
CAPTIVATING CONNECTED EXPERIENCE

Camera Architecture
Options for Success
Sujal Shah, Director, Automotive Solutions

July 2nd, 2014

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 2

Symphony Teleca at a Glance

400+ Customers

40 Offices Worldwide

7000+ Innovation Experts

Delivery Centers in the

Americas, Europe and Asia

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 3

Introduction

• Tizen-IVI offers the whole world of HTML5/CSS/JS solutions from a UI point of view,
however many of the features require developers to step out of the WRT for native
support.

• Symphony Teleca has explored multiple options to address this issue

• We would like to present details of this investigation and hope this knowledge
sharing will be helpful to other developers

Agenda

 Use Cases

 Hardware configurations

 General Software Architecture

 Solution Options

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 4

Camera Use Cases

R
e

ar V
ie

w
 Fr

o
n

t
V

ie
w

R

o
ad

 S
ig

n
 /

 L
an

e
M

o
n

it
o

ri
n

g

Cabin View

 Minimal
Lag

High
Resolution

Flipped
Frames

 Minimal Lag
High

Resolution
Medium FPS

No Encoding
Artifacts

Multiple
Cameras

Medium
Resolution

Medium
FPS

Medium
Lag

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 5

Camera Use Cases

Multiple
Cameras

Lens
Distortion
Correction

Image
Stitching

Minimal Lag

360° Top View

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 6

Camera Use Cases

Camera View + Driving Data on a Heads-Up Display

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 7

Performance Requirements Considerations

Considering the level of abstraction of Tizen-IVI applications with respect to Native solutions, it is
extremely important to fix these requirements before the HW selection step

Desired FPS Video Resolution

Video Lag
Distance of Camera(s) from the

Processing Units

Number of Cameras Camera Display Concurrency

Time to Switch Cameras
Performance of CPU / Encoding

Modules

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 8

Hardware Configuration Options

As with any embedded system development, it is important to consider hardware
options first, as use cases may drive a particular HW combinations

To streamline the hardware selection process, we recommend focusing on the below
three groups of hardware:

 USB, Analog and IP cameras

 Host system main board offering USB hub (one or many, USB2.0 or USB3.0), a means of
connecting an Analog video capture board, and one or more network interfaces

 Analog video capture board offering single or multiple channel support, together with a video
driver which may or may not perform channel multiplexing

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 9

Considerations for Hardware Setup

 IP Cameras

• IP cameras to support required video quality (frame size/fps) with MJPEG over TCP/IP
and/or H.264 over RTSP/RTP depending on particular needs.

 Analog Video Cameras

• Non-Multiplexed MiniPCI Express analog video camera capture board

• Multi channel MiniPCI Express cards expose only one Linux video device, and only one channel
sends frames to the interface at one time

• Such cards require rapid switching between channels.

• Recommend using a capture board with driver that can support many Linux video devices

• Another option would be several video capture boards, if main board can support

• Cards with higher total FPS should be preferred for multi-camera support to minimize time
lost during tuning phase after each channel switch

• It’s important to distinguish between per-channel FPS, and the total FPS supported by the
video chip/card

• Card manufacturers are notorious for not keeping their drivers up to date. Check that you
can build your card’s driver using the particular kernel used on the target system.

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 10

Considerations for Hardware Setup

 USB cameras to support required video quality with acceptable USB bandwidth while
considering other devices connected to same USB Root Hub:

• Feasibility of multiple USB camera solutions is determined by single camera USB bandwidth
allocation for acceptable video quality, the number of cameras needed, and the number of
USB Root Hubs.

• The main issue here is the difficulty in knowing how much USB bandwidth will be allocated
by a Hub for a given camera – it is not a simple function of video bandwidth, but depends
on options presented to the USB driver by the device

• Typical USB Bandwidth allocations to expect for different camera profiles are from 20% to
more than 60%.

• 20% of bus bandwidth is reserved for non-isochronous devices. Hence this might be a limiting
factor in multiple camera projects

• Another complication is that you would never find this USB bandwidth usage written on
the box. Even more, it might depend to particular Firmware version. So, you would need to
perform hands-on experiments with sample cameras to identity this parameter

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 11

Considerations for Hardware Setup

 USB bandwidth issue mitigation:

• Consider requiring USB 3.0 support in root hub and camera as this might relax some of the
limits around USB bandwidth

• Consider H.264 support in the camera and availability of the software options to deal with
such interfaces

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 12

General Architecture

So
u

rc
e

Weston

Underlying Middleware

System/Kernel Services

Kernel Card Drivers

WebKit

WRT Application

WRT Plug-in

JS API

Wayland client

D-BUS API

Variety of
Weston
plug-ins,

shell,
compositor

P
ro

ce
ss

in
g

P
re

se
n

ta
ti

o
n

 WebKit is a sandbox where the app is running

• WRT Application is a combination of HTML/CSS/JS
technologies, hence it can deal with the video frames with
help of JS or leave it to the functions available in WebKit core.

• Video tag, Pure Canvas, WebGL or JS MPEG-4 decoder.

• WRT Plug-in’s primary usage is control (over D-BUS or similar
interface) and secondary is bypass interface to the source of
the video data

 With respect to webkit the options are:

• Combination of webkitGetUserMedia and createObjectURL to
get blob object referencing the stream taken from V4l2, hence
applicable to USB and Video Capture Board options

• Make your own Blob object with help of JS and WRT Plug-in
and feed it to video tag like the one from the above option

 Weston plug-ins might be one of the options if you want to
make overlay client where the WRT Application only
controls the way and time video is presented. Video frame
processing is then done outside WRT sandbox.

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 13

Processing Layer

 Underlying Middleware (Processing layer) is a combination of several components:
• Tizen components such as GStreamer (or FFMPEG) to unify interface to the various video streaming

devices.

• This is distinct from GStreamer as used directly inside Webkit.

• Custom SW components to control parameters of system components

• Or Custom SW components to deal with the device interfaces directly, considering specific details of
each video streaming device

 The processing layer group is essentially an abstraction layer that hides details of the
various types of processing required by different video sources before that source is
exposed to the WRT

• GStreamer can perform most such processing tasks, even if some of the options required are really
complicated.

• Gstreamer processing overhead could be avoided where little or no processing is required by creating
custom SW to deal with V4l2 or IP camera interface directly.

• If GStreamer does not provide the processing you need, you should probably consider creating a
GStreamer plug-in, which would then make all the GStreamer facilities available too

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 14

Source Layer

 Could be a Linux Video device in combination with V4l2 interfaces. Most applicable
to USB and Video Capture board types of HW. Functionality and parameters available
thru ioctl interface should be also considered as part of this layer group

 Could be custom interfaces made to support specific features such as video in h.264

 Network interface to IP cameras or non-standard interfaces to the devices where you
would need to use some intermediate layers to get access to the camera even thru IP
or other type of connection.

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 15

Software Specifics

 Webkit: Video Tag: Does video buffering if used with network stream set directly to SRC. Lag
depends on video type and properties, but typical values to expect are from 3 to 5 seconds.
Another complication is list of supported video formats. Webkit used in Tizen-IVI supports OGG
and H.264/MPEG-4 Part 10. On the plus side, it’s possible to run up to 6-8 streams at the same
time with good FPS and quality of decoding.

 Webkit: Pure Canvas: As fast as can be expected for single camera set up and can offer single
camera view with FPS close to 25-30, but strictly depends on implementation in JS and below,
which provides byte array with frame. Typical lag is about 1 second or less.

 Webkit: WebGL could provide more features with additional video frame processing, but still
might be comparable to the pure canvas solution

 Webkit: JS MPEG-4 decoder is fast enough to get smooth video play with minimal lag, but might
not work out of the box on Tizen IVI.

 WRT plug-in: D-BUS control interface: Can be Corba or any other interface to the system or
custom service running to serve the webkit with the video streams and control the cameras
over ioctl and V4L2 interfaces

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 16

Software Specifics

 WRT plug-in: Combination with underlying MW to control and run Gstreamer, or to read the
frames directly from the Linux video interface such as /dev/videoX. Good for intermediate
processing of the frames, but relatively slow because can work only with Canvas or other direct
draw method.

 Webkit: webkitGetUserMedia and createObjectURL. Doesn’t work out of the box with Tizen-IVI
as Webkit is using GStreamer 1.0 library, but still sends the parameters in the GStreamer 0.10
format. Hence some modifications would be required to bypass this issue. Meanwhile, this way
does work with Crosswalk and result is very smooth.

 Webkit: Blob object in combination with WRT plug-in to serve video tag source. Could be
comparable to webkitGetUserMedia and createObjectURL method, but performance would
depend entirely on the WRT Plug-in implementation.

 Weston: Shell or Compositor. Fast and flexible as you manage layer merging and surfaces
directly. Can be helpful in complex layer merge scenarios such as Media Player with data shown
on top of the video, but constraints are in the need for expertise and complexity of the system.
Additionally it may impact whole system performance and stability, hence shouldn’t be used
without proper assessment of the needs and risks.

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 17

Software Specifics

 GStreamer: Complex, but powerful solution which can read multiple sources
(from files to IP cameras) and give multiple types of outputs with different
conversions in between input and output. Main points to consider are:

• There will probably be more than one way to build a GStreamer pipe to get functionality
you need

• Different versions of Tizen may include different versions of GStreamer and its plug-ins
leading to different and sometimes failing behavior in between releases

• Vaapi (HW support) is present, but it’s effectiveness depends on the Host system

• SW encoders may fail under heavy system load and produce corrupted streams

• Not everything is obvious. E.g. tcpserversink is good for streaming the data over the
network, but you would need to create your own wrapper (proxy) to add HTTP headers if
you try to use it with browser Video tag.

• Many useful plug-ins are still in “bad” and “ugly” packages meaning you have very minimal
support for most of functionality outside mainstream usage

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 18

Software Specifics

 FFMPEG: Simpler than GStreamer, but also limited. Upstream versions are not
expected to be available in the Tizen IVI repo and please be aware of modules which
are not even built for Tizen.

 Custom SW: Needed to deal with devices directly, or to control device status while
streaming is ongoing thru other components. Highly dependent on circumstances,
but might be required for:

• Setting up Video Capture board parameters

• Controlling status and availability of the devices

• Matching devices versus some ID to identify exact cameras in multi camera setup

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 19

Solution – Rear View Camera

 Rear view Camera- Minimal lag, high resolution, flipped frames

 For the USB and Analog cameras the simplest way would be a combination of
webkitGetUserMedia and createObjectURL methods.

 A custom solution could be implemented, such as own blob object or Weston plug-in
for overlay in combination with GStreamer.

 Latter options are helpful especially if there is a need for camera multiplexing or IP
camera usage.

 Flipping could be done by browser as layer property, hence no additional processing
required.

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 20

Solution - 360° Top View

 Multiple cameras setup, correction of lens distortion, stitching of camera outputs
into single panoramic video, minimal lag

 Architecturally correct way would be custom GStreamer plug-in implementation and
usage of OpenCV for stitching images from different sources, blending and lens
corrections.

 Standard videomixer plug-in is good example for quick start with Gstreamer

 Custom SW could implement the same functionality by reading the frames from
Linux Video interfaces directly or using GStreamer as a library.

 For minimal lag Weston overlay or own blob object could be used to pass video

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 21

Solutions - Heads-Up Display

 Camera view with driving details overlaid for a heads-up display:

 Merge of the dynamic/static data with actual camera view, minimal lag, medium FPS

 If data is primarily textual information, then browser layer capabilities could be used
to merge it with video stream. Otherwise variety of GStreamer plug-ins could do it at
the cost of some MW complication.

 For medium FPS, browser Canvas is good option where the frames are read directly
from device (or from GStreamer for IP cameras), processed in custom SW and then
passed to Canvas thru WRT plug-in.

 WebkitGetUserMedia and createObjectURL methods are still good if there is no need
to deal with IP cameras.

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 22

Solutions – Cabin View & Front View

 Cabin View

• Multiple cameras setup, medium or low FPS, medium lag

• In general similar to “360° Top View” case, but lower requirements for presentation part,
hence Canvas or own blob object can be implemented to handle display

 Front View – Lane and Sign Recognition

• One by one frame processing before display in various recognition cases such as faces, road
signs or other objects recognition –

• Minimal lag, medium FPS as the recognition may take longer than single frame release
time, no en(de)coding artifacts to achieve best recognition results

• Custom SW to read frames directly from the device or GStreamer library and to process it
further can be implemented.

• Depending on the processing required, it could be a Gstreamer plug-in doing analysis of the
frames and sending the signals to upper layers.

• Canvas or blob object for medium FPS and minimal lag.

• Weston overlay may over complicate the system, but technically possible to achieve
minimal lag and best performance of the display

Copyright © 2013 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 23

Need More Details?

Need more details?

Specifics of particular selections of SW and HW, for example regarding, WebKit, WRT-plugin,
GStreamer or Weston can be requested at sujal.shah@symphonyteleca.com.

mailto:sujal.shah@symphonyteleca.com

Copyright © 2014 Symphony Teleca Corp. All rights reserved. CONFIDENTIAL AND PROPRIETARY 24

Go beyond ordinary.

Wherever you want to go,

we’ll get you there. Faster.

