 
                           .map({ $0 as? UIColor }) 
                           .assign(to: \.textColor, on: tagLabel) 

}

Wiring Views

Combine in Practice WWDC 2019



Wiring Detail Views

if let tag = tag { 

    nameSubscription = tag.publisher(for: \.name) 
                          .assign(to: \.text, on: tagLabel) 

    colorSubscription = tag.publisher(for: \.color) 
                           .map({ $0 as? UIColor }) 
                           .assign(to: \.textColor, on: tagLabel) 

}
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Sort results 
fetchRequest.sortDescriptors = [NSSortDescriptor(key: "name", ascending: true)]



Fetching Many Objects

Sort results 
fetchRequest.sortDescriptors = [NSSortDescriptor(key: "name", ascending: true)] 

Batched fetching 
fetchRequest.fetchBatchSize = 50



Live Queries



let fetchRequest: NSFetchRequest<Post> = Post.fetchRequest() 

fetchRequest.sortDescriptors = [NSSortDescriptor(key: "title", ascending: true)] 
fetchRequest.fetchBatchSize = 50 

Live Queries



Live Queries

let fetchRequest: NSFetchRequest<Post> = Post.fetchRequest() 

fetchRequest.sortDescriptors = [NSSortDescriptor(key: "title", ascending: true)] 
fetchRequest.fetchBatchSize = 50 

let controller = NSFetchedResultsController(fetchRequest: fetchRequest, 
                                            managedObjectContext: moc, 
                                            sectionNameKeyPath: nil, cacheName: nil) 

controller.delegate = self 

try! controller.performFetch()
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Fetched Results Controller Delegate Methods

controller(:didChange:atSectionIndex:for:)

controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

insertSections(:with:) 
deleteSections(:with:)

insertRows(at:with:) 
deleteRows(at:with:)
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Displaying Fetched Results Using Snapshots

New delegate method vends instances of NSDiffableDataSourceSnapshot 

Snapshots encode the section and row state of a collection view 
func controller( 
  _ controller: NSFetchedResultsController<NSFetchRequestResult>, 
  didChangeContentWith snapshot: NSDiffableDataSourceSnapshotReference<NSManagedObjectID, 
NSString> 
) { 
    collectionViewDataSource.applySnapshot(snapshot as! NSDiffableDataSourceSnapshot) 
}

NEW

Advances in UI Data Sources WWDC 2019
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Displaying Fetched Results Using Differences

New delegate method vends instances of CollectionDifference 

Only supported when sectionNameKeyPath is nil 

Great for driving individual sections of a complex view!

NEW

Ordered Collection Diffing (SE-0240)

Introducing Combine and Advances in Foundation WWDC 2019



func controller( 
    _ controller: NSFetchedResultsController<NSFetchRequestResult>, 
    didChangeContentWith diff: CollectionDifference<NSManagedObjectID> 
) { 
    collectionView.performBatchUpdates({ 
        for change in diff { 
            switch change { 
            case .insert(offset: let newRow, element: _, associatedWith: let assoc): 
                if let oldRow = assoc { 
                    collectionView.moveItem( 
                        at: IndexPath(row: oldRow, section: frcSection), 
                        to: IndexPath(row: newRow, section: frcSection)) 
                } else { 
                    collectionView.insertItems( 
                        at: [IndexPath(row: newRow, section: frcSection)]) 
                } 
            case .remove(offset: let oldRow, element: _, associatedWith: let assoc): 
                if assoc == nil { 
                    collectionView.deleteItems( 
                        at: [IndexPath(row: oldRow, section: frcSection)]) 
                } 

            } 
        } 
    }, completion: nil) 
}
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    _ controller: NSFetchedResultsController<NSFetchRequestResult>, 
    didChangeContentWith diff: CollectionDifference<NSManagedObjectID> 
) { 
    collectionView.performBatchUpdates({ 
        for change in diff { 
            switch change { 
            case .insert(offset: let newRow, element: _, associatedWith: let assoc): 
                if let oldRow = assoc { 
                    collectionView.moveItem( 
                        at: IndexPath(row: oldRow, section: frcSection), 
                        to: IndexPath(row: newRow, section: frcSection)) 
                } else { 
                    collectionView.insertItems( 
                        at: [IndexPath(row: newRow, section: frcSection)]) 
                } 
            case .remove(offset: let oldRow, element: _, associatedWith: let assoc): 
                if assoc == nil { 
                    collectionView.deleteItems( 
                        at: [IndexPath(row: oldRow, section: frcSection)]) 
                } 

            } 
        } 
    }, completion: nil) 
}



Displaying Fetched Results

Drive declarative list views from controllerDidChangeContent(:)

Integrating SwiftUI WWDC 2019
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Improving Performance Using Denormalization

Adding redundant data to make access faster and more convenient 

Redundant data requires more work
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Derived Attributes 
CoreData-managed metadata

Multiple supported functions 

Defined in managed object model 

Available on all properties of the entity

NEW



•Demo
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Supported Derivations

Data duplication 

Data transformation 

To-many aggregate functions 

Zero-parameter functions



•Getting started 
•The needs of the Controller 
•Scaling your app 
•Testing
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Fetching Persistent History

Process history generated by a specific author 

Fetch history affecting a specific type 

Changes that happened between a two tokens

NEW



NSPersistentHistoryTransaction  
and NSPersistentHistoryChange

NEW

class func entityDescription( 
    withContext context: NSManagedObjectContext 
) -> NSEntityDescription? 

class var entityDescription: NSEntityDescription? { get } 

class var fetchRequest: NSFetchRequest? { get }
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and NSPersistentHistoryChange

NEW
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    withContext context: NSManagedObjectContext 
) -> NSEntityDescription? 
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Fetching Persistent History
NEW

open class NSPersistentHistoryChangeRequest : NSPersistentStoreRequest { 

    open class func fetchHistory( 
        withFetch fetchRequest: NSFetchRequest<NSFetchRequestResult> 
    ) -> Self 

    open var fetchRequest: NSFetchRequest<NSFetchRequestResult>? 

}



open class NSPersistentHistoryChangeRequest : NSPersistentStoreRequest { 

    open class func fetchHistory( 
        withFetch fetchRequest: NSFetchRequest<NSFetchRequestResult> 
    ) -> Self 

    open var fetchRequest: NSFetchRequest<NSFetchRequestResult>? 

}

Fetching Persistent History
NEW



open class NSPersistentHistoryChangeRequest : NSPersistentStoreRequest { 

    open class func fetchHistory( 
        withFetch fetchRequest: NSFetchRequest<NSFetchRequestResult> 
    ) -> Self 

    open var fetchRequest: NSFetchRequest<NSFetchRequestResult>? 

}

Fetching Persistent History
NEW
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Remote Change Notifications

Cross-coordinator save notifications 

Asynchronous

NEW



Remote Change Notifications

Cross-coordinator change notifications

NEW



Remote Change Notifications
NEW



Remote Change Notifications
NEW

let description: NSPersistentStoreDescription = /* ... */ 

description.setOption( 
    true as NSNumber, 
    forKey: NSPersistentStoreRemoteChangeNotificationPostOptionKey) 

description.setOption(true as NSNumber, forKey: NSPersistentHistoryTrackingKey)



Remote Change Notifications
NEW



func storeRemoteChange(_ notification: Notification) { 

    precondition(notification.name == NSNotification.Name.NSPersistentStoreRemoteChange) 

    let storeURL = notification.userInfo?[NSPersistentStoreURLKey]! 
    let token = notification.userInfo?[NSPersistentHistoryTokenKey]! 

    print("Store at \(storeURL) was changed in transaction \(token).") 

}

Remote Change Notifications
NEW
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Persistent History Tokens
NEW

extension NSPersistentStoreCoordinator { 

  func currentPersistentHistoryToken( 
    from stores: [NSPersistentStore]? 
  ) -> NSPersistentHistoryToken? 

}



•Demo



•Getting started 
•The needs of the controller 
•Scaling your app 
•Testing



Testing Against Core Data

Test against actual performance goals 



Testing Against Core Data

Test against actual performance goals 

Run integration tests in multiple configs







Testing Against Core Data

Test against actual performance goals 

Run integration tests in multiple configs



Testing Against Core Data

Test against actual performance goals 

Run integration tests in multiple configs 

Use in-memory stores where appropriate



Named In-Memory Stores

let container = NSPersistentCloudKitContainer(name: "CoreDataCloudKitDemo") 

let description = container.persistentStoreDescriptions.first! 

description.url = URL(fileURLWithPath: "/dev/null") 

container.loadPersistentStores(completionHandler: { (_, error) in 
  guard let error = error as NSError? else { return } 
  fatalError("###\(#function): Failed to load persistent stores:\(error)") 
})
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let container = NSPersistentCloudKitContainer(name: "CoreDataCloudKitDemo") 
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description.url = URL(fileURLWithPath: "/dev/null") 
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Named In-Memory Stores

let container = NSPersistentCloudKitContainer(name: "CoreDataCloudKitDemo") 

let description = container.persistentStoreDescriptions.first! 

description.url = URL(fileURLWithPath: "/dev/null").appendingPathComponent(str) 

container.loadPersistentStores(completionHandler: { (_, error) in 
  guard let error = error as NSError? else { return } 
  fatalError("###\(#function): Failed to load persistent stores:\(error)") 
})
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Sanitizers

Address Sanitizer

Thread Sanitizer

Undefined Behavior Sanitizer



•Getting started 
•The needs of the controller 
•Scaling your app 
•Testing



Feedback Assistant



More Information
developer.apple.com/wwdc19/230

CoreData Lab Friday, 1:00




