
© 2019 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC19

Daniel Delwood, Software Radiologist
Kacper Harasim, Software Engineer

•Developing a Great Profiling Experience
•Telling your story with Custom Instruments

/**

@protocol MTLCommandBuffer

 @abstract A serial list of commands for the device to execute.

public protocol MTLCommandBuffer : NSObjectProtocol {
 var device: MTLDevice { get }
 var commandQueue: MTLCommandQueue { get }
 var retainedReferences: Bool { get }
 var label: String? { get set }

 func enqueue()
 func commit()

 func addScheduledHandler(_ block: @escaping
 MTLCommandBufferHandler)
 func present(_ drawable: MTLDrawable)
 func present(_ drawable: MTLDrawable, atTime
 presentationTime: CFTimeInterval)
 func waitUntilScheduled()
 func addCompletedHandler(_ block: @escaping
 MTLCommandBufferHandler)
...

Goals

Goals

Transparency → Trust

Goals

Transparency → Trust

Explain cost, determine responsibility

Goals

Transparency → Trust

Explain cost, determine responsibility

Opportunity to tell your story

Tracing

Schemas/Modeling

Visualization

•Tracing: Adding os_signpost to your code
•Modeling: Adding structure to temporal data
•Visualization: Telling your story with an instrument

•Tracing: Adding os_signpost to your code
•Modeling: Adding structure to temporal data
•Visualization: Telling your story with an instrument

os_signpost

Low-cost tracing primitive

Points (.event) or intervals (.begin/.end)

os_signpost_interval_begin(logHandle, spid, name, ...)
os_signpost_interval_end(logHandle, spid, name, ...)
os_signpost_event_emit(logHandle, spid, name, ...)

C

os_signpost(type, log: logHandle, name: name, signpostID: spid, format, args...)

os_signpost

Low-cost tracing primitive

Points (.event) or intervals (.begin/.end)

os_signpost_interval_begin(logHandle, spid, name, ...)
os_signpost_interval_end(logHandle, spid, name, ...)
os_signpost_event_emit(logHandle, spid, name, ...)

C

os_signpost(type, log: logHandle, name: name, signpostID: spid, format, args...)

os_signpost

OSLog-based
• Subsystem
• Category

Structure: Subsystem → Category → Name

Tracing Merits

Tracing Merits

Temporal
• Implicitly records mach_continuous_time
• Inherently support overlapping intervals with signpostID

Tracing Merits

Temporal
• Implicitly records mach_continuous_time
• Inherently support overlapping intervals with signpostID

Low cost
• Format strings are __TEXT constants, cheap
• Not #DEBUG-only — leave them in

Signpost Schema

os_signpost(type, log: logHandle, name: name, signpostID: spid, format, args...)

* .dynamicStackTracing only

Available Columns

Explicit event-type, subsystem, category, name, identifier, format-string, message

Implicit time, thread, process, scope, backtrace*

Modes of os_signpost

Modes of os_signpost

Enabled (default)
• Low-cost, logged to ring buffer

Modes of os_signpost

Enabled (default)
• Low-cost, logged to ring buffer

Streaming
• Higher cost when Instruments, log stream --signpost displaying live

Modes of os_signpost

Enabled (default)
• Low-cost, logged to ring buffer

Streaming
• Higher cost when Instruments, log stream --signpost displaying live

Dynamic
• OSLog.Category.dynamicTracing, .dynamicStackTracing

• Instruments enables only when recording

Tracing Cost
Order of magnitude approximations

NSLog

os_signpost (default)

os_signpost (.dynamic)

os_signpost (.dynamicStacks)

Release Build Recording Streaming

Smaller is better
(logarithmic scale)

16ns 256ns 4µs 64µs32µs1µs64ns

Tracing Cost
Order of magnitude approximations

NSLog

os_signpost (default)

os_signpost (.dynamic)

os_signpost (.dynamicStacks)

Release Build Recording Streaming

Smaller is better
(logarithmic scale)

16ns 256ns 4µs 64µs32µs1µs64ns

Tracing Cost
Order of magnitude approximations

NSLog

os_signpost (default)

os_signpost (.dynamic)

os_signpost (.dynamicStacks)

Release Build Recording Streaming

Smaller is better
(logarithmic scale)

16ns 256ns 4µs 64µs32µs1µs64ns

Tracing Cost
Order of magnitude approximations

NSLog

os_signpost (default)

os_signpost (.dynamic)

os_signpost (.dynamicStacks)

Release Build Recording Streaming

Smaller is better
(logarithmic scale)

16ns 256ns 4µs 64µs32µs1µs64ns

Minimizing Overhead

Minimizing Overhead

Record in deferred/last few seconds mode

Minimizing Overhead

Record in deferred/last few seconds mode

Use .dynamicTracing categories

let normalLog = OSLog(subsystem: "com.org.MyFramework", category: "CompressorPhases")
let highRateLog = OSLog(subsystem: "com.org.MyFramework", category: .dynamicTracing)
let needStacksLog = OSLog(subsystem: "com.org.MyFramework", category: .dynamicStackTracing)

Staying Under the Radar
Back-of-the-envelope math

Staying Under the Radar
Back-of-the-envelope math

< 1% CPU
(enabled, not streaming)

Staying Under the Radar
Back-of-the-envelope math

< 1% CPU
(enabled, not streaming)

~500ns
signpost*x

Staying Under the Radar
Back-of-the-envelope math

< 1% CPU
(enabled, not streaming)

~500ns
signpost*x

➞ <
~20,000 signpostsx

second

Staying Under the Radar
Back-of-the-envelope math

< 1% CPU
(enabled, not streaming)

~500ns
signpost*x

➞ <
~20,000 signpostsx

second
@120 fps= ~83 intervals

frame

Tailored to Your Audience

Tailored to Your Audience

Signposts use shared system resources
• Cost will vary by device hardware, software load
• As always — use what you need

Tailored to Your Audience

Signposts use shared system resources
• Cost will vary by device hardware, software load
• As always — use what you need

One or more OSLog handles per audience
• Tools for clients
• Tools for contributors

Tracing Best Practices

1. Always end intervals! defer { } when possible to avoid missing returns

Tracing Best Practices

do {
 let uniqueID = OSSignpostID(myHandle)
 os_signpost(.begin, log: myHandle, name: "Calculations", signpostID: uniqueID)
 let result = try expensiveProcessing(payloadData)
 /* additional result processing */
 os_signpost(.end, log: myHandle, name: "Calculations", signpostID: uniqueID)
} catch {
 /* handle error */
}

do {
 let uniqueID = OSSignpostID(myHandle)
 os_signpost(.begin, log: myHandle, name: "Calculations", signpostID: uniqueID)
 let result = try expensiveProcessing(payloadData)
 /* additional result processing */
 os_signpost(.end, log: myHandle, name: "Calculations", signpostID: uniqueID)
} catch {
 /* handle error */
}

1. Always end intervals! defer { } when possible to avoid missing returns

Tracing Best Practices

do {
 let uniqueID = OSSignpostID(myHandle)
 os_signpost(.begin, log: myHandle, name: "Calculations", signpostID: uniqueID)
 let result = try expensiveProcessing(payloadData)
 /* additional result processing */
 os_signpost(.end, log: myHandle, name: "Calculations", signpostID: uniqueID)
} catch {
 /* handle error */
}

Tracing Best Practices

1. Always end intervals! defer { } when possible to avoid missing returns

do {
 let uniqueID = OSSignpostID(myHandle)
 os_signpost(.begin, log: myHandle, name: "Calculations", signpostID: uniqueID)
 defer { os_signpost(.end, log: myHandle, name: "Calculations", signpostID: uniqueID) }
 let result = try expensiveProcessing(payloadData)
 /* additional result processing */
} catch {
 /* handle error */
}

Tracing Best Practices

2. Log data once in earliest trace point available

os_signpost(.begin, log: myHandle, name: "DecodingPhase",
 "Request %u: decoding %lu bytes", requestNumber, raw.size)

os_signpost(.end, log: myHandle, name: "DecodingPhase",
 "Request %u: %lu -> %lu bytes", requestNumber, raw.size, decoded.size)

os_signpost(.end, log: myHandle, name: "DecodingPhase",
 "Decoded size: %lu bytes", decoded.size)

// deserialization work

2. Log data once in earliest trace point available

os_signpost(.end, log: myHandle, name: "DecodingPhase", signpostID: spid
 "Decoded size: %lu bytes", decoded.size)

Tracing Best Practices

let spid = OSSignpostID(myHandle)
os_signpost(.begin, log: myHandle, name: "DecodingPhase", signpostID: spid
 "Request %u: decoding %lu bytes", requestNumber, raw.size)

Tracing Best Practices

3. Avoid expensive argument evaluation

os_signpost(.event, log: myLoggingHandle, name: "ReceivedPayload",
 "Details: %@", myObject.expensiveJSONDecodedProperty.description)

Tracing Best Practices

3. Avoid expensive argument evaluation

os_signpost(.event, log: myLoggingHandle, name: "ReceivedPayload",
 "Details: %@", myObject.expensiveJSONDecodedProperty.description)

if myLoggingHandle.signpostsEnabled {
 let decoded = myObject.expensiveJSONDecodedProperty
 os_signpost(.event, log: myLoggingHandle, name: "ReceivedPayload",
 "Details: %@", decoded.description)
}

Tracing Best Practices

4. Only trace what you need, consider guard preconditions

func needsDecompression(data: Data) -> Bool {
 os_signpost(.begin, log: myHandle, name: "Validation")
 defer { os_signpost(.end, log: myHandle, name: "Validation") }
 guard data.count > Int(vm_page_size) else {
 return false // not worth the trouble for such a small payload
 }
 // more expensive validation logic
}a

 os_signpost(.begin, log: myHandle, name: "Validation")
 defer { os_signpost(.end, log: myHandle, name: "Validation") }
 guard data.count > Int(vm_page_size) else {
 return false // not worth the trouble for such a small payload
 }

Tracing Best Practices

4. Only trace what you need, consider guard preconditions

func needsDecompression(data: Data) -> Bool {
 os_signpost(.begin, log: myHandle, name: "Validation")
 defer { os_signpost(.end, log: myHandle, name: "Validation") }
 guard data.count > Int(vm_page_size) else {
 return false // not worth the trouble for such a small payload
 }
 // more expensive validation logic
}a

 os_signpost(.begin, log: myHandle, name: "Validation")
 defer { os_signpost(.end, log: myHandle, name: "Validation") }

 guard data.count > Int(vm_page_size) else {
 return false // not worth the trouble for such a small payload
 }

Tracing Is Basis for Tools

Tracing

Schemas/Modeling

Visualization

Avoid tracing frequently changing implementation details

No need to worry about inlining

Tools depend on stability of handles, signpost names, and format strings

Keeping Trace Points Stable

Avoid tracing frequently changing implementation details

No need to worry about inlining

Tools depend on stability of handles, signpost names, and format strings

Keeping Trace Points Stable

let logHandle = OSLog(subsystem: "com.org.MyFramework",
 category: "Instrumented Activity")
os_signpost(.begin, log: logHandle, name: "ManagerLifecycle",
 signpostID: .exclusive, "[%@] Activated with delegate: %p",
 self.managerUUID, self.delegate)

•Tracing: Adding os_signpost to your code
•Modeling: Adding structure to temporal data
•Visualization: Telling your story with an instrument

Instruments Architecture

Data stream os-signpost your-schema InstrumentModeler

Creating Custom Instruments WWDC 2018

Instruments Architecture

Data stream os-signpost your-schema InstrumentModeler

os_signpost(.begin, log: log, name: "Inflate", "(%@) Compressed: %d", tag, size)
[…]
os_signpost(.end, log: log, name: "Inflate", "Expanded: %d", final)

Tracing

Instruments Architecture

Data stream os-signpost your-schema InstrumentModeler

Modeling

start duration thread client-tag expanded compressed ratio

0:00:001.324 342ms Thread 0x4016 Textures 14.11 MiB 4.32 MiB 3.27:1

Instruments Architecture

Data stream os-signpost your-schema InstrumentModeler

Visualization

Decompressed: 4.32 MiB -> 14.11 MiB (342ms)
Compression

Textures

Audio

Getting Data into Instruments

All data is time-ordered
• Point or Interval schemas

CLIPS Modelers
• Generated and custom

Getting Started

1. Built-in os_signpost instrument
• Use instrument inspector to see raw data

Getting Started

1. Built-in os_signpost instrument
• Use instrument inspector to see raw data

2. New Target → Instruments Package
• Define schema
- Automatic modeler: <os-signpost-{point|interval}-schema>
• Define an Instrument to require/display
- <instrument> must <create-table>

Kacper Harasim, Software Engineer

•Demo
•From os_signpost to Instruments

Custom schema, custom modeler

When you need more: data fusion, inference

Allows you to embed more complex logic

Draw more customized graphs

<point-schema>, <interval-schema>, <modeler>

Modeling in Custom Instruments Friday, 3:20

•Tracing: Adding os_signpost to your code
•Modeling: Adding structure to temporal data
•Visualization: Telling your story with an instrument

Data ≠ Story

Compelling Stories Have Plots

Make problems apparent

Graphs are the first summary

Display in terms of familiar concepts, metrics

Summarizing Points

Thread 1

Thread 2

Time

Summarizing Points

Thread 1

Thread 2

Time

2
4

1 2 1 1

5

1

Events

<histogram>

10 ms buckets

Summarizing Points

Thread 1

Thread 2

Time

2
4

1 2 1 1

5

1

Events

<histogram>

10 ms buckets

Thread 1

Thread 2

Time

Summarizing Points

Thread 1

Thread 2

Time

Summarizing Points

Critical

Count
2

4
1 2 1 1

5

1

<plot> + <histogram>

Tabular Summaries

Define which metrics are important
• <aggregation>: <count>, <min>, <max>, <average>, <std-dev>
• Titles, order convey importance

Even More Detail

<narrative>: natural language, expressive types

(set-column-narrative narrative
 "Interrupted for %duration% while %core% serviced an interrupt handler."
 ?duration ?core)

Displaying Intervals

Qualified, multiple plots
• <plot>, <plot-template>
• <qualified-by>, <instance-by>

Displaying Intervals

Hierarchies
• <engineering-type-track>, <augmentation>
• <hierarchy>, <add-graph>

NEW

Summarizing Intervals

Interval Interval

Time

Thread 1

Summarizing Intervals

8ms

42ms

8ms
Duration

<histogram>

19ms

10 ms buckets

Interval Interval

Time

Thread 1

Summarizing Intervals

8ms

42ms

8ms
Duration

<histogram>

19ms

10 ms buckets

Interval Interval

Time

Thread 1

Summarizing Intervals

8ms

42ms

8ms
Duration

<histogram>

19ms

10 ms buckets

Interval Interval

Time

Thread 1

Don't graph time/duration on the Y-axis

Summarizing Intervals
Interval

Interval

Interval

Interval

Interval

Interval

Interval

Time

Thread 1

Thread 2

Thread 3

Worker Thread

Main Thread

Summarizing Intervals
Interval

Interval

Interval

Interval

Interval

Interval

Interval

Time

Thread 1

Thread 2

Thread 3

Worker Thread

Main Thread

start duration utilization severity

0:00:030.000 10ms 2.0 Low

0:00:040.000 10ms 2.7 Moderate

Summarizing Intervals
Interval

Interval

Interval

Interval

Interval

Interval

Interval

Time

Thread 1

Thread 2

Thread 3

Worker Thread

Main Thread

0.8 0.8 2.0 2.7 2.2 2.2 2.1 2.3 3.0 1.9 1.8 1.8 0.8

Quantized Utilization

Average

Summarizing Intervals
Interval

Interval

Interval

Interval

Interval

Interval

Interval

Time

Thread 1

Thread 2

Thread 3

Worker Thread

Main Thread

Summarizing Intervals
Interval

Interval

Interval

Interval

Interval

Interval

Interval

Time

Thread 1

Thread 2

Thread 3

Worker Thread

Main Thread

Transactions
3 2

4 3 3
6 4 3 3 2

4
2

Quantized Activity

start duration unique-intervals severity

0:00:060.000 10ms 3 Low

0:00:070.000 10ms 6 High

Summarizing Intervals
Interval

Interval

Interval

Interval

Interval

Interval

Interval

Time

Thread 1

Thread 2

Thread 3

Worker Thread

Main Thread

Summarizing Intervals
Interval

Interval

Interval

Interval

Interval

Interval

Interval

Time

Thread 1

Thread 2

Thread 3

Worker Thread

Main Thread

Contention 2 3+ 2 3+

Overlap Plot

start duration description severity

0:00:031.401 9.32ms 2 Moderate

0:00:040.721 11.41ms 3+ High

Data stream os-signpost mymodule-interval DetailsGenerated modeler

Modeler Outputs

Modeler Outputs

Data stream os-signpost mymodule-interval Details

mymodule-utilization Graph

mymodule-conclusions Narrative

Custom modeler

Tick timer tick [10ms]

syscallBuilt-in modeler

Kacper Harasim, Software Engineer

•Demo
•Crafting your story

Complete Profiling Experience

Users start with a template

Utilize tools bundled with Instruments

Presented graphs should quickly draw users to problems

Detail views should lead user to root cause

Instruments 11 — Hierarchies
NEW

Instruments 11 — Custom Track Scopes
NEW

Instruments 11 — Custom Track Scopes
NEW

Instruments 11 — Custom Track Scopes
NEW

Summary

Opportunity to tell your story, educate, and catch easy mistakes

When something goes wrong, tools provide an answer

Increase confidence and trust in your library

More Information
developer.apple.com/wwdc19/414

Modeling in Custom Instruments Friday, 3:20

Creating Custom Instruments WWDC18

Measuring Performance Using Logging WWDC18

