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Faster and more power efficient connection

Transparent to the application

Accessories must support LE 2 Mbps

Available starting with iPhone 8, Apple TV 4K, and Apple Watch Series 4
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New feature in Bluetooth 5.0 

Physical layer rate increased from 1 Mbps to 2 Mbps
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Transparent to application
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New API to query for platform support

  class func supports(_ features: CBCentralManager.Feature) -> Bool 
  static var extendedScanAndConnect: CBCentralManager.Feature { get }
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Use Core Bluetooth with BR/EDR Bluetooth devices

Bluetooth SIG GATT protocol running over BR/EDR

Same CBPeripheral APIs

New API in CBCentralManager

Available today with latest iOS, watchOS, and tvOS

Add support to your accessory

NEW
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open class CBCentralManager : CBManager { 
   open func registerForConnectionEvents(options:[CBConnectionEventMatchingOption:Any]?) 
}

extension CBConnectionEventMatchingOption { 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Connection Event

Delegate callback 
• Sent on matching connection 
• Sent after registration if a matching connection already established

optional func centralManager(_ central: CBCentralManager, connectionEventDidOccur event: 
CBConnectionEvent, for peripheral: CBPeripheral)

NEW



Incoming Connection



Initialization

private var central: CBCentralManager! 
central = CBCentralManager(delegate: self, queue: nil)



Registration

let matchingOptions = 
[CBConnectionEventMatchingOption.serviceUUIDs : 
[myServiceUUID]] 

central.registerForConnectionEvents(options: 
matchingOptions)
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BR/EDR Connected and Paired
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func centralManager(_ central: CBCentralManager, 
connectionEventDidOccur event: CBConnectionEvent, 
for peripheral: CBPeripheral) { 
   
     
       
}

    // Handle connection event

// Connection Event
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private var central: CBCentralManager? 
central = CBCentralManager(delegate: self, queue: nil)



Connecting Out

private var central: CBCentralManager? 
central = CBCentralManager(delegate: self, queue: nil)

central?.connect(myPeripheral, options: nil)
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Page
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Connected

BR/EDR Connected and Paired

optional func centralManager(_ central: 
CBCentralManager, didConnect peripheral: CBPeripheral) 
{ 
   // Handle connection 
}
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Instead of Inquiry

Inquiry Scan

Inquiry Response



Low Energy Scan
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Bridging

Low Energy proximity triggers BR/EDR connection

Works on devices supporting CTKD

NEW

public let CBConnectPeripheralOptionEnableTransportBridgingKey: String

cbCentralManager.connect(cbPeripheral,  
options:[CBConnectPeripheralOptionEnableTransportBridgingKey : true])
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cbCentralManager.connect(cbPeripheral, options:
[CBConnectPeripheralOptionEnableTransportBridgingKey : true])

LE Connected and Paired



Bridging

cbCentralManager.connect(cbPeripheral, options:
[CBConnectPeripheralOptionEnableTransportBridgingKey : true])

LE Connected and Paired

BR/EDR Connection Request

NEW
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LE Connected and Paired

BR/EDR Connected and Paired
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User consent required for all Core Bluetooth API’s

Applies to apps linked with any SDK

Can be modified in Settings

Required on iOS, watchOS, and tvOS

NEW
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Core BluetoothClassicSample: [access] This app has crashed because it attempted to access privacy-sensitive data 
without a usage description.  The app's Info.plist must contain an NSBluetoothAlwaysUsageDescription key with a 
string value explaining to the user how the app uses this data.
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func centralManagerDidUpdateState(_ central: CBCentralManager) 
func peripheralManagerDidUpdateState(_ peripheral: CBPeripheralManager) 

open var state: CBManagerState { get } 

// if (state == CBManagerState.unauthorized)  
open var authorization: CBManagerAuthorization { get }

Adoption 
Flow NEW



// Old managerDidUpdateState 
func centralManagerDidUpdateState(_ central: CBCentralManager) { 
 if (cbState == CBManagerState.poweredOn) { 

     // Kick-off bluetooth functionality  
    } 
}



// Updated managerDidUpdateState 
func centralManagerDidUpdateState(_ central: CBCentralManager) { 
 switch central.state { 
 case  .unknown: 
  // Handle state 
 case  .resetting: 
  // Handle state 
 case  .unsupported: 
  // Handle state 
 case  .unauthorized: 
  if (central.authorization != CBManagerAuthorization.allowedAlways) { 
   // Prompt user to give permission 
  } 
 case  .poweredOn: 
  // Handle state 
 case  .poweredOff: 
  // Handle state 
 } 
}
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Accessory Notifications

Apple Notification Center Service

GATT server service

Allows accessories to receive notifications from iOS
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public let CBConnectPeripheralOptionRequiresANCS: String 
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open var ancsAuthorized: Bool { get } 
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Best Practices

Invoke Core Bluetooth APIs only when required

Scan and advertise for a limited duration

Scan for specific service UUID(s)

Be transparent
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Bluetooth packet analysis application

Visualizer for packet logs inside sysdiagnose

Decode all protocols defined by Bluetooth SIG and Apple

Rich filtering options

Search by text or regex

Comment and flag packets

Export raw data for analysis
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Live Capture 

Install iOS 13 developer beta

Install iOS Bluetooth developer logging profile

Launch PacketLogger

Connect your iOS device to your Mac

Select File and “New iOS Trace”

Indicator will appear on iOS device

NEW
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Getting PacketLogger

Download  “Additional Tools for Xcode”

PacketLogger is inside the Hardware folder

For best performance run with macOS Catalina 
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Summary

Use chipset with latest Bluetooth standard

Build Core Bluetooth apps for BR/EDR devices

Protect user privacy

Take advantage of the developer beta

Refer to Accessory Design Guidelines for Apple devices

Apple is here to help



More Information
developer.apple.com/wwdc19/901

Core Bluetooth Lab Friday, 4:00




