
© 2019 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC19

Scott Perry, Core Data Engineer

•Making Apps with Core Data

•Getting started
•The needs of the Controller
•Scaling your app
•Testing

•Getting started
•The needs of the Controller
•Scaling your app
•Testing

•Modeling Data

Modeling Data

Post

Modeling Data

Post

Tag

Attachment

Modeling Data

Data

Post

Tag

Attachment

 Attributes
content
title

 Relationships
attachments
tags

Post

 Attributes
thumbnail
uuid

 Relationships
imageData
post

Attachment

 Attributes
color
name
uuid

 Relationships
posts

Tag

 Attributes
data

 Relationships
attachment

ImageData

 Attributes
content
title

 Relationships
attachments
tags

Post

 Attributes
thumbnail
uuid

 Relationships
imageData
post

Attachment

 Attributes
color
name
uuid

 Relationships
posts

Tag

 Attributes
data

 Relationships
attachment

ImageData

 Attributes
content
title

 Relationships
attachments
tags

Post

 Attributes
thumbnail
uuid

 Relationships
imageData
post

Attachment

 Attributes
color
name
uuid

 Relationships
posts

Tag

 Attributes
data

 Relationships
attachment

ImageData

 Attributes
content
title

 Relationships
attachments
tags

Post

 Attributes
thumbnail
uuid

 Relationships
imageData
post

Attachment

 Attributes
color
name
uuid

 Relationships
posts

Tag

 Attributes
data

 Relationships
attachment

ImageData

The Core Data Stack

The Core Data Stack

Model

NSManagedObjectModel

The Core Data Stack

Store coordinator

NSPersistentStoreCoordinator
Model

NSManagedObjectModel

The Core Data Stack

Store coordinator

NSPersistentStoreCoordinator
Model

NSManagedObjectModel

The Core Data Stack

Context

NSManagedObjectContext
Store coordinator

NSPersistentStoreCoordinator
Model

NSManagedObjectModel

The Core Data Stack

Context

NSManagedObjectContext
Store coordinator

NSPersistentStoreCoordinator
Model

NSManagedObjectModel

Persistent container

NSPersistentContainer

Setting Up the Stack

By name
let container = NSPersistentCloudKitContainer(name: “CoreDataCloudKitDemo")

Setting Up the Stack

By name
let container = NSPersistentCloudKitContainer(name: “CoreDataCloudKitDemo")

With a model
let container = NSPersistentCloudKitContainer(
 name: "CoreDataCloudKitDemo",
 managedObjectModel:model)

Setting Up the Stack

By name
let container = NSPersistentCloudKitContainer(name: “CoreDataCloudKitDemo")
container.loadPersistentStores { _, error in /* ... */ }

With a model
let container = NSPersistentCloudKitContainer(
 name: "CoreDataCloudKitDemo",
 managedObjectModel:model)
container.loadPersistentStores { _, error in /* ... */ }

•Configuring Managed Object Contexts

Configuring Managed Object Contexts

Query generations provide stability
try container.viewContext.setQueryGenerationFrom(.current)

Configuring Managed Object Contexts

Query generations provide stability
try container.viewContext.setQueryGenerationFrom(.current)

Automatic merging provides freshness
context.automaticallyMergesChangesFromParent = true

Using Managed Object Contexts

Using Managed Object Contexts

context.performAndWait {
 /* ... */
}

context.perform {
 /* ... */
}

container.performBackgroundTask { context in
 /* ... */
}

Apps Need Data!

Use init(context:) to create individual managed objects

Apps Need Data!

context.perform {
 let post = Post(context: context)
 post.title = "Hello, world!"
 try? context.save()
}

Use init(context:) to create individual managed objects

Apps need more data!

Batch Insertions

Insert many managed objects with a fraction of the overhead
let rawPostsData: Data = // Server response ...
if let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [[String : Any]] {
 context.perform {
 let insertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts)
 let insertResult = try? context.execute(insertRequest) as! NSBatchInsertRequest
 let success = insertResult.result as! Bool
 }
}

Batch Insertions

Insert many managed objects with a fraction of the overhead
let rawPostsData: Data = // Server response ...
if let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [[String : Any]] {
 context.perform {
 let insertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts)
 let insertResult = try? context.execute(insertRequest) as! NSBatchInsertRequest
 let success = insertResult.result as! Bool
 }
}

NEW

Batch Insertions

Insert many managed objects with a fraction of the overhead
let rawPostsData: Data = // Server response ...
if let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [[String : Any]] {
 context.perform {
 let insertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts)
 let insertResult = try? context.execute(insertRequest) as! NSBatchInsertRequest
 let success = insertResult.result as! Bool
 }
}

NEW

Batch Insertions

[
 [
 "content": "Lorem ipsum dolor sit amet…"
 "title" : "Hello, world!",
],
 [
 "content": "This post has no title!"
],
 [
 "title": "Content coming soon!"
]
]

 Attributes
content
title

 Relationships
attachment
tags

Post

Batch Insertions

Insert many managed objects with a fraction of the overhead
let rawPostsData = // ...
if let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [String : Any] {
 moc.perform {
 let insertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts)
 let insertResult = try? moc.execute(insertRequest) as! NSBatchInsertRequest
 let success = insertResult.result as! Bool
 }
}

NEW

Batch Insertions

Insert many managed objects with a fraction of the overhead
let rawPostsData = // ...
if let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [String : Any] {
 moc.perform {
 let insertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts)
 let insertResult = try? moc.execute(insertRequest) as! NSBatchInsertRequest
 let success = insertResult.result as! Bool
 }
}

NEW

But What About…

But What About…

Unique constraints

But What About…

Unique constraints

Omitted keys

But What About…

Unique constraints

Omitted keys

Relationships

But What About…

Unique constraints

Omitted keys

Relationships

Notifications

•Getting started
•The needs of the Controller
•Scaling your app
•Testing

Fetching an Object
let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)

if let tag = try? fetchRequest.execute().first {

 tagLabel.text = tag.name
 tagLabel.textColor = tag.color as? UIColor

}

Fetching an Object
let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)

if let tag = try? fetchRequest.execute().first {

 tagLabel.text = tag.name
 tagLabel.textColor = tag.color as? UIColor

}

Fetching an Object
let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)

if let tag = try? fetchRequest.execute().first {

 tagLabel.text = tag.name
 tagLabel.textColor = tag.color as? UIColor

}

Fetching an Object
let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)

if let tag = try? fetchRequest.execute().first {

 tagLabel.text = tag.name
 tagLabel.textColor = tag.color as? UIColor

}

Fetching an Object
let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)

if let tag = try? fetchRequest.execute().first {

 tagLabel.text = tag.name
 tagLabel.textColor = tag.color as? UIColor

}

Fetching an Object
let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)

if let tag = try? fetchRequest.execute().first {

 tagLabel.text = tag.name
 tagLabel.textColor = tag.color as? UIColor

}

Fetching an Object
let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)

if let tag = try? fetchRequest.execute().first {

 tagLabel.text = tag.name
 tagLabel.textColor = tag.color as? UIColor

}

Fetching an Object
let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)

if let tag = try? fetchRequest.execute().first {

 tagLabel.text = tag.name
 tagLabel.textColor = tag.color as? UIColor

}

Wiring Views
let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)

if let tag = try? fetchRequest.execute().first {

 nameSubscription = tag.publisher(for: \.name)
 .assign(to: \.text, on: tagLabel)

 colorSubscription = tag.publisher(for: \.color)
 .map({ $0 as? UIColor })
 .assign(to: \.textColor, on: tagLabel)

}

let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)

if let tag = try? fetchRequest.execute().first {

 nameSubscription = tag.publisher(for: \.name)
 .assign(to: \.text, on: tagLabel)

 colorSubscription = tag.publisher(for: \.color)
 .map({ $0 as? UIColor })
 .assign(to: \.textColor, on: tagLabel)

}

Wiring Views

Combine in Practice WWDC 2019

Wiring Detail Views

if let tag = tag {

 nameSubscription = tag.publisher(for: \.name)
 .assign(to: \.text, on: tagLabel)

 colorSubscription = tag.publisher(for: \.color)
 .map({ $0 as? UIColor })
 .assign(to: \.textColor, on: tagLabel)

}

Fetching Many Objects

Sort results
fetchRequest.sortDescriptors = [NSSortDescriptor(key: "name", ascending: true)]

Fetching Many Objects

Sort results
fetchRequest.sortDescriptors = [NSSortDescriptor(key: "name", ascending: true)]

Batched fetching
fetchRequest.fetchBatchSize = 50

Live Queries

let fetchRequest: NSFetchRequest<Post> = Post.fetchRequest()

fetchRequest.sortDescriptors = [NSSortDescriptor(key: "title", ascending: true)]
fetchRequest.fetchBatchSize = 50

Live Queries

Live Queries

let fetchRequest: NSFetchRequest<Post> = Post.fetchRequest()

fetchRequest.sortDescriptors = [NSSortDescriptor(key: "title", ascending: true)]
fetchRequest.fetchBatchSize = 50

let controller = NSFetchedResultsController(fetchRequest: fetchRequest,
 managedObjectContext: moc,
 sectionNameKeyPath: nil, cacheName: nil)

controller.delegate = self

try! controller.performFetch()

Fetched Results Controller Delegate Methods

controller(:didChange:atSectionIndex:for:)

controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

controllerWillChangeContent(:)

Fetched Results Controller Delegate Methods

controller(:didChange:atSectionIndex:for:)

controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

controllerWillChangeContent(:)

Fetched Results Controller Delegate Methods

controller(:didChange:atSectionIndex:for:)

controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

controllerWillChangeContent(:)

Fetched Results Controller Delegate Methods

controller(:didChange:atSectionIndex:for:)

controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

controllerWillChangeContent(:)

Fetched Results Controller Delegate Methods

controller(:didChange:atSectionIndex:for:)

controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

controllerWillChangeContent(:)

Fetched Results Controller Delegate Methods

controller(:didChange:atSectionIndex:for:)

controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

controllerWillChangeContent(:)

Fetched Results Controller Delegate Methods

controller(:didChange:atSectionIndex:for:)

controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

controllerWillChangeContent(:)

Fetched Results Controller Delegate Methods

controller(:didChange:atSectionIndex:for:)

controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

controllerWillChangeContent(:)

Fetched Results Controller Delegate Methods

controller(:didChange:atSectionIndex:for:)

controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

controllerWillChangeContent(:)

Fetched Results Controller Delegate Methods

controller(:didChange:atSectionIndex:for:)

controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

insertSections(:with:)
deleteSections(:with:)

insertRows(at:with:)
deleteRows(at:with:)

endUpdates()

beginUpdates()controllerWillChangeContent(:)

Fetched Results Controller Delegate Methods

controller(:didChange:atSectionIndex:for:)

controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

insertSections(:with:)
deleteSections(:with:)

insertRows(at:with:)
deleteRows(at:with:)

endUpdates()

beginUpdates()controllerWillChangeContent(:)

Displaying Fetched Results Using Snapshots

New delegate method vends instances of NSDiffableDataSourceSnapshot

Snapshots encode the section and row state of a collection view

Advances in UI Data Sources WWDC 2019

Displaying Fetched Results Using Snapshots

New delegate method vends instances of NSDiffableDataSourceSnapshot

Snapshots encode the section and row state of a collection view

NEW

Advances in UI Data Sources WWDC 2019

Displaying Fetched Results Using Snapshots

New delegate method vends instances of NSDiffableDataSourceSnapshot

Snapshots encode the section and row state of a collection view
func controller(
 _ controller: NSFetchedResultsController<NSFetchRequestResult>,
 didChangeContentWith snapshot: NSDiffableDataSourceSnapshotReference<NSManagedObjectID,
NSString>
) {
 collectionViewDataSource.applySnapshot(snapshot as! NSDiffableDataSourceSnapshot)
}

NEW

Advances in UI Data Sources WWDC 2019

Displaying Fetched Results Using Differences

New delegate method vends instances of CollectionDifference

Only supported when sectionNameKeyPath is nil

Great for driving individual sections of a complex view!

Displaying Fetched Results Using Differences

New delegate method vends instances of CollectionDifference

Only supported when sectionNameKeyPath is nil

Great for driving individual sections of a complex view!

NEW

Displaying Fetched Results Using Differences

New delegate method vends instances of CollectionDifference

Only supported when sectionNameKeyPath is nil

Great for driving individual sections of a complex view!

NEW

Ordered Collection Diffing (SE-0240)

Introducing Combine and Advances in Foundation WWDC 2019

func controller(
 _ controller: NSFetchedResultsController<NSFetchRequestResult>,
 didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) {
 collectionView.performBatchUpdates({
 for change in diff {
 switch change {
 case .insert(offset: let newRow, element: _, associatedWith: let assoc):
 if let oldRow = assoc {
 collectionView.moveItem(
 at: IndexPath(row: oldRow, section: frcSection),
 to: IndexPath(row: newRow, section: frcSection))
 } else {
 collectionView.insertItems(
 at: [IndexPath(row: newRow, section: frcSection)])
 }
 case .remove(offset: let oldRow, element: _, associatedWith: let assoc):
 if assoc == nil {
 collectionView.deleteItems(
 at: [IndexPath(row: oldRow, section: frcSection)])
 }

 }
 }
 }, completion: nil)
}

func controller(
 _ controller: NSFetchedResultsController<NSFetchRequestResult>,
 didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) {
 collectionView.performBatchUpdates({
 for change in diff {
 switch change {
 case .insert(offset: let newRow, element: _, associatedWith: let assoc):
 if let oldRow = assoc {
 collectionView.moveItem(
 at: IndexPath(row: oldRow, section: frcSection),
 to: IndexPath(row: newRow, section: frcSection))
 } else {
 collectionView.insertItems(
 at: [IndexPath(row: newRow, section: frcSection)])
 }
 case .remove(offset: let oldRow, element: _, associatedWith: let assoc):
 if assoc == nil {
 collectionView.deleteItems(
 at: [IndexPath(row: oldRow, section: frcSection)])
 }

 }
 }
 }, completion: nil)
}

func controller(
 _ controller: NSFetchedResultsController<NSFetchRequestResult>,
 didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) {
 collectionView.performBatchUpdates({
 for change in diff {
 switch change {
 case .insert(offset: let newRow, element: _, associatedWith: let assoc):
 if let oldRow = assoc {
 collectionView.moveItem(
 at: IndexPath(row: oldRow, section: frcSection),
 to: IndexPath(row: newRow, section: frcSection))
 } else {
 collectionView.insertItems(
 at: [IndexPath(row: newRow, section: frcSection)])
 }
 case .remove(offset: let oldRow, element: _, associatedWith: let assoc):
 if assoc == nil {
 collectionView.deleteItems(
 at: [IndexPath(row: oldRow, section: frcSection)])
 }

 }
 }
 }, completion: nil)
}

func controller(
 _ controller: NSFetchedResultsController<NSFetchRequestResult>,
 didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) {
 collectionView.performBatchUpdates({
 for change in diff {
 switch change {
 case .insert(offset: let newRow, element: _, associatedWith: let assoc):
 if let oldRow = assoc {
 collectionView.moveItem(
 at: IndexPath(row: oldRow, section: frcSection),
 to: IndexPath(row: newRow, section: frcSection))
 } else {
 collectionView.insertItems(
 at: [IndexPath(row: newRow, section: frcSection)])
 }
 case .remove(offset: let oldRow, element: _, associatedWith: let assoc):
 if assoc == nil {
 collectionView.deleteItems(
 at: [IndexPath(row: oldRow, section: frcSection)])
 }

 }
 }
 }, completion: nil)
}

func controller(
 _ controller: NSFetchedResultsController<NSFetchRequestResult>,
 didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) {
 collectionView.performBatchUpdates({
 for change in diff {
 switch change {
 case .insert(offset: let newRow, element: _, associatedWith: let assoc):
 if let oldRow = assoc {
 collectionView.moveItem(
 at: IndexPath(row: oldRow, section: frcSection),
 to: IndexPath(row: newRow, section: frcSection))
 } else {
 collectionView.insertItems(
 at: [IndexPath(row: newRow, section: frcSection)])
 }
 case .remove(offset: let oldRow, element: _, associatedWith: let assoc):
 if assoc == nil {
 collectionView.deleteItems(
 at: [IndexPath(row: oldRow, section: frcSection)])
 }

 }
 }
 }, completion: nil)
}

func controller(
 _ controller: NSFetchedResultsController<NSFetchRequestResult>,
 didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) {
 collectionView.performBatchUpdates({
 for change in diff {
 switch change {
 case .insert(offset: let newRow, element: _, associatedWith: let assoc):
 if let oldRow = assoc {
 collectionView.moveItem(
 at: IndexPath(row: oldRow, section: frcSection),
 to: IndexPath(row: newRow, section: frcSection))
 } else {
 collectionView.insertItems(
 at: [IndexPath(row: newRow, section: frcSection)])
 }
 case .remove(offset: let oldRow, element: _, associatedWith: let assoc):
 if assoc == nil {
 collectionView.deleteItems(
 at: [IndexPath(row: oldRow, section: frcSection)])
 }

 }
 }
 }, completion: nil)
}

func controller(
 _ controller: NSFetchedResultsController<NSFetchRequestResult>,
 didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) {
 collectionView.performBatchUpdates({
 for change in diff {
 switch change {
 case .insert(offset: let newRow, element: _, associatedWith: let assoc):
 if let oldRow = assoc {
 collectionView.moveItem(
 at: IndexPath(row: oldRow, section: frcSection),
 to: IndexPath(row: newRow, section: frcSection))
 } else {
 collectionView.insertItems(
 at: [IndexPath(row: newRow, section: frcSection)])
 }
 case .remove(offset: let oldRow, element: _, associatedWith: let assoc):
 if assoc == nil {
 collectionView.deleteItems(
 at: [IndexPath(row: oldRow, section: frcSection)])
 }

 }
 }
 }, completion: nil)
}

func controller(
 _ controller: NSFetchedResultsController<NSFetchRequestResult>,
 didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) {
 collectionView.performBatchUpdates({
 for change in diff {
 switch change {
 case .insert(offset: let newRow, element: _, associatedWith: let assoc):
 if let oldRow = assoc {
 collectionView.moveItem(
 at: IndexPath(row: oldRow, section: frcSection),
 to: IndexPath(row: newRow, section: frcSection))
 } else {
 collectionView.insertItems(
 at: [IndexPath(row: newRow, section: frcSection)])
 }
 case .remove(offset: let oldRow, element: _, associatedWith: let assoc):
 if assoc == nil {
 collectionView.deleteItems(
 at: [IndexPath(row: oldRow, section: frcSection)])
 }

 }
 }
 }, completion: nil)
}

func controller(
 _ controller: NSFetchedResultsController<NSFetchRequestResult>,
 didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) {
 collectionView.performBatchUpdates({
 for change in diff {
 switch change {
 case .insert(offset: let newRow, element: _, associatedWith: let assoc):
 if let oldRow = assoc {
 collectionView.moveItem(
 at: IndexPath(row: oldRow, section: frcSection),
 to: IndexPath(row: newRow, section: frcSection))
 } else {
 collectionView.insertItems(
 at: [IndexPath(row: newRow, section: frcSection)])
 }
 case .remove(offset: let oldRow, element: _, associatedWith: let assoc):
 if assoc == nil {
 collectionView.deleteItems(
 at: [IndexPath(row: oldRow, section: frcSection)])
 }

 }
 }
 }, completion: nil)
}

func controller(
 _ controller: NSFetchedResultsController<NSFetchRequestResult>,
 didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) {
 collectionView.performBatchUpdates({
 for change in diff {
 switch change {
 case .insert(offset: let newRow, element: _, associatedWith: let assoc):
 if let oldRow = assoc {
 collectionView.moveItem(
 at: IndexPath(row: oldRow, section: frcSection),
 to: IndexPath(row: newRow, section: frcSection))
 } else {
 collectionView.insertItems(
 at: [IndexPath(row: newRow, section: frcSection)])
 }
 case .remove(offset: let oldRow, element: _, associatedWith: let assoc):
 if assoc == nil {
 collectionView.deleteItems(
 at: [IndexPath(row: oldRow, section: frcSection)])
 }

 }
 }
 }, completion: nil)
}

Displaying Fetched Results

Drive declarative list views from controllerDidChangeContent(:)

Integrating SwiftUI WWDC 2019

•Denormalization

Improving Performance Using Denormalization

Adding redundant data to make access faster and more convenient

Redundant data requires more work

 Attributes
color
name
uuid

 Relationships
posts

Tag

 Attributes
color
name
uuid

 Relationships
posts

Tag

 Attributes
color
name
postCount
uuid

 Relationships
posts

Tag

🐊
Derived Attributes
CoreData-managed metadata

🐊
Derived Attributes
CoreData-managed metadata NEW

Derived Attributes
CoreData-managed metadata

Multiple supported functions

NEW

Derived Attributes
CoreData-managed metadata

Multiple supported functions

Defined in managed object model

NEW

Derived Attributes
CoreData-managed metadata

Multiple supported functions

Defined in managed object model

Available on all properties of the entity

NEW

•Demo

Supported Derivations

Supported Derivations

Data duplication

Supported Derivations

Data duplication

Data transformation

Supported Derivations

Data duplication

Data transformation

To-many aggregate functions

Supported Derivations

Data duplication

Data transformation

To-many aggregate functions

Zero-parameter functions

•Getting started
•The needs of the Controller
•Scaling your app
•Testing

Fetching Persistent History

Fetching Persistent History
NEW

Fetching Persistent History

Process history generated by a specific author

NEW

Fetching Persistent History

Process history generated by a specific author

Fetch history affecting a specific type

NEW

Fetching Persistent History

Process history generated by a specific author

Fetch history affecting a specific type

Changes that happened between a two tokens

NEW

NSPersistentHistoryTransaction  
and NSPersistentHistoryChange

NEW

class func entityDescription(
 withContext context: NSManagedObjectContext
) -> NSEntityDescription?

class var entityDescription: NSEntityDescription? { get }

class var fetchRequest: NSFetchRequest? { get }

NSPersistentHistoryTransaction  
and NSPersistentHistoryChange

NEW

class func entityDescription(
 withContext context: NSManagedObjectContext
) -> NSEntityDescription?

class var entityDescription: NSEntityDescription? { get }

class var fetchRequest: NSFetchRequest? { get }

NSPersistentHistoryTransaction  
and NSPersistentHistoryChange

NEW

class func entityDescription(
 withContext context: NSManagedObjectContext
) -> NSEntityDescription?

class var entityDescription: NSEntityDescription? { get }

class var fetchRequest: NSFetchRequest? { get }

NSPersistentHistoryTransaction  
and NSPersistentHistoryChange

NEW

class func entityDescription(
 withContext context: NSManagedObjectContext
) -> NSEntityDescription?

class var entityDescription: NSEntityDescription? { get }

class var fetchRequest: NSFetchRequest? { get }

Fetching Persistent History
NEW

Fetching Persistent History
NEW

open class NSPersistentHistoryChangeRequest : NSPersistentStoreRequest {

 open class func fetchHistory(
 withFetch fetchRequest: NSFetchRequest<NSFetchRequestResult>
) -> Self

 open var fetchRequest: NSFetchRequest<NSFetchRequestResult>?

}

open class NSPersistentHistoryChangeRequest : NSPersistentStoreRequest {

 open class func fetchHistory(
 withFetch fetchRequest: NSFetchRequest<NSFetchRequestResult>
) -> Self

 open var fetchRequest: NSFetchRequest<NSFetchRequestResult>?

}

Fetching Persistent History
NEW

open class NSPersistentHistoryChangeRequest : NSPersistentStoreRequest {

 open class func fetchHistory(
 withFetch fetchRequest: NSFetchRequest<NSFetchRequestResult>
) -> Self

 open var fetchRequest: NSFetchRequest<NSFetchRequestResult>?

}

Fetching Persistent History
NEW

Discovering New History

Discovering New History

Poll the store?

Dispatch source?

FS Events?

Discovering New History

Poll the store?

Dispatch source?

FS Events?

Remote Change Notifications

Cross-coordinator save notifications

Asynchronous

Remote Change Notifications

Cross-coordinator save notifications

Asynchronous

NEW

Remote Change Notifications

Cross-coordinator change notifications

NEW

Remote Change Notifications
NEW

Remote Change Notifications
NEW

let description: NSPersistentStoreDescription = /* ... */

description.setOption(
 true as NSNumber,
 forKey: NSPersistentStoreRemoteChangeNotificationPostOptionKey)

description.setOption(true as NSNumber, forKey: NSPersistentHistoryTrackingKey)

Remote Change Notifications
NEW

func storeRemoteChange(_ notification: Notification) {

 precondition(notification.name == NSNotification.Name.NSPersistentStoreRemoteChange)

 let storeURL = notification.userInfo?[NSPersistentStoreURLKey]!
 let token = notification.userInfo?[NSPersistentHistoryTokenKey]!

 print("Store at \(storeURL) was changed in transaction \(token).")

}

Remote Change Notifications
NEW

Persistent History Tokens

Persistent History Tokens
NEW

extension NSPersistentStoreCoordinator {

 func currentPersistentHistoryToken(
 from stores: [NSPersistentStore]?
) -> NSPersistentHistoryToken?

}

•Demo

•Getting started
•The needs of the controller
•Scaling your app
•Testing

Testing Against Core Data

Test against actual performance goals

Testing Against Core Data

Test against actual performance goals

Run integration tests in multiple configs

Testing Against Core Data

Test against actual performance goals

Run integration tests in multiple configs

Testing Against Core Data

Test against actual performance goals

Run integration tests in multiple configs

Use in-memory stores where appropriate

Named In-Memory Stores

let container = NSPersistentCloudKitContainer(name: "CoreDataCloudKitDemo")

let description = container.persistentStoreDescriptions.first!

description.url = URL(fileURLWithPath: "/dev/null")

container.loadPersistentStores(completionHandler: { (_, error) in
 guard let error = error as NSError? else { return }
 fatalError("###\(#function): Failed to load persistent stores:\(error)")
})

Named In-Memory Stores

let container = NSPersistentCloudKitContainer(name: "CoreDataCloudKitDemo")

let description = container.persistentStoreDescriptions.first!

description.url = URL(fileURLWithPath: "/dev/null")

container.loadPersistentStores(completionHandler: { (_, error) in
 guard let error = error as NSError? else { return }
 fatalError("###\(#function): Failed to load persistent stores:\(error)")
})

Named In-Memory Stores

let container = NSPersistentCloudKitContainer(name: "CoreDataCloudKitDemo")

let description = container.persistentStoreDescriptions.first!

description.url = URL(fileURLWithPath: "/dev/null").appendingPathComponent(str)

container.loadPersistentStores(completionHandler: { (_, error) in
 guard let error = error as NSError? else { return }
 fatalError("###\(#function): Failed to load persistent stores:\(error)")
})

Sanitizers

Sanitizers

Address Sanitizer

Sanitizers

Address Sanitizer

Thread Sanitizer

Sanitizers

Address Sanitizer

Thread Sanitizer

Undefined Behavior Sanitizer

•Getting started
•The needs of the controller
•Scaling your app
•Testing

Feedback Assistant

More Information
developer.apple.com/wwdc19/230

CoreData Lab Friday, 1:00

