
© 2019 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC19

Duy Phan, Bluetooth Engineer
Yilok Wong, Bluetooth Engineer
Meghna Lav, Bluetooth Engineer

•What’s New in Core Bluetooth
•

•Introduction
•Low energy 2 Mbps
•Advertising extensions
•Core Bluetooth for BR/EDR
•Core Bluetooth dual-mode
•User privacy
•PacketLogger
•Summary

Duy Phan, Bluetooth Engineer

•Introduction

•Low Energy 2 Mbps

LE 2 Mbps
NEW

LE 2 Mbps

New feature in Bluetooth 5.0

NEW

LE 2 Mbps

New feature in Bluetooth 5.0

Physical layer rate increased from 1 Mbps to 2 Mbps

NEW

LE 2 Mbps

New feature in Bluetooth 5.0

Physical layer rate increased from 1 Mbps to 2 Mbps

In
te

rv
al

In
te

rv
al

In
te

rv
al

NEW

LE 2 Mbps

1x

In
te

rv
al

In
te

rv
al

In
te

rv
al

2x 1x 2x 1x 2x

NEW

New feature in Bluetooth 5.0

Physical layer rate increased from 1 Mbps to 2 Mbps

LE 2 Mbps

Faster and more power efficient connection

NEW

New feature in Bluetooth 5.0

Physical layer rate increased from 1 Mbps to 2 Mbps

LE 2 Mbps

Faster and more power efficient connection

Transparent to the application

NEW

New feature in Bluetooth 5.0

Physical layer rate increased from 1 Mbps to 2 Mbps

LE 2 Mbps

Faster and more power efficient connection

Transparent to the application

Accessories must support LE 2 Mbps

NEW

New feature in Bluetooth 5.0

Physical layer rate increased from 1 Mbps to 2 Mbps

LE 2 Mbps

Faster and more power efficient connection

Transparent to the application

Accessories must support LE 2 Mbps

Available starting with iPhone 8, Apple TV 4K, and Apple Watch Series 4

NEW

New feature in Bluetooth 5.0

Physical layer rate increased from 1 Mbps to 2 Mbps

LE 2 Mbps Throughput (kbps)

Write With Response

Write Without Response

+Larger MTU

+Extended Data Length

+LE L2CAP

+15ms Interval

+LE 2Mbps

0 70 140 210 280 350 420 490 560 630 700

2.5

37

48

135

197

394

NEW

LE 2 Mbps Throughput (kbps)

Write With Response

Write Without Response

+Larger MTU

+Extended Data Length

+LE L2CAP

+15ms Interval

+LE 2Mbps

0 70 140 210 280 350 420 490 560 630 700

2.5

37

48

135

197

394

670

NEW

•Advertising Extensions

Advertising Extensions

ADV

31

ADV ADV

31 31 1 Mbps

NEW

Advertising Extensions

ADV

31

ADV ADV

31 31 1 Mbps

1 Mbps

ExtADV ExtADV ExtADV

NEW

Advertising Extensions

ADV

31

ADV ADV

ExtADV ExtADV

255

31 31 1 Mbps

ExtADV

255255

1 Mbps

2 Mbps

NEW

Extended Scan
NEW

Extended Scan

Scans for extended advertisements

NEW

Extended Scan

Scans for extended advertisements

Accessories must support extended advertisements with LE 2 Mbps

NEW

Extended Scan

Scans for extended advertisements

Accessories must support extended advertisements with LE 2 Mbps

Support extended advertisement payload up to 124 bytes

NEW

Extended Scan

Scans for extended advertisements

Accessories must support extended advertisements with LE 2 Mbps

Support extended advertisement payload up to 124 bytes

4 times the advertisement data that an accessory can send today

NEW

Extended Scan

Scans for extended advertisements

Accessories must support extended advertisements with LE 2 Mbps

Support extended advertisement payload up to 124 bytes

4 times the advertisement data that an accessory can send today

Transparent to application

NEW

Extended Scan

Scans for extended advertisements

Accessories must support extended advertisements with LE 2 Mbps

Support extended advertisement payload up to 124 bytes

4 times the advertisement data that an accessory can send today

Transparent to application

New API to query for platform support

 class func supports(_ features: CBCentralManager.Feature) -> Bool
 static var extendedScanAndConnect: CBCentralManager.Feature { get }

NEW

Extended Connections
NEW

Extended Connections

Supports connections to connectable extended advertisements

NEW

Extended Connections

Supports connections to connectable extended advertisements

Improves existing connection exchange protocol

NEW

Legacy Connections

Scanner

NEW

Advertiser

Legacy Connections

Scanner

ADV

NEW

Advertiser

Legacy Connections

Scanner

Conn_Indication

ADV

NEW

Advertiser

Legacy Connections

Scanner

Conn_Indication

X No ACKADV

NEW

Advertiser

Legacy Connections

Scanner

Conn_Indication

X No ACKADV

Wakes Host Processor

NEW

Advertiser

Extended Connections

Advertiser

Scanner

Advertiser

Extended Connections

ExtADV

Advertiser

Scanner

Advertiser

Extended Connections

ExtADV

Connection_Request

Advertiser

Scanner

Advertiser

Extended Connections

ExtADV

Connection_Request

Connection_Response

Advertiser

Scanner

Advertiser

Extended Connections

ExtADV

Connection_Request

Connection_Response

Advertiser

Scanner

Advertiser

Wakes Host Processor

Extended Connections

ExtADV

2 Mbps

2 MbpsConnection_Request

Connection_Response

Advertiser

Scanner

Advertiser

Wakes Host Processor

Extended Connections

Supports connections to peripheral connectable extended advertisements

Improves on connection protocol exchange

More robust and power efficient

NEW

Extended Connections

Supports connections to peripheral connectable extended advertisements

Improves on connection protocol exchange

More robust and power efficient

Transparent to application

NEW

Extended Connections

Supports connections to peripheral connectable extended advertisements

Improves on connection protocol exchange

More robust and power efficient

Transparent to application

Accessories must support connectable extended advertisements

NEW

Extended Connections

Supports connections to peripheral connectable extended advertisements

Improves on connection protocol exchange

More robust and power efficient

Transparent to application

Accessories must support connectable extended advertisements

New API to query for platform support

 class func supports(_ features: CBCentralManager.Feature) -> Bool
 static var extendedScanAndConnect: CBCentralManager.Feature { get }

NEW

Yilok Wong, Bluetooth Engineer

•Core Bluetooth for BR/EDR

Core Bluetooth 2018

Low Energy

ATT

GATT

BR/EDR

L2CAP

Profiles

Core Bluetooth

L2CAP

Core Bluetooth 2018

Low Energy

ATT

GATT

BR/EDR

L2CAP

Profiles

Core Bluetooth

L2CAP

L2CAPL2CAP

ATT

GATT

Core Bluetooth 2019

Low EnergyBR/EDR

Profiles

Core Bluetooth

L2CAP

NEW

Core Bluetooth BR/EDR
NEW

Core Bluetooth BR/EDR

Use Core Bluetooth with BR/EDR Bluetooth devices

NEW

Core Bluetooth BR/EDR

Use Core Bluetooth with BR/EDR Bluetooth devices

Bluetooth SIG GATT protocol running over BR/EDR

NEW

Core Bluetooth BR/EDR

Use Core Bluetooth with BR/EDR Bluetooth devices

Bluetooth SIG GATT protocol running over BR/EDR

Same CBPeripheral APIs

NEW

Core Bluetooth BR/EDR

Use Core Bluetooth with BR/EDR Bluetooth devices

Bluetooth SIG GATT protocol running over BR/EDR

Same CBPeripheral APIs

New API in CBCentralManager

NEW

Core Bluetooth BR/EDR

Use Core Bluetooth with BR/EDR Bluetooth devices

Bluetooth SIG GATT protocol running over BR/EDR

Same CBPeripheral APIs

New API in CBCentralManager

Available today with latest iOS, watchOS, and tvOS

NEW

Core Bluetooth BR/EDR

Use Core Bluetooth with BR/EDR Bluetooth devices

Bluetooth SIG GATT protocol running over BR/EDR

Same CBPeripheral APIs

New API in CBCentralManager

Available today with latest iOS, watchOS, and tvOS

Add support to your accessory

NEW

Registering for Connection Events
NEW

Registering for Connection Events

Connection registration by the Central
• Register by Service
• Register by Peripheral

NEW

Registering for Connection Events

Connection registration by the Central
• Register by Service
• Register by Peripheral

open class CBCentralManager : CBManager { 
 open func registerForConnectionEvents(options:[CBConnectionEventMatchingOption:Any]?) 
}

NEW

Registering for Connection Events

Connection registration by the Central
• Register by Service
• Register by Peripheral

open class CBCentralManager : CBManager { 
 open func registerForConnectionEvents(options:[CBConnectionEventMatchingOption:Any]?) 
}

extension CBConnectionEventMatchingOption { 
 public static let serviceUUIDs: CBConnectionEventMatchingOption 
 public static let peripheralUUIDs: CBConnectionEventMatchingOption 
}

NEW

Connection Event
NEW

Connection Event

Delegate callback
• Sent on matching connection
• Sent after registration if a matching connection already established

NEW

Connection Event

Delegate callback
• Sent on matching connection
• Sent after registration if a matching connection already established

optional func centralManager(_ central: CBCentralManager, connectionEventDidOccur event: 
CBConnectionEvent, for peripheral: CBPeripheral)

NEW

Incoming Connection

Initialization

private var central: CBCentralManager!
central = CBCentralManager(delegate: self, queue: nil)

Registration

let matchingOptions =
[CBConnectionEventMatchingOption.serviceUUIDs :
[myServiceUUID]]

central.registerForConnectionEvents(options:
matchingOptions)

Discover

Discover

Inquiry Scan

Inquiry Response

Discover

Inquiry Scan

Inquiry Response

Connect/Pair

Connect/Pair

Connect/Pair

BR/EDR Connected and Paired

Delegate Callback

Delegate Callback

func centralManager(_ central: CBCentralManager, 
connectionEventDidOccur event: CBConnectionEvent,
for peripheral: CBPeripheral) { 
  
  

}

// Connection Event

Delegate Callback

func centralManager(_ central: CBCentralManager, 
connectionEventDidOccur event: CBConnectionEvent,
for peripheral: CBPeripheral) { 
  
  

}

 // Handle connection event

// Connection Event

// Initialization
private var cbManager: CBCentralManager!
cbManager = CBCentralManager(delegate: self, queue: nil)

// Registering for Gatt Connection events
let matchingOptions = [CBConnectionEventMatchingOption.serviceUUIDs : [myServiceUUID]]()
cbManager.registerForConnectionEvents(options: matchingOptions)

// Delegate callback
func centralManager(_ central: CBCentralManager, connectionEventDidOccur event:
CBConnectionEvent, for peripheral: CBPeripheral) {
 switch event {
 case .peerConnected:
 // We are interested in this peripheral, clear registration
 cbManager.connect(peripheral, options: nil)
 cbManager.registerForConnectionEvents(options: nil)
 default:
 // Not interested
}

// Initialization
private var cbManager: CBCentralManager!
cbManager = CBCentralManager(delegate: self, queue: nil)

// Registering for Gatt Connection events
let matchingOptions = [CBConnectionEventMatchingOption.serviceUUIDs : [myServiceUUID]]()
cbManager.registerForConnectionEvents(options: matchingOptions)

// Delegate callback
func centralManager(_ central: CBCentralManager, connectionEventDidOccur event:
CBConnectionEvent, for peripheral: CBPeripheral) {
 switch event {
 case .peerConnected:
 // We are interested in this peripheral, clear registration
 cbManager.connect(peripheral, options: nil)
 cbManager.registerForConnectionEvents(options: nil)
 default:
 // Not interested
}

// Initialization
private var cbManager: CBCentralManager!
cbManager = CBCentralManager(delegate: self, queue: nil)

// Registering for Gatt Connection events
let matchingOptions = [CBConnectionEventMatchingOption.serviceUUIDs : [myServiceUUID]]()
cbManager.registerForConnectionEvents(options: matchingOptions)

// Delegate callback
func centralManager(_ central: CBCentralManager, connectionEventDidOccur event:
CBConnectionEvent, for peripheral: CBPeripheral) {
 switch event {
 case .peerConnected:
 // We are interested in this peripheral, clear registration
 cbManager.connect(peripheral, options: nil)
 cbManager.registerForConnectionEvents(options: nil)
 default:
 // Not interested
}

// Initialization
private var cbManager: CBCentralManager!
cbManager = CBCentralManager(delegate: self, queue: nil)

// Registering for Gatt Connection events
let matchingOptions = [CBConnectionEventMatchingOption.serviceUUIDs : [myServiceUUID]]()
cbManager.registerForConnectionEvents(options: matchingOptions)

// Delegate callback
func centralManager(_ central: CBCentralManager, connectionEventDidOccur event:
CBConnectionEvent, for peripheral: CBPeripheral) {
 switch event {
 case .peerConnected:
 // We are interested in this peripheral, clear registration
 cbManager.connect(peripheral, options: nil)
 cbManager.registerForConnectionEvents(options: nil)
 default:
 // Not interested
}

// Initialization
private var cbManager: CBCentralManager!
cbManager = CBCentralManager(delegate: self, queue: nil)

// Registering for Gatt Connection events
let matchingOptions = [CBConnectionEventMatchingOption.serviceUUIDs : [myServiceUUID]]()
cbManager.registerForConnectionEvents(options: matchingOptions)

// Delegate callback
func centralManager(_ central: CBCentralManager, connectionEventDidOccur event:
CBConnectionEvent, for peripheral: CBPeripheral) {
 switch event {
 case .peerConnected:
 // We are interested in this peripheral, clear registration
 cbManager.connect(peripheral, options: nil)
 cbManager.registerForConnectionEvents(options: nil)
 default:
 // Not interested
}

Outgoing Connection

Connecting Out

Connecting Out

private var central: CBCentralManager? 
central = CBCentralManager(delegate: self, queue: nil)

Connecting Out

private var central: CBCentralManager? 
central = CBCentralManager(delegate: self, queue: nil)

central?.connect(myPeripheral, options: nil)

BR/EDR Page

BR/EDR Page

Page

Page Scan

Connected

Connected

BR/EDR Connected and Paired

optional func centralManager(_ central:
CBCentralManager, didConnect peripheral: CBPeripheral)
{
 // Handle connection
}

•Core Bluetooth Dual-Mode

Improving Dual-Mode Pairing

Improving Dual-Mode Pairing

Cross Transport Key Derivation
NEW

Cross Transport Key Derivation

Bluetooth 4.2 SIG Specification

NEW

Cross Transport Key Derivation

Bluetooth 4.2 SIG Specification

Single pairing process

NEW

Cross Transport Key Derivation

Bluetooth 4.2 SIG Specification

Single pairing process

Same CBPeripheral identifier

NEW

Cross Transport Key Derivation

Bluetooth 4.2 SIG Specification

Single pairing process

Same CBPeripheral identifier

Transparent to the application

NEW

Cross Transport Key Derivation

Bluetooth 4.2 SIG Specification

Single pairing process

Same CBPeripheral identifier

Transparent to the application

NEW

Cross Transport Key Derivation
NEW

Cross Transport Key Derivation
NEW

Cross Transport Key Derivation
NEW

Instead of Inquiry

Inquiry Scan

Inquiry Response

Low Energy Scan

Advertise

Scan

CTKD — Pairing

CTKD — Pairing

LE Connected

CTKD — Pairing

LE Connected

Key Derivation

LE Connected and Paired

Key Derivation

LE Connected and Paired

Key Derivation

LE Connected and Paired

CTKD — BR/EDR Connected

LE Connected and Paired

BR/EDR Connection Request

CTKD — BR/EDR Connected

LE Connected and Paired

BR/EDR Connected and Paired

Improving Dual-Mode Connections

Improving Dual-Mode Connections

LE Connected and Paired

Improving Dual-Mode Connections

LE Connected and Paired

BR/EDR Connected and Paired

Bridging
NEW

Bridging

Low Energy proximity triggers BR/EDR connection

NEW

Bridging

Low Energy proximity triggers BR/EDR connection

Works on devices supporting CTKD

NEW

Bridging

Low Energy proximity triggers BR/EDR connection

Works on devices supporting CTKD

NEW

public let CBConnectPeripheralOptionEnableTransportBridgingKey: String

Bridging

Low Energy proximity triggers BR/EDR connection

Works on devices supporting CTKD

NEW

public let CBConnectPeripheralOptionEnableTransportBridgingKey: String

cbCentralManager.connect(cbPeripheral,
options:[CBConnectPeripheralOptionEnableTransportBridgingKey : true])

Bridging
NEW

Bridging
NEW

cbCentralManager.connect(cbPeripheral, options:
[CBConnectPeripheralOptionEnableTransportBridgingKey : true])

LE Connected and Paired

Bridging

cbCentralManager.connect(cbPeripheral, options:
[CBConnectPeripheralOptionEnableTransportBridgingKey : true])

LE Connected and Paired

BR/EDR Connection Request

NEW

Bridging

LE Connected and Paired

BR/EDR Connected and Paired

Bridging

LE Connected and Paired

BR/EDR Connected and Paired

Meghna Lav, Bluetooth Engineer

•Privacy Update

Enhancements

Enhancements

User authorization

Enhancements

User authorization

Accessory notifications

User Authorization
How it currently works

Required only for background advertising

User Authorization
NEW

User Authorization

User consent required for all Core Bluetooth API’s

NEW

User Authorization

User consent required for all Core Bluetooth API’s

Applies to apps linked with any SDK

NEW

User Authorization

User consent required for all Core Bluetooth API’s

Applies to apps linked with any SDK

Can be modified in Settings

NEW

User Authorization

User consent required for all Core Bluetooth API’s

Applies to apps linked with any SDK

Can be modified in Settings

Required on iOS, watchOS, and tvOS

NEW

User Authorization on watchOS
NEW

User Authorization on watchOS

Shared between iOS and watchOS

NEW

User Authorization on watchOS

Shared between iOS and watchOS

Except for standalone watchOS applications

NEW

Adoption
Purpose string NEW

Adoption
Purpose string NEW

Core BluetoothClassicSample: [access] This app has crashed because it attempted to access privacy-sensitive data
without a usage description. The app's Info.plist must contain an NSBluetoothAlwaysUsageDescription key with a
string value explaining to the user how the app uses this data.

Adoption
New property

var authorization: CBManagerAuthorization { get }

enum CBManagerAuthorization : Int {
 init?(rawValue: Int)
 var rawValue: Int { get }
 case notDetermined
 case restricted
 case denied
 case allowedAlways
}

NEW

Adoption
New property

var authorization: CBManagerAuthorization { get }

enum CBManagerAuthorization : Int {
 init?(rawValue: Int)
 var rawValue: Int { get }
 case notDetermined
 case restricted
 case denied
 case allowedAlways
}

NEW

Adoption
New property

var authorization: CBManagerAuthorization { get }

enum CBManagerAuthorization : Int {
 init?(rawValue: Int)
 var rawValue: Int { get }
 case notDetermined
 case restricted
 case denied
 case allowedAlways
}

NEW

func centralManagerDidUpdateState(_ central: CBCentralManager)
func peripheralManagerDidUpdateState(_ peripheral: CBPeripheralManager)

open var state: CBManagerState { get }

// if (state == CBManagerState.unauthorized)
open var authorization: CBManagerAuthorization { get }

Adoption
Flow NEW

func centralManagerDidUpdateState(_ central: CBCentralManager)
func peripheralManagerDidUpdateState(_ peripheral: CBPeripheralManager)

open var state: CBManagerState { get }

// if (state == CBManagerState.unauthorized)
open var authorization: CBManagerAuthorization { get }

Adoption
Flow NEW

func centralManagerDidUpdateState(_ central: CBCentralManager)
func peripheralManagerDidUpdateState(_ peripheral: CBPeripheralManager)

open var state: CBManagerState { get }

// if (state == CBManagerState.unauthorized)
open var authorization: CBManagerAuthorization { get }

Adoption
Flow NEW

func centralManagerDidUpdateState(_ central: CBCentralManager)
func peripheralManagerDidUpdateState(_ peripheral: CBPeripheralManager)

open var state: CBManagerState { get }

// if (state == CBManagerState.unauthorized)
open var authorization: CBManagerAuthorization { get }

Adoption
Flow NEW

// Old managerDidUpdateState
func centralManagerDidUpdateState(_ central: CBCentralManager) {
 if (cbState == CBManagerState.poweredOn) {

 // Kick-off bluetooth functionality
 }
}

// Updated managerDidUpdateState
func centralManagerDidUpdateState(_ central: CBCentralManager) {
 switch central.state {
 case .unknown:
 // Handle state
 case .resetting:
 // Handle state
 case .unsupported:
 // Handle state
 case .unauthorized:
 if (central.authorization != CBManagerAuthorization.allowedAlways) {
 // Prompt user to give permission
 }
 case .poweredOn:
 // Handle state
 case .poweredOff:
 // Handle state
 }
}

Enhancements

User authorization

Accessory notifications

Accessory Notifications

Accessory Notifications

Apple Notification Center Service

Accessory Notifications

Apple Notification Center Service

GATT server service

Accessory Notifications

Apple Notification Center Service

GATT server service

Allows accessories to receive notifications from iOS

ANCS Privacy Update
NEW

ANCS Privacy Update

User permission required to share notifications

NEW

ANCS Privacy Update

User permission required to share notifications

Prompted when accessory registers for notifications

NEW

ANCS Privacy Update

User permission required to share notifications

Prompted when accessory registers for notifications

Permissions can be changed in Settings

NEW

ANCS Privacy Update

User permission required to share notifications

Prompted when accessory registers for notifications

Permissions can be changed in Settings

NEW

ANCS Privacy Update

User permission required to share notifications

Prompted when accessory registers for notifications

Permissions can be changed in Settings

NEW

New ANCS Privacy API

public let CBConnectPeripheralOptionRequiresANCS: String

optional func centralManager(_central: CBCentralManager, didUpdateANCSAuthorizationFor
peripheral: CBPeripheral)

open var ancsAuthorized: Bool { get }

NEW

New ANCS Privacy API

public let CBConnectPeripheralOptionRequiresANCS: String

optional func centralManager(_central: CBCentralManager, didUpdateANCSAuthorizationFor
peripheral: CBPeripheral)

open var ancsAuthorized: Bool { get }

NEW

New ANCS Privacy API

public let CBConnectPeripheralOptionRequiresANCS: String

optional func centralManager(_central: CBCentralManager, didUpdateANCSAuthorizationFor
peripheral: CBPeripheral)

open var ancsAuthorized: Bool { get }

NEW

New ANCS Privacy API

public let CBConnectPeripheralOptionRequiresANCS: String

optional func centralManager(_central: CBCentralManager, didUpdateANCSAuthorizationFor
peripheral: CBPeripheral)

open var ancsAuthorized: Bool { get }

NEW

Best Practices

Best Practices

Invoke Core Bluetooth APIs only when required

Best Practices

Invoke Core Bluetooth APIs only when required

Scan and advertise for a limited duration

Best Practices

Invoke Core Bluetooth APIs only when required

Scan and advertise for a limited duration

Scan for specific service UUID(s)

Best Practices

Invoke Core Bluetooth APIs only when required

Scan and advertise for a limited duration

Scan for specific service UUID(s)

Be transparent

Duy Phan, Bluetooth Engineer

•Core Bluetooth PacketLogger

Overview

Overview

Bluetooth packet analysis application

Overview

Bluetooth packet analysis application

Visualizer for packet logs inside sysdiagnose

Overview

Bluetooth packet analysis application

Visualizer for packet logs inside sysdiagnose

Decode all protocols defined by Bluetooth SIG and Apple

Overview

Bluetooth packet analysis application

Visualizer for packet logs inside sysdiagnose

Decode all protocols defined by Bluetooth SIG and Apple

Rich filtering options

Overview

Bluetooth packet analysis application

Visualizer for packet logs inside sysdiagnose

Decode all protocols defined by Bluetooth SIG and Apple

Rich filtering options

Search by text or regex

Overview

Bluetooth packet analysis application

Visualizer for packet logs inside sysdiagnose

Decode all protocols defined by Bluetooth SIG and Apple

Rich filtering options

Search by text or regex

Comment and flag packets

Overview

Bluetooth packet analysis application

Visualizer for packet logs inside sysdiagnose

Decode all protocols defined by Bluetooth SIG and Apple

Rich filtering options

Search by text or regex

Comment and flag packets

Export raw data for analysis

Top Level View

Top Level View

Top Level View

Top Level View

Hierarchical View

Hierarchical View

Hierarchical View

Live Capture
NEWNEW

Live Capture
NEWNEW

Live Capture
NEWNEW

Live Capture
NEWNEW

Live Capture
NEW

Live Capture

Install iOS 13 developer beta

NEW

Live Capture

Install iOS 13 developer beta

Install iOS Bluetooth developer logging profile

NEW

Live Capture

Install iOS 13 developer beta

Install iOS Bluetooth developer logging profile

Launch PacketLogger

NEW

Live Capture

Install iOS 13 developer beta

Install iOS Bluetooth developer logging profile

Launch PacketLogger

Connect your iOS device to your Mac

NEW

Live Capture

Install iOS 13 developer beta

Install iOS Bluetooth developer logging profile

Launch PacketLogger

Connect your iOS device to your Mac

Select File and “New iOS Trace”

NEW

Live Capture

Install iOS 13 developer beta

Install iOS Bluetooth developer logging profile

Launch PacketLogger

Connect your iOS device to your Mac

Select File and “New iOS Trace”

Indicator will appear on iOS device

NEW

Getting PacketLogger

Getting PacketLogger

Download “Additional Tools for Xcode”

Getting PacketLogger

Download “Additional Tools for Xcode”

PacketLogger is inside the Hardware folder

Getting PacketLogger

Download “Additional Tools for Xcode”

PacketLogger is inside the Hardware folder

For best performance run with macOS Catalina

Summary

Summary

Use chipset with latest Bluetooth standard

Summary

Use chipset with latest Bluetooth standard

Build Core Bluetooth apps for BR/EDR devices

Summary

Use chipset with latest Bluetooth standard

Build Core Bluetooth apps for BR/EDR devices

Protect user privacy

Summary

Use chipset with latest Bluetooth standard

Build Core Bluetooth apps for BR/EDR devices

Protect user privacy

Take advantage of the developer beta

Summary

Use chipset with latest Bluetooth standard

Build Core Bluetooth apps for BR/EDR devices

Protect user privacy

Take advantage of the developer beta

Refer to Accessory Design Guidelines for Apple devices

Summary

Use chipset with latest Bluetooth standard

Build Core Bluetooth apps for BR/EDR devices

Protect user privacy

Take advantage of the developer beta

Refer to Accessory Design Guidelines for Apple devices

Apple is here to help

More Information
developer.apple.com/wwdc19/901

Core Bluetooth Lab Friday, 4:00

