
Porting Tizen-IVI 3.0

to an ARM based SoC Platform

Damian Hobson-Garcia

Automotive Linux Summit

July 1-2, 2014

Tokyo, Japan

Tizen IVI support

 Intel architecture (x86) system

– Tizen IVI 2.0alpha, Tizen IVI 3.0

 ARM architecture based system

– Tizen IVI 2.0alpha (ivi-panda)

Need to port Tizen IVI 3.0 to ARM ourselves

Until recently…

Current State of Affairs

 Intel architecture (x86) system

– Tizen IVI 2.0alpha, Tizen IVI 3.0

– Tizen Common

 ARM architecture based system

– Tizen IVI 2.0alpha (ivi-panda)

– Tizen Common

Tizen IVI now based on Tizen Common

– Lots of reuse

NEW

NEW

Target Platform

 Renesas R-Car Gen2 series platform

 R-Car M2
– ARM Cortex A15 x2

 R-Car H2
– ARM Cortex A15 x4, + ARM Cortex A7 x4 (option)

 3D Graphics System
– Imagination Technologies PowerVR series

 On board IP blocks
– H/W video decode/encode

– image processing

Agenda

Objective

Methodology

 Porting Tasks

– Weston/Wayland Integration

– WebKit Integration

– GStreamer Integration

Objective

 Tizen IVI 3.0 on R-Car M2/H2

1. Standard Native Applications

– Terminal program

– Open GL/ES applications

2. Web

– Browser and web applications

3. Multimedia

– Video playback (1080p @ 30fps)

Local Build Methodology

 Tizen IVI 3.0 milestone releases we used:

– M2-Sep (released Oct 11, 2013)

– M2-EOY (released Jan 15, 2014)

– M2-March2014 (released April 11, 2014)

 Non-hardware dependant packages

– Rebuild for ARM instruction set

 Hardware dependant packages

– Replace/update with R-Car M2/H2 support

Tizen Common/IVI Rebase

Methodology

 Reuse Tizen Common ARM support for

Tizen IVI 3.0

– Most Tizen IVI packages now based on Tizen

Common

 Non-hardware dependant packages

– Use prebuilt packages

 Hardware dependant packages

– Replace/update with R-Car M2/H2 support

Workflow and

Source Code Download

Full local build

Local binary

package

Locally modified

source code

gbs mic
File system

image

review.tizen.org

git source

code repo

Package Compilation

Image creation

Flash onto

target system

https://source.tizen.org

Building tizen from scratch

Source Code and Build

Preparation

 Get source code

 $ repo init -u review.tizen.org:scm/manifest -b tizen –m ivi.xml

 Overwrite projects.xml with milestone manifest file
 http://download.tizen.org/${RELEASE_PATH}/builddata/manifest/xxx.xml

 Customize projects.xml

manifests/ .repo/ metadata.xml

prebuilt.xml

projects.xml

ivi/

Using Tizen IVI Repos

Local binary

package

Locally modified

source code

gbs mic
File system

image

download.tizen.org
review.tizen.org

Tizen IVI

binary rpms git source

code repo

Package Compilation

Image creation

Flash onto

target system

Build Preparation (cont.)

 Use prebuilt ARM toolchain from tizen
branch

$ repo sync

-<project name=”pre-built/toolchain-arm” ... revision=”tizen-ivi”/>

+<project name=”pre-built/toolchian-arm” ... revision=”tizen”/>

manifests/ .repo/ metadata.xml

prebuilt.xml

projects.xml

ivi/

Porting Tasks

Wayland/Weston (windows system)

backend

– Use PowerVR driver instead of Mesa

Web Applications

– Implement WaylandBufferManager (for WebKit)

Multimedia Acceleration Video Playback

– 0 – copy video stream processing (1080p @

30fps)

Replacing the Mesa driver

for Wayland/Weston

Wayland/Weston Overview

Client

Application

client process

Client

Application

client process

Weston Compositor

server process

Wayland protocol

client/server based windowing system

client: draws application content

server: composites one or more client

 windows to create output

Mesa

Wayland/Weston with Mesa

drm/kms driver

Client

Application

client process

server process

GPU driver

user space

kernel

Intel graphics

dependent unit

other functional unit

generic unit

libdrm_intel

wl_drm

Weston Compositor

OpenGL

driver

gbm

Wayland protocol

ioctl

buffer sharing Wayland prot.

GPU API

Wayland EGL

extension lets Mesa

use Wayland buffers

Wayland/Weston on R-Car M2/H2

drm/kms driver

Client Application

client process
server process

GPU driver

user space

kernel

generic library

other functional unit

proprietary library

libkms

wl_kms

Weston Compositor

PowerVR

OpenGL

driver

libgbm

uses generic dumb

buffer backend

almost same as wl_drm

but with libkms back end

Wayland protocol

ioctl

buffer sharing Wayland prot.

GPU API

Replacing Mesa

Replacement libraries must

– Implement EGL_WL_bind_wayland_display EGL

extension for Open GL/ES driver

 http://cgit.freedesktop.org/mesa/mesa/tree/docs/specs/WL_bind_wayl

and_display.spec

– Provide

• libgbm – Access to drm backend

(https://github.com/robclark/libgbm)

• libdrm/libkms – for access to memory buffers (provided in

Tizen release)

• buffer sharing interface – (similar to Mesa’s wl_drm)

– libgbm backend should match buffer sharing interface

Replacing Mesa on Tizen

1. replace mesa library
$ rm –r <build directory>/platform/upstream/mesa

$ cp my_libraries <build directory>

2. edit build.conf (build settings file)

3. build the system
$ gbs build –A armv7l

 (for full build command line see http://source.tizen.org
“building Tizen from scratch”)

-%define with_mesa=1

...

+Substitute: pkgconfig(gl)

+Substitute: mesa-devel pkgconfig(gles20)

...

 Macros

-%with_mesa=1

Objective

 Tizen IVI 3.0 on R-Car M2/H2

1. Native Applications

– Terminal program

– Open GLES applications

2. Web

– Browser and web

 applications

3. Multimedia

– Video playback (1080p @ 30fps)

Webkit2 and

WaylandBuffer Manager

Simple client-server configuration

drm/kms driver

WebKit UI

Process

client process

GPU driver

server process

user space

kernel

libkms

wl_kms

Weston Compositor

PowerVR

OpenGL

driver

libgbm

generic library

other functional unit

proprietary library

Wayland protocol

ioctl

buffer sharing Wayland prot.

GPU API

Webkit2 client-client/server-server

configuration

WebKit Web

Process

drm/kms driver

client process

WebKit UI

Process

libkms

client/server

process

wl_kms

GPU driver

server process

user space

kernel

generic library

other functional unit

proprietary library

libkms

wl_kms

Weston Compositor

PowerVR

OpenGL

driver

libgbm

Wayland protocol

ioctl

buffer sharing Wayland prot.

GPU API

Webkit2 Buffer Allocation

WebKit Web Process

drm/kms driver

client process

WebKit UI

Process

libkms

client/server

process

wl_kms

WaylandKmsBufferManager

libkms

WaylandDisplay

WaylandDisplay (class):

 Update to use wl_kms

 instead of wl_drm

WaylandKmsBufferManager

(class):

 Implementation of

 WaylandBufferManager

 interface

generic library other functional unit

Wayland protocol

ioctl

buffer sharing Wayland prot.

WaylandBufferManager

Interface

 WaylandBufferManager and WaylandDisplay source:

webkit-efl/Source/WebCore/platform/graphics/surfaces/wayland/

 Interface for allocating/locking shareable buffers (e.g..

kms_bo)

– allocateBO returns handleId.

– *handle is pointer to shareable fd (ie. flinked fd, or DMABuf

handle)

– query to get buffer virtual address

class WaylandBufferManager {

 allocateBO(w, h, stride, size, align, *handle);

 lockSurface(handleId);

 unlockSurface(handleId);

 freeBO(handleId);

 query(handleId, **addr);

}

Objective

 Tizen IVI 3.0 on R-Car M2/H2

1. Native Applications

– Terminal program

– Open GLES applications

2. Web

– Browser and web

 applications

3. Multimedia

– Video playback (1080p @ 30fps)

Using GStreamer with

Tizen IVI 3.0

Example GStreamer pipeline

GStreamer

 Encode, decode, capture and display multimedia data

 Make a pipeline of components to do what you want

video demuxer audio decoder sample player

video decoder frame renderer

to speaker

to screen

Video Decode on R-Car M2/H2

on Tizen IVI 3.0

 Audio pipeline
– Software decode for now

 Video decode
– Use gst-omx to bridge GStreamer to OpenMAX IL

component

 Color conversion/scaling
– Use hardware accelerated color conversion/scaling

module

 Display
– Use waylandsink to display via Weston compositor

GStreamer H/W accelerated video decode

 full custom as-is upstream component Reneas proprietary library customized component

client process

Weston Compositor

GStreamer Application

gst-omx
vspfilter

(color conv./scaler)

GStreamer Plugins

waylandsink

OpenMAX IL

Video decoder

GPU hardware
H/W video

decoder

H/W color

conv./scaling

server process

Wayland protocol API call data flow memcpy()

Waylandsink customization

 H/W color conversion requires physically
contiguous buffers
– Waylandsink allocates non-contiguous shared

memory buffers

– Add extra memcpy()s into pipeline.

 Buffers allocated from kms bo are
physically contiguous (on our system)
– Use the same method as with WebKit to allocate

and share graphics buffers

Waylandsink customized for libkms

usage

GStreamer waylandsink

drm/kms driver

client process

Weston

compositor

libkms

server process

wl_kms

libkms

Wayland protocol

ioctl

buffer sharing Wayland prot.

generic library other functional unit

gstbufferpool->alloc()

Allocated kms dumb

buffers used for H/W

color conversion.

No memcpy()s

required between

video decode and

screen display.

GStreamer H/W accelerated video decode

no memcpy()

 full custom as-is upstream component Reneas proprietary library customized component

client process

Weston Compositor

GStreamer Application

gst-omx
vspfilter

(color conv./scaler)

GStreamer Plugins

waylandsink

OpenMAX IL

Video decoder

GPU hardware
H/W video

decoder

H/W color

conv./scaling

server process

Wayland protocol API call data flow

Objective

 Tizen IVI 3.0 on R-Car M2/H2

1. Native Applications

– Terminal program

– Open GLES applications

2. Web

– Browser and web

 applications

3. Multimedia

– Video playback (1080p @ 30fps)

What we learned - review

 Building
– Use manifest xml file from milestone release on

http://donwload.tizen.org

– Use mobile toolchain for ARM

 Weston/Wayland
– Need support for EGL_WL_bind_wayland_display in Open

GL/ES driver

– Can use libkms dumb buffers

 WebKit
– Implement WaylandBufferManager; update WaylandDisplay

 Multimedia playback
– Use libkms and Wayland buffer sharing to implement 0-copy

processing with physically contiguous memory buffers

Thank you.

Questions?

Links

 Building Tizen from scratch
https://source.tizen.org/documentation/developer-guide/all-one-

instructions/creating-tizen-images-scratch-one-page

 EGL_WL_bind_wayland_display EGL extension
http://cgit.freedesktop.org/mesa/mesa/tree/docs/specs/

WL_bind_wayland_display.spec

 libgbm
https://github.com/robclark/libgbm

 Renesas R-Car series platforms
http://am.renesas.com/applications/automotive/cis/cis_highend/

