#WWDC19

Making Apps with Core Data

Scott Perry, Core Data Engineer

© 2019 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Getting started

The needs of the Controller

Scaling your app
Testing

Getting started

The needs of the Controller

Scaling your app
Testing

ll" "? @'

Camera

:
-)
‘ .

eather

ll" "? @'

Camera

:
-)
‘ .

eather

9:41 47/

Edit

Visit the labs!

Welcome to the session!

9:41 47/

Edit

Visit the labs!

Welcome to the session!

9:41 47/

Edit Posts

Untitled 9:41:00 AM

Visit the labs!

Welcome to the session!

9:41 47/

Edit Posts

Untitled 9:41:00 AM

Visit the labs!

Welcome to the session!

P — —_————

- S ————

/ 9:41<7

£ Posts

TLE

Untitled 9:41:00 AM

CONTENT

ATTACHMENTS

P — —_————

- S ————

/ 9:41<7

£ Posts

TLE

Untitled 9:41:00 AM

CONTENT

ATTACHMENTS

P — —_————

- —_— .

Y £
/ ‘v
|
!
i

9:414/

< Posts

THNLE

Hi WWDC!

CONTENT

ATTACHMENTS

P — —_————

- —_— .

Y £
/ ‘v
|
!
i

9:414/

< Posts

THNLE

Hi WWDC!

CONTENT

ATTACHMENTS

9:41 47

Edit

Hi WWDC!

Visit the labs!

Welcome to the session!

9:41 47

Edit

Hi WWDC!

Visit the labs!

Welcome to the session!

/ ’)I
4
/ ‘
!
:

Dismiss

/ ’)I
4
/ ‘
!
:

Dismiss

9:414/

Edit

Hi WWDC!

Visit the labs!

Welcome to the session!

9:414/

Edit

Hi WWDC!

Visit the labs!

Welcome to the session!

9:4147/
Edit

Hi WWDC!

Untitled 9:41:00 AM -0

Untitled 9:41:00 AM - 1

Untitled 9:41:00 AM - 10

Untitled 9:41:00 AM - 100

Untitled 9:41:00 AM - 101

Untitled 9:41:00 AM - 102

Untitled 9:41:00 AM - 103

Untitled 9:41:00 AM - 104

A8 N =

9:4147/
Edit

Hi WWDC!

Untitled 9:41:00 AM -0

Untitled 9:41:00 AM - 1

Untitled 9:41:00 AM - 10

Untitled 9:41:00 AM - 100

Untitled 9:41:00 AM - 101

Untitled 9:41:00 AM - 102

Untitled 9:41:00 AM - 103

Untitled 9:41:00 AM - 104

A8 N =

Modeling Data

Modeling Data

Modeling Data

/
\-

Modeling Data

/-<—»-
\-

Post

v Attributes
content
title

v Relationships
attachments
tags

Attachment

v Attributes
thumbnalil
uuid

v Relationships
ImageData
post

Tag

v Attributes
color

name

uuid

v Relationships
pPOStS

ImageData

v Attributes
data

Vv Relationships
attachment

Post

v Attributes
content
title

v Relationships
attachments
tags

Attachment

v Attributes
thumbnalil
uuid

v Relationships
ImageData
post

Tag

v Attributes
color

name

uuid

v Relationships
pPOStS

ImageData

v Attributes
data

Vv Relationships
attachment

Post

v Attributes
content
title

v Relationships
attachments
tags

Attachment

v Attributes
thumbnalil
uuid

v Relationships
ImageData
post

Tag

v Attributes
color

name

uuid

v Relationships
pPOStS

ImageData

v Attributes
data

Vv Relationships
attachment

Post

v Attributes
content
title

v Relationships
attachments
tags

Attachment

v Attributes
thumbnalil
uuid

v Relationships
ImageData
post

Tag

v Attributes
color

name

uuid

v Relationships
pPOStS

ImageData

v Attributes
data

Vv Relationships
attachment

The Core Data Stack

The Core Data Stack

The Core Data Stack

The Core Data Stack

The Core Data Stack

The Core Data Stack

Setting Up the Stack

By hame

let contailner = NSPersistentCloudKitContainer(name: “CoreDataCloudKitDemo")

Setting Up the Stack

By hame

let contailner = NSPersistentCloudKitContainer(name: “CoreDataCloudKitDemo")

With a model

let contalner = NSPersistentCloudKitContainer(
name: "CoreDataCloudKitDemo",

managedObjectModel :model)

Setting Up the Stack

By hame

let contalner = NSPersistentCloudKitContainer(name: "CoreDataCloudKitDemo")
contailner.loadPersistentStores { , error in /*x ... %/ }

With a model

let container = NSPersistentCloudKitContainer(
name: "CoreDataCloudKitDemo",
managedObjectModel :model)

container.loadPersistentStores { , error in /*x ... *x/ }

Configuring Managed Object Contexts

Configuring Managed Object Contexts

Query generations provide stability

try container.viewContext.setQueryGenerationFrom(.current)

Configuring Managed Object Contexts

Query generations provide stability

try container.viewContext.setQueryGenerationFrom(.current)

Automatic merging provides freshness

context.automaticallyMergesChangesFromParent = true

Using Managed Object Contexts

Using Managed Object Contexts

context.performAndwait f{

/* ... %/
s

context.perform {

/% ... %/
I3

contalner.performBackgroundTask { context in
/% .. %/
¥

Apps Need Data!

Use Init(context:) to create individual managed objects

Apps Need Data!

Use Init(context:) to create individual managed objects

context.perform {
let post = Post(context: context)
post.title = "Hello, world!"

try? context.save()

Apps need more data!

Batch Insertions

Insert many managed objects with a fraction of the overhead

let rawPostsData: Data = // Server response ...
1T let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [[String : Anvy]] {
context.perform A
let 1nsertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts)
let 1nsertResult = try? context.execute(insertRequest) as! NSBatchInsertRequest

let success = 1nsertResult.result as! Bool

Batch Insertions

Insert many managed objects with a fraction of the overhead

let rawPostsData: Data = // Server response ...
1T let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [[String : Anvy]] {
context.perform {
let 1nsertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts)
let 1nsertResult = try? context.execute(insertRequest) as! NSBatchInsertRequest

let success = 1nsertResult.result as! Bool

Batch Insertions

Insert many managed objects with a fraction of the overhead

let rawPostsData: Data = // Server response ...
1T let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [[String : Anv]] {
context.perform {
let 1nsertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts)
let 1nsertResult = try? context.execute(insertRequest) as! NSBatchInsertRequest

let success = 1nsertResult.result as! Bool

Batch Insertions

[Post

: Vv Attributes
"content": "Lorem 1psum dolor sit amet.." content
"title" : "Hello, world!", title

. v Relationships

! attachment
"content": "This post has no title!" tags

I,

I
"title": "Content coming soon!"

]

Batch Insertions

Insert many managed objects with a fraction of the overhead

let rawPostsData = // ...
1T let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [String : Any] {
moc.perform {
let 1nsertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts)
let 1nsertResult = try? moc.execute(insertRequest) as! NSBatchInsertRequest

let success = i1nsertResult.result as! Bool

Batch Insertions

Insert many managed objects with a fraction of the overhead

let rawPostsData = // ...
1T let postDicts = try? JSONSerialization.jsonObject(with:rawPostsData) as? [String : Any] {
moc.perform {
let 1nsertRequest = NSBatchInsertRequest(entity: Post.entity(), objects: postDicts)
let 1nsertResult = try? moc.execute(insertRequest) as! NSBatchInsertRequest

let success = 1nsertResult.result as! Bool

But What About...

But What About...

Unique constraints

But What About...

Unique constraints

Omitted keys

But What About...

Unique constraints
Omitted keys

Relationships

But What About...

Unique constraints
Omitted keys
Relationships

Notifications

Getting started

The needs of the Controller
Scaling your app

Testing

Fetching an Object

let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)
1T let tag = try? fetchRequest.execute().first {

taglLabel.text = tag.name
taglLabel.textColor = tag.color as? UIColor

Fetching an Object

let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)
1T let tag = try? fetchRequest.execute().first {

taglLabel.text = tag.name
taglLabel.textColor = tag.color as? UIColor

Fetching an Object

let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)
1T let tag = try? fetchRequest.execute().first {

taglLabel.text = tag.name
taglLabel.textColor = tag.color as? UIColor

Fetching an Object

let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)
1T let tag = try? fetchRequest.execute().first {

taglLabel.text = tag.name
taglLabel.textColor = tag.color as? UIColor

Fetching an Object

let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)
1T let tag = try? fetchRequest.execute().first {

taglLabel.text = tag.name
taglLabel.textColor = tag.color as? UIColor

Fetching an Object

let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)
1T let tag = try? fetchRequest.execute().first {

taglLabel.text = tag.name
taglLabel.textColor = tag.color as? UIColor

Fetching an Object

let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)
1T let tag = try? fetchRequest.execute().first {

taglLabel.text = tag.name
taglLabel.textColor = tag.color as? UIColor

Fetching an Object

let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()

fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)
1T let tag = try? fetchRequest.execute().first {

taglLabel.text = tag.name
taglLabel.textColor = tag.color as? UIColor

Wiring Views

let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()
fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)
1T let tag = try? fetchRequest.execute().first {

nameSubscription = tag.publisher(for: \.name)
.assign(to: \.text, on: taglLabel)

colorSubscription = tag.publisher(for: \.color)
.map({ $0 as? UIColor })
.assign(to: \.textColor, on: taglLabel)

Wiring Views

let fetchRequest : NSFetchRequest<Tag> = Tag.fetchRequest()
fetchRequest.predicate = NSPredicate(format: "name = %@", tagName)

1T let tag = try? fetchRequest.execute().first {

nameSubscription = tag.publisher(for: \.name)

.assign(to: \.text, on: taglLabel)
colorSubscription = tag.publisher(for: \.color)

.map({ $0 as? UIColor })
.assign(to: \.textColor, on: taglLabel)

Combine in Practice WWDC 2019

Wiring Detall Views

1t let tag = tag {

nameSubscription = tag.publisher(for: \.name)
.assign(to: \.text, on: taglLabel)

colorSubscription = tag.publisher(for: \.color)
.map({ $0 as? UIColor })
.assign(to: \.textColor, on: taglLabel)

Fetching Many Objects

Sort results

fetchRequest.sortDescriptors = [NSSortDescriptor(key: "name", ascending: true)]

Fetching Many Objects

Sort results

fetchRequest.sortDescriptors = [NSSortDescriptor(key: "name", ascending: true)]

Batched fetching

fetchRequest.fetchBatchSize = 50

Live Queries

Live Queries

let fetchRequest: NSFetchRequest<Post> = Post.fetchRequest()

fetchRequest.sortDescriptors = [NSSortDescriptor(key: "title", ascending: true)]
fetchRequest.fetchBatchSize = 50

Live Queries

let fetchRequest: NSFetchRequest<Post> = Post.fetchRequest()

fetchRequest.sortDescriptors = [NSSortDescriptor(key: "title", ascending: true)]
fetchRequest.fetchBatchSize = 50

let controller = NSFetchedResultsController(fetchRequest: fetchRequest,

managedObjectContext: moc,

sectionNameKeyPath: nil, cacheName: nil)

controller.delegate = self

try! controller.performFetch()

Fetched Results Controller Delegate Methods

controllerWillChangeContent(:)

controller(:didChange:atSectionIndex:for:)
controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

Fetched Results Controller Delegate Methods

controllerWillChangeContent(:)

controller(:didChange:atSectionIndex:for:)
controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

Fetched Results Controller Delegate Methods

controllerWillChangeContent(:)

controller(:didChange:atSectionIndex:for:)
controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

Fetched Results Controller Delegate Methods

controllerWillChangeContent(:)

controller(:didChange:atSectionIndex: for:)
controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

Fetched Results Controller Delegate Methods

controllerWillChangeContent(:)

controller(:didChange:atSectionIndex: for:)
controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

Fetched Results Controller Delegate Methods

controllerWillChangeContent(:)

controller(:didChange:atSectionIndex:for:)
controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

Fetched Results Controller Delegate Methods

controllerWillChangeContent(:)

controller(:didChange:atSectionIndex:for:)
controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

Fetched Results Controller Delegate Methods

controllerWillChangeContent(:)

controller(:didChange:atSectionIndex:for:)
controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

Fetched Results Controller Delegate Methods

controllerWillChangeContent(:)

controller(:didChange:atSectionIndex:for:)
controller(:didChange:at:for:newIndexPath:)

controllerDidChangeContent(:)

Fetched Results Controller Delegate Methods

controllerWillChangeContent(:) e EEE— beginUpdates()

controller(:didChange:atSectionIndex:for:) _ > insertSections(:with:)
deleteSections(:with:)

controller(:didChange:at:for:newIndexPath:) -_— 1nsertRows(at:with:)
deleteRows(at:with:)

controllerDidChangeContent(:) -’ endUpdates ()

Fetched Results Controller Delegate Methods

controllerWillChangeContent(:) beginUpdates()

controller(:didChange:atSectionIndex:for:) 1nsertSections(:with:)
deleteSections(:with:)

controller(:didChange:at:for:newIndexPath:) insertRows(at:with:)
deleteRows(at:with:)

controllerDidChangeContent(:) endUpdates()

Displaying Fetched Results Using Snapshots

New delegate method vends instances of NSDiffableDataSourceSnapshot

Snhapshots encode the section and row state of a collection view

Advances in Ul Data Sources WWDC 2019

Displaying Fetched Results Using Snapshots @

New delegate method vends instances of NSDiffableDataSourceSnapshot

Snhapshots encode the section and row state of a collection view

Advances in Ul Data Sources WWDC 2019

Displaying Fetched Results Using Snapshots

New delegate method vends instances of NSDiffableDataSourceSnapshot

Snhapshots encode the section and row state of a collection view

func controller (
~controller: NSFetchedResultsController<NSFetchRequestResult>,

didChangeContentWith snapshot: NSDiffableDataSourceSnapshotReference<NSManagedObjectID,

NSString>

) 1
collectionViewDataSource.applySnapshot(snapshot as! NSDiffableDataSourceSnapshot)

Advances in Ul Data Sources WWDC 2019

Displaying Fetched Results Using Differences

New delegate method vends instances of CollectionDifference
Only supported when sectionNameKeyPath Is nil

Great for driving individual sections of a complex view!

Displaying Fetched Results Using Differences

New delegate method vends instances of CollectionDifference
Only supported when sectionNameKeyPath Is nil

Great for driving individual sections of a complex view!

Displaying Fetched Results Using Differences

New delegate method vends instances of CollectionDifference
Only supported when sectionNameKeyPath Is nil

Great for driving individual sections of a complex view!

Ordered Collection Diffing (SE-0240)

Introducing Combine and Advances in Foundation WWDC 2019

func controller(
~controller: NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) 1
collectionView.performBatchUpdates({
for change in diff {
switch change {
case .1lnsert(offset: let newRow, element: , associatedwWith: let assoc):
1f let oldRow = assoc {
collectionView.moveItem(
at: IndexPath(row: oldRow, section: frcSection),
to: IndexPath(row: newRow, section: frcSection))
} else {
collectionView.insertItems(
at: [IndexPath(row: newRow, section: frcSection)])

}
case .remove(offset: let oldRow, element: , associatedWith: let assoc):
1f assoc == nil {
collectionView.deleteItems(
at: [IndexPath(row: oldRow, section: frcSection)])
s

¥
¥

}, completion: nil)

func controller(
~controller: NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) 1
collectionView.performBatchUpdates({
for change in diff {
switch change {
case .1lnsert(offset: let newRow, element: , associatedwWith: let assoc):
1f let oldRow = assoc {
collectionView.moveItem(
at: IndexPath(row: oldRow, section: frcSection),
to: IndexPath(row: newRow, section: frcSection))
} else {
collectionView.insertItems(
at: [IndexPath(row: newRow, section: frcSection)])

}
case .remove(offset: let oldRow, element: , associatedWith: let assoc):
1f assoc == nil {
collectionView.deleteItems(
at: [IndexPath(row: oldRow, section: frcSection)])
s

¥
¥

}, completion: nil)

func controller(
~controller: NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) 1
collectionView.performBatchUpdates({
for change in diff {
switch change {
case .ilnsert(offset: let newRow, element: , associlatedwWith: let assoc):
1f let oldRow = assoc {
collectionView.moveItem(
at: IndexPath(row: oldRow, section: frcSection),
to: IndexPath(row: newRow, section: frcSection))
} else {
collectionView.insertItems(
at: [IndexPath(row: newRow, section: frcSection)])

}
case .remove(offset: let oldRow, element: , associatedwWith: let assoc):
1f assoc == nil {
collectionView.deleteItems(
at: [IndexPath(row: oldRow, section: frcSection)])
s

¥
¥

}, completion: nil)

func controller(
~controller: NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) 1
collectionView.performBatchUpdates({
for change in diff {
switch change {
case .1lnsert(offset: let newRow, element: , associatedwWith: let assoc):
1f let oldRow = assoc {
collectionView.moveItem(
at: IndexPath(row: oldRow, section: frcSection),
to: IndexPath(row: newRow, section: frcSection))
} else {
collectionView.insertItems(
at: [IndexPath(row: newRow, section: frcSection)])

}
case .remove(offset: let oldRow, element: , associatedWith: let assoc):
1f assoc == nil {
collectionView.deleteItems(
at: [IndexPath(row: oldRow, section: frcSection)])
s

¥
¥

}, completion: nil)

func controller(
~controller: NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) 1
collectionView.performBatchUpdates({
for change in diff {
switch change {
case .1lnsert(offset: let newRow, element: , associatedWith: let assoc):
1f let oldRow = assoc {
collectionView.moveItem(
at: IndexPath(row: oldRow, section: frcSection),
to: IndexPath(row: newRow, section: frcSection))
} else {
collectionView.insertItems(
at: [IndexPath(row: newRow, section: frcSection)])

}
case .remove(offset: let oldRow, element: , associatedWith: let assoc):
1f assoc == nil {
collectionView.deleteItems(
at: [IndexPath(row: oldRow, section: frcSection)])
s

¥
¥

}, completion: nil)

func controller(
~controller: NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) 1
collectionView.performBatchUpdates({
for change in diff {
switch change {
case .1lnsert(offset: let newRow, element: , associatedwWith: let assoc):
1f let oldRow = assoc {
collectionView.moveItem(
at: IndexPath(row: oldRow, section: frcSection),
to: IndexPath(row: newRow, section: frcSection))
} else {
collectionView.insertItems(
at: [IndexPath(row: newRow, section: frcSection)])

}
case .remove(offset: let oldRow, element: , associatedWith: let assoc):
1f assoc == nil {
collectionView.deleteItems(
at: [IndexPath(row: oldRow, section: frcSection)])
s

¥
¥

}, completion: nil)

func controller(
~controller: NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) 1
collectionView.performBatchUpdates({
for change in diff {
switch change {
case .1lnsert(offset: let newRow, element: , associatedwWith: let assoc):
1f let oldRow = assoc {
collectionView.moveItem(
at: IndexPath(row: oldRow, section: frcSection),
to: IndexPath(row: newRow, section: frcSection))
} else {
collectionView.insertItems(
at: [IndexPath(row: newRow, section: frcSection)])

}
case .remove(offset: let oldRow, element: , associatedWith: let assoc):
1f assoc == nil {
collectionView.deleteItems(
at: [IndexPath(row: oldRow, section: frcSection)])
s

¥
¥

}, completion: nil)

func controller(
~controller: NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) 1
collectionView.performBatchUpdates({
for change in diff {
switch change {
case .1lnsert(offset: let newRow, element: , associatedwWith: let assoc):
1f let oldRow = assoc {
collectionView.moveItem(
at: IndexPath(row: oldRow, section: frcSection),
to: IndexPath(row: newRow, section: frcSection))
} else {
collectionView.insertItems(
at: [IndexPath(row: newRow, section: frcSection)])

}
case .remove(offset: let oldRow, element: , associatedWith: let assoc):
1f assoc == nil {
collectionView.deleteItems(
at: [IndexPath(row: oldRow, section: frcSection)])
s

¥
¥

}, completion: nil)

func controller(
~controller: NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) 1
collectionView.performBatchUpdates({
for change in diff {
switch change {
case .1lnsert(offset: let newRow, element: , associatedwWith: let assoc):
1f let oldRow = assoc {
collectionView.moveItem(
at: IndexPath(row: oldRow, section: frcSection),
to: IndexPath(row: newRow, section: frcSection))
} else {
collectionView.insertItems(
at: [IndexPath(row: newRow, section: frcSection)])

}
case .remove(offset: let oldRow, element: , associatedWith: let assoc):
1f assoc == nil {
collectionView.deleteItems(
at: [IndexPath(row: oldRow, section: frcSection)])
s

¥
¥

}, completion: nil)

func controller(
~controller: NSFetchedResultsController<NSFetchRequestResult>,
didChangeContentWith diff: CollectionDifference<NSManagedObjectID>
) 1
collectionView.performBatchUpdates({
for change in diff {
switch change {
case .1lnsert(offset: let newRow, element: , associatedwWith: let assoc):
1f let oldRow = assoc {
collectionView.moveItem(
at: IndexPath(row: oldRow, section: frcSection),
to: IndexPath(row: newRow, section: frcSection))
} else {
collectionView.insertItems(
at: [IndexPath(row: newRow, section: frcSection)])

}
case .remove(offset: let oldRow, element: , associatedWith: let assoc):
1f assoc == nil {
collectionView.deleteItems(
at: [IndexPath(row: oldRow, section: frcSection)])
s

¥
¥

}, completion: nil)

Displaying Fetched Results

Drive declarative list views from controllerDidChangeContent(:)

Integrating SwiftUI WWDC 2019

Denormalization

Improving Performance Using Denormalization

Adding redundant data to make access faster and more convenient

Redundant data requires more work

Tag

Vv Attributes
color

name

uuid

Vv Relationships
pOsSts

Tag

Vv Attributes
color

name
postCount
uuid

Vv Relationships
posts

Derived Attributes

CoreData-managed metadata

Derived Attributes

CoreData-managed metadata

Derived Attributes

CoreData-managed metadata

Multiple supported functions

Derived Attributes

CoreData-managed metadata

Multiple supported functions

Defined In managed object model

Derived Attributes

CoreData-managed metadata

Multiple supported functions
Defined In managed object model

Avalilable on all properties of the entity

Supported Derivations

Supported Derivations

Data duplication

Supported Derivations

Data duplication

Data transformation

Supported Derivations

Data duplication
Data transformation

To-many aggregate functions

Supported Derivations

Data duplication
Data transformation
To-many aggregate functions

Zero-parameter functions

Getting started

The needs of the Controller

Scaling your app
Testing

Fetching Persistent History

Fetching Persistent History

Fetching Persistent History

Process history generated by a specific author

Fetching Persistent History

Process history generated by a specific author

Fetch history affecting a specific type

Fetching Persistent History

Process history generated by a specific author
Fetch history affecting a specific type

Changes that happened between a two tokens

NSPersistentHistoryTransaction
and NSPersistentHistoryChange

class func entityDescription(
withContext context: NSManagedObjectContext
) —> NSEntityDescription?

class var entityDescription: NSEntityDescription? { get }

class var fetchRequest: NSFetchRequest? { get }

NSPersistentHistoryTransaction
and NSPersistentHistoryChange

class func entityDescription(
withContext context: NSManagedObjectContext
) —> NSEntityDescription?

class var entityDescription: NSEntityDescription? { get }

class var fetchRequest: NSFetchRequest? { get }

NSPersistentHistoryTransaction
and NSPersistentHistoryChange

class func entityDescription(
withContext context: NSManagedObjectContext
) —> NSEntityDescription?

class var entityDescription: NSEntityDescription? { get }

class var fetchRequest: NSFetchRequest? { get }

NSPersistentHistoryTransaction
and NSPersistentHistoryChange

class func entityDescription(
withContext context: NSManagedObjectContext
) —> NSEntityDescription?

class var entityDescription: NSEntityDescription? { get }

class var fetchRequest: NSFetchRequest? { get }

Fetching Persistent History

Fetching Persistent History

open class NSPersistentHistoryChangeRequest : NSPersistentStoreRequest {
open class func fetchHistory/(
withFetch fetchRequest: NSFetchRequest<NSFetchRequestResult>

) —> Self

open var fetchRequest: NSFetchRequest<NSFetchRequestResult>?

Fetching Persistent History

open class NSPersistentHistoryChangeRequest : NSPersistentStoreRequest {
open class func fetchHistory/(
withFetch fetchRequest: NSFetchRequest<NSFetchRequestResult>

) —> Self

open var fetchRequest: NSFetchRequest<NSFetchRequestResult>?

Fetching Persistent History

open class NSPersistentHistoryChangeRequest : NSPersistentStoreRequest {
open class func fetchHistory/(
withFetch fetchRequest: NSFetchRequest<NSFetchRequestResult>

) —> Self

open var fetchRequest: NSFetchRequest<NSFetchRequestResult>?

Discovering New History

Discovering New History

Poll the store?

Dispatch source?

FS Events?

Discovering New History

Poll the store?

Dispatch source?

FS Events?

Remote Change Notifications

Cross-coordinator save notifications

Asynchronous

Remote Change Notifications

Cross-coordinator save notifications

Asynchronous

Remote Change Notifications

Cross-coordinator change notifications

Remote Change Notifications

Remote Change Notifications

/* ... %/

let description: NSPersistentStoreDescription

description.setOption(

true as NSNumber,
forKey: NSPersistentStoreRemoteChangeNotificationPostOptionKey)

description.setOption(true as NSNumber, forKey: NSPersistentHistoryTrackingKey)

Remote Change Notifications

Remote Change Notifications

func storeRemoteChange(notification: Notification) <«

precondition(notification.name == NSNotification.Name.NSPersistentStoreRemoteChange)

let storeURL = notification.userInfo?[NSPersistentStoreURLKey]!

let token = notification.userInfo?[NSPersistentHistoryTokenKey]!

print("Store at \(storeURL) was changed in transaction \(token).")

Persistent History Tokens

Persistent History Tokens

extension NSPersistentStoreCoordinator {

func currentPersistentHistoryToken(
from stores: [NSPersistentStorel?

) —> NSPersistentHistoryToken?

Getting started

The needs of the controller

Scaling your app
Testing

Testing Against Core Data

Test against actual performance goals

Testing Against Core Data

Test against actual performance goals

Run integration tests in multiple configs

{Z\ CoreDataCloudKitDemo) @@ iPhone Xs

Build
1 target

Info Arguments Options Diagnostics

> 7

> > Run ¥ Arguments Passed On Launch

Debug

Test
-com.apple.CoreData.ConcurrencyDebug 1
> & Debug PP yDebug

> ‘ﬁ Profile

Release

Analyze -+
4 a Debug

> ¥ Archive ¥ Environment Variables
Release

Name Value

No Environment Variables

Expand Variables Based On #\ CoreDataCloudKitDemo

Duplicate Scheme =~ Manage Schemes... Shared

-com.apple.CoreData.ConcurrencyDebug 1

Testing Against Core Data

Test against actual performance goals

Run integration tests in multiple configs

Testing Against Core Data

Test against actual performance goals
Run integration tests in multiple configs

Use In-memory stores where appropriate

Named In-Memory Stores

let contailner = NSPersistentCloudKitContainer(name: "CoreDataCloudKitDemo")

let description contalner.persistentStoreDescriptions.first!

description.url = URL(fileURLWithPath: "/dev/null")
container.loadPersistentStores(completionHandler: { (, error) in
guard let error = error as NSError? else { return »

fatalError("###\ (#function): Failed to load persistent stores:\(error)")

r)

Named In-Memory Stores

let contailner = NSPersistentCloudKitContainer(name: "CoreDataCloudKitDemo")

let description contalner.persistentStoreDescriptions.first!

description.url = URL(fileURLWithPath: "/dev/null")
container.loadPersistentStores(completionHandler: { (, error) in
guard let error = error as NSError? else { return »

fatalError("###\ (#function): Failed to load persistent stores:\(error)")

r)

Named In-Memory Stores

let contailner = NSPersistentCloudKitContainer(name: "CoreDataCloudKitDemo")

let description contalner.persistentStoreDescriptions.first!

description.url = URL(fileURLW1ithPath: "/dev/null").appendingPathComponent(str)
container.loadPersistentStores(completionHandler: { (, error) in
guard let error = error as NSError? else { return %

fatalError("###\ (#function): Failed to load persistent stores:\(error)")

r)

Sanitizers

Sanitizers

Address Sanitizer

Sanitizers

Address Sanitizer

Thread Sanitizer

Sanitizers

Address Sanitizer
Thread Sanitizer

Undefined Behavior Sanitizer

Getting started

The needs of the controller

Scaling your app
Testing

Feedback Assistant

More Information

developer.apple.com/wwdc19/230

CoreData Lab Friday, 1:00

&€ \WWDC19

