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Setting Up the Stack

By hame

let contalner = NSPersistentCloudKitContainer(name: "CoreDataCloudKitDemo")
contailner.loadPersistentStores { , error in /*x ... %/ }

With a model

let container = NSPersistentCloudKitContainer(
name: "CoreDataCloudKitDemo",
managedObjectModel :model)

container.loadPersistentStores { , error in /*x ... *x/ }
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Configuring Managed Object Contexts

Query generations provide stability

try container.viewContext.setQueryGenerationFrom(.current)

Automatic merging provides freshness

context.automaticallyMergesChangesFromParent = true
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Using Managed Object Contexts

context.performAndwait f{

/* ... %/
s

context.perform {

/% ... %/
I3

contalner.performBackgroundTask { context in
/% .. %/
¥
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Apps Need Data!

Use Init(context:) to create individual managed objects

context.perform {
let post = Post(context: context)
post.title = "Hello, world!"

try? context.save()



Apps need more data!
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Insert many managed objects with a fraction of the overhead

let rawPostsData: Data = // Server response ...
1T let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [[String : Anvy]] {
context.perform A
let 1nsertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts)
let 1nsertResult = try? context.execute(insertRequest) as! NSBatchInsertRequest

let success = 1nsertResult.result as! Bool
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Batch Insertions

Insert many managed objects with a fraction of the overhead

let rawPostsData: Data = // Server response ...
1T let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [[String : Anv]] {
context.perform {
let 1nsertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts)
let 1nsertResult = try? context.execute(insertRequest) as! NSBatchInsertRequest

let success = 1nsertResult.result as! Bool



Batch Insertions

[ Post

: Vv Attributes
"content": "Lorem 1psum dolor sit amet.." content
"title" : "Hello, world!", title

. v Relationships

! attachment
"content": "This post has no title!" tags

I,

I
"title": "Content coming soon!"

]



Batch Insertions

Insert many managed objects with a fraction of the overhead

let rawPostsData = // ...
1T let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [String : Any] {
moc.perform {
let 1nsertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts)
let 1nsertResult = try? moc.execute(insertRequest) as! NSBatchInsertRequest

let success = i1nsertResult.result as! Bool



Batch Insertions

Insert many managed objects with a fraction of the overhead

let rawPostsData = // ...
1T let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [String : Any] {
moc.perform {
let 1nsertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts)
let 1nsertResult = try? moc.execute(insertRequest) as! NSBatchInsertRequest

let success = 1nsertResult.result as! Bool
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Unique constraints
Omitted keys
Relationships

Notifications
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Fetching an Object

let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)
1T let tag = try? fetchRequest.execute().first {

taglLabel.text = tag.name
taglLabel.textColor = tag.color as? UIColor
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Fetching an Object

let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)
1T let tag = try? fetchRequest.execute().first {

taglLabel.text = tag.name
taglLabel.textColor = tag.color as? UIColor



Wiring Views

let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()
fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)
1T let tag = try? fetchRequest.execute().first {

nameSubscription = tag.publisher(for: \.name)
.assign(to: \.text, on: taglLabel)

colorSubscription = tag.publisher(for: \.color)
.map({ $0 as? UIColor })
.assign(to: \.textColor, on: taglLabel)



Wiring Views

let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()
fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)

1T let tag = try? fetchRequest.execute().first {

nameSubscription = tag.publisher(for: \.name)

.assign(to: \.text, on: taglLabel)
colorSubscription = tag.publisher(for: \.color)

.map({ $0 as? UIColor })
.assign(to: \.textColor, on: taglLabel)

Combine in Practice WWDC 2019



Wiring Detall Views

1t let tag = tag {

nameSubscription = tag.publisher(for: \.name)
.assign(to: \.text, on: taglLabel)

colorSubscription = tag.publisher(for: \.color)
.map({ $0 as? UIColor })
.assign(to: \.textColor, on: taglLabel)



Fetching Many Objects

Sort results

fetchRequest.sortDescriptors = [NSSortDescriptor(key: "name", ascending: true)]



Fetching Many Objects

Sort results

fetchRequest.sortDescriptors = [NSSortDescriptor(key: "name", ascending: true)]

Batched fetching

fetchRequest.fetchBatchSize = 50
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let fetchRequest: NSFetchRequest<Post> = Post.fetchRequest()

fetchRequest.sortDescriptors = [NSSortDescriptor(key: "title", ascending: true)]
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Live Queries

let fetchRequest: NSFetchRequest<Post> = Post.fetchRequest()

fetchRequest.sortDescriptors = [NSSortDescriptor(key: "title", ascending: true)]
fetchRequest.fetchBatchSize = 50

let controller = NSFetchedResultsController(fetchRequest: fetchRequest,

managedObjectContext: moc,

sectionNameKeyPath: nil, cacheName: nil)

controller.delegate = self

try! controller.performFetch()
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Fetched Results Controller Delegate Methods

controllerWillChangeContent(:) e EEE— beginUpdates()

controller(:didChange:atSectionIndex:for:) _ > insertSections(:with:)
deleteSections(:with:)

controller(:didChange:at:for:newIndexPath:) -_— 1nsertRows(at:with:)
deleteRows(at:with:)

controllerDidChangeContent(:) -’ endUpdates ()



Fetched Results Controller Delegate Methods

controllerWillChangeContent(:) beginUpdates()

controller(:didChange:atSectionIndex:for:) 1nsertSections(:with:)
deleteSections(:with:)

controller(:didChange:at:for:newIndexPath:) insertRows(at:with:)
deleteRows(at:with:)

controllerDidChangeContent(:) endUpdates()
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New delegate method vends instances of NSDiffableDataSourceSnapshot

Snhapshots encode the section and row state of a collection view

Advances in Ul Data Sources WWDC 2019
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Displaying Fetched Results Using Snapshots

New delegate method vends instances of NSDiffableDataSourceSnapshot

Snhapshots encode the section and row state of a collection view

func controller (
~controller: NSFetchedResultsController<NSFetchRequestResult>,

didChangeContentWith snapshot: NSDiffableDataSourceSnapshotReference<NSManagedObjectID,

NSString>

) 1
collectionViewDataSource.applySnapshot(snapshot as! NSDiffableDataSourceSnapshot)

Advances in Ul Data Sources WWDC 2019
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Only supported when sectionNameKeyPath Is nil

Great for driving individual sections of a complex view!
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Displaying Fetched Results Using Differences

New delegate method vends instances of CollectionDifference
Only supported when sectionNameKeyPath Is nil

Great for driving individual sections of a complex view!

Ordered Collection Diffing (SE-0240)

Introducing Combine and Advances in Foundation WWDC 2019



func controller(
~controller: NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) 1
collectionView.performBatchUpdates({
for change in diff {
switch change {
case .1lnsert(offset: let newRow, element: , associatedwWith: let assoc):
1f let oldRow = assoc {
collectionView.moveItem(
at: IndexPath(row: oldRow, section: frcSection),
to: IndexPath(row: newRow, section: frcSection))
} else {
collectionView.insertItems(
at: [IndexPath(row: newRow, section: frcSection)])

}
case .remove(offset: let oldRow, element: , associatedWith: let assoc):
1f assoc == nil {
collectionView.deleteItems(
at: [IndexPath(row: oldRow, section: frcSection)])
s

¥
¥

}, completion: nil)
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~controller: NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) 1
collectionView.performBatchUpdates({
for change in diff {
switch change {
case .ilnsert(offset: let newRow, element: , associlatedwWith: let assoc):
1f let oldRow = assoc {
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func controller(
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Displaying Fetched Results

Drive declarative list views from controllerDidChangeContent(:)

Integrating SwiftUI WWDC 2019
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Improving Performance Using Denormalization

Adding redundant data to make access faster and more convenient

Redundant data requires more work
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Derived Attributes

CoreData-managed metadata

Multiple supported functions
Defined In managed object model

Avalilable on all properties of the entity
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Supported Derivations

Data duplication
Data transformation
To-many aggregate functions

Zero-parameter functions



Getting started

The needs of the Controller

Scaling your app
Testing
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Process history generated by a specific author
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Process history generated by a specific author

Fetch history affecting a specific type



Fetching Persistent History

Process history generated by a specific author
Fetch history affecting a specific type

Changes that happened between a two tokens



NSPersistentHistoryTransaction
and NSPersistentHistoryChange

class func entityDescription(
withContext context: NSManagedObjectContext
) —> NSEntityDescription?

class var entityDescription: NSEntityDescription? { get }

class var fetchRequest: NSFetchRequest? { get }
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NSPersistentHistoryTransaction
and NSPersistentHistoryChange

class func entityDescription(
withContext context: NSManagedObjectContext
) —> NSEntityDescription?

class var entityDescription: NSEntityDescription? { get }

class var fetchRequest: NSFetchRequest? { get }
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Fetching Persistent History

open class NSPersistentHistoryChangeRequest : NSPersistentStoreRequest {
open class func fetchHistory/(
withFetch fetchRequest: NSFetchRequest<NSFetchRequestResult>

) —> Self

open var fetchRequest: NSFetchRequest<NSFetchRequestResult>?
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Fetching Persistent History

open class NSPersistentHistoryChangeRequest : NSPersistentStoreRequest {
open class func fetchHistory/(
withFetch fetchRequest: NSFetchRequest<NSFetchRequestResult>

) —> Self

open var fetchRequest: NSFetchRequest<NSFetchRequestResult>?
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Asynchronous



Remote Change Notifications

Cross-coordinator change notifications
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Remote Change Notifications

/* ... %/

let description: NSPersistentStoreDescription

description.setOption(

true as NSNumber,
forKey: NSPersistentStoreRemoteChangeNotificationPostOptionKey)

description.setOption(true as NSNumber, forKey: NSPersistentHistoryTrackingKey)
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Remote Change Notifications

func storeRemoteChange( notification: Notification) <«

precondition(notification.name == NSNotification.Name.NSPersistentStoreRemoteChange)

let storeURL = notification.userInfo?[NSPersistentStoreURLKey]!

let token = notification.userInfo?[NSPersistentHistoryTokenKey]!

print("Store at \(storeURL) was changed in transaction \(token).")
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Persistent History Tokens

extension NSPersistentStoreCoordinator {

func currentPersistentHistoryToken(
from stores: [NSPersistentStorel?

) —> NSPersistentHistoryToken?
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Testing Against Core Data

Test against actual performance goals

Run integration tests in multiple configs
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Testing Against Core Data

Test against actual performance goals
Run integration tests in multiple configs

Use In-memory stores where appropriate



Named In-Memory Stores

let contailner = NSPersistentCloudKitContainer(name: "CoreDataCloudKitDemo")

let description contalner.persistentStoreDescriptions.first!

description.url = URL(fileURLWithPath: "/dev/null")
container.loadPersistentStores(completionHandler: { ( , error) in
guard let error = error as NSError? else { return »

fatalError("###\ (#function): Failed to load persistent stores:\(error)")

r)
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let contailner = NSPersistentCloudKitContainer(name: "CoreDataCloudKitDemo")

let description contalner.persistentStoreDescriptions.first!

description.url = URL(fileURLWithPath: "/dev/null")
container.loadPersistentStores(completionHandler: { ( , error) in
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Named In-Memory Stores

let contailner = NSPersistentCloudKitContainer(name: "CoreDataCloudKitDemo")

let description contalner.persistentStoreDescriptions.first!

description.url = URL(fileURLW1ithPath: "/dev/null").appendingPathComponent(str)
container.loadPersistentStores(completionHandler: { ( , error) in
guard let error = error as NSError? else { return %

fatalError("###\ (#function): Failed to load persistent stores:\(error)")

r)
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Sanitizers

Address Sanitizer
Thread Sanitizer

Undefined Behavior Sanitizer
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