
AGL	security	where	Smack,	Cynara,	and	AppFW	leave	off	

Page	1	of	6	
	

Vehicle	 systems	 provide	 a	 challenging	 use	 case	 for	 security,	 where	 physical	 and	 virtual	
access	is	essentially	unlimited,	and	reverse	engineers	have	easy	access	to	replacement	parts,	
components,	 and	 even	whole	 vehicles	 –	 enabling	multiple	 tries	 to	 perfect	 attacks	 on	 the	
system.	Given	these	challenges	in	the	vehicle	deployment	model,	the	goal	shifts	from	denying	
an	 attacker	 access,	 to	 limiting	 the	 damage	 an	 attacker	 can	 do	 once	 access	 is	 achieved.	
Specifically,	the	integrity	and	availability	of	the	system	(vehicle)	must	be	maintained	even	
after	a	successful	compromise.	Security	solutions	built	into	Automotive	Grade	Linux	(AGL),	
such	as	Smack,	Cynara	and	AppFW	can	help	increase	the	integrity	of	software	applications,	
but	are	not	sufficient	by	themselves	to	close	significant	vulnerabilities	in	the	platform.	

This	 talk	will	 take	 a	 hands-on	 approach	 to	 securing	 an	AGL	 system,	 using	 the	 CES	 2017	
reference	platform,	application	stack,	and	peripherals	as	an	exemplar.	The	 talk	will	 show	
how	 to	 apply	 Smack,	 Cynara	 and	 AppFW	 to	 reduce	 the	 attack	 surface	 and	 enhance	 the	
security	of	the	IVI	platform.	With	existing	security	solutions	applied,	the	talk	will	switch	to	
attack	 flows,	 vulnerabilities	 that	 remain	 in	 the	 system,	 and	 suggestions	 for	 continuing	 to	
improve	the	overall	security	of	an	automotive	software	stack	such	as	AGL.	

System	integrators	and	developers	generally	fail	to	understand	the	scope	of	these	security	
solutions,	and	what	the	overall	threats	to	the	system	are.	Security	solutions	such	as	Smack	
and	 Cynara	 generally	 assume	 a	 closed	 system,	 and	 assume	 an	 attacker	won’t	 be	 able	 to	
achieve	direct	execution	access	on	the	system.	Unfortunately,	this	assumption	is	incorrect.	
Direct	 execution	 access	 can	 be	 achieved	 through	 a	 compromised	 root	 or	 administrative	
account,	application	vulnerability,	shared	library,	latent	privilege	escalation	vulnerability	or	
even	external	peripheral	hardware.	Some	of	the	vulnerabilities	remaining	in	the	system	after	
the	application	of	tools	such	as	Smack,	Cynara	and	AppFW	include:		

1. The	reliance	on	a	privileged	account	capable	of	modifying	access	permissions,	policy	
databases,	and	mandatory	access	control	mechanisms.		

2. No	protection	of	shared	library	replacement,	addition,	reversion,	validation,	etc.	
3. The	ability	to	load	kernel	modules	
4. The	ability	for	an	attacker	to	bring	their	own	tools	(i.e.	executables,	libraries,	etc.)	
5. Limited	protections	on	application	configuration	
6. No	protection	around	secure	update	mechanisms	including	keys,	certificates,	block	

devices,	etc.	
7. No	system	call	enforcement	
8. Extraneous	kernel	functionality	(i.e.	kexec,	drivers,	etc.)	

The	talk	will	focus	on	applying	additional	in-kernel,	and	user-space	capabilities	within	the	
AGL	environment	 to	address	unmet	 threats	and	vulnerabilities.	Additionally,	 the	 talk	will	
discuss	 integrating	 security	 controls	 into	 the	 development,	 build,	 and	 test	 environments	
based	on	several	real-world	use	cases.	The	talk	will	help	take	the	application	of	security	on	
AGL	as	an	afterthought,	bolt-on	solution,	 to	a	well	 thought,	 full-spectrum,	 fully	 integrated	
solution	which	is	 integrated	early	 in	the	development	process.	The	talk	will	also	focus	on	



AGL	security	where	Smack,	Cynara,	and	AppFW	leave	off	

Page	2	of	6	
	

helping	developers	and	integrators	identify	the	full	spectrum	of	attacks	their	systems	may	
be	vulnerable	to.	

AGL-based	systems	are	vulnerable	to	a	variety	of	attacks,	including:	physical,	over	the	wire,	
and	through	the	interface.	The	talk	will	primarily	be	focused	on	over	the	wire	and	through	
the	 interface	 attacks,	 as	 they	present	 the	 greatest	 opportunity	 for	 an	 attacker	 to	 achieve	
attacks	at	scale.	However,	it	should	be	noted	that	an	attacker	with	physical	access	can	(and	
will)	use	software	access	and	reverse	engineering	techniques	to	help	develop	attacks	at	scale.	
As	an	example,	the	highly-publicized	Jeep	attack,	made	use	of	physical	access	to	the	platform,	
to	develop	their	attacks	for	use	“at	scale”	and	remotely.	

Existing	AGL	security	solutions	attempt	to	raise	the	bar	for	an	attacker,	but	they	need	to	be	
augmented	with	additional	kernel	 functionality	 to	 achieve	 the	maximum	desirable	 effect.		
These	security	solutions	should	be	implemented	with	other	low-hanging	fruit	and	industry	
best-practices	such	as:	lockdown/removal	of	engineering	and	flash	update	tools,	complete	
removal	of	unnecessary	tools	and	libraries	(attack	surface),	secure	boot	founded	within	a	
hardware	root	of	trust,	and	having	the	system	evaluated	by	an	external	entity.		

Attack	Flow		

Regardless	of	whether	an	attacker	 is	 attacking	a	 system	 through	virtual	 access	 (over	 the	
wire,	software	updates,	etc.),	or	physically	they	will	generally	follow	the	same	steps	to	gain	
access	to	the	system.	Using	the	Jeep	hack	as	an	example,	the	talk	will	follow	the	attack	flow	
through	the	system,	identify	security	components	that	could	make	the	system	stronger	with	
a	special	emphasis	on	areas	where	existing	AGL	security	capabilities	fall	short.	The	general	
flow	 for	 an	 attack	 starts	 with	 system	 reconnaissance.	 Next,	 an	 attacker	 will	 exploit	 a	
vulnerability	to	gain	execution	on	the	system.	After	achieving	initial	access,	they	can	escalate	
privileges	if	necessary,	or	continue	to	exploit	the	system	to	achieve	their	individual	goals.	
The	 attack	 process	 is	 often	 circular,	 and	 cycles	 between	 reconnaissance,	 gaining	 access,	
performing	system	analysis,	and	increasing	access.	It	is	often	necessary	to	perform	several	
iterations	 of	 the	 process	 to	 achieve	 the	 intended	 system	exploitation	 goals.	 Existing	AGL	
security	solutions,	coupled	with	other	solutions	to	address	residual	vulnerabilities,	provides	
opportunities	to	mitigate	or	prevent	attacks	at	each	step	of	the	attack	flow.	

Mandatory	Access	Control	(MAC)		

MAC	enables	system	developers	and	integrators	to	restrict	access	to	system	resources	and	
data	 to	specific	users,	 classes	of	users,	applications,	hardware/software	objects,	and	sub-
systems.	MAC	provides	logical	isolation	between	applications	running	on	the	same	system	
and	it	limits	what	an	attacker	is	able	to	do	once	initial	access	has	been	achieved.	This	is	true	
whether	the	access	is	through	a	vulnerable	application,	system	bus,	or	shell	console.	When	
implemented	correctly,	MAC	restricts	what	an	attacker	can	do	once	they	have	already	gained	
access,	and	provides	continued	integrity	of	the	rest	of	the	system.	MAC	(in	the	traditional	



AGL	security	where	Smack,	Cynara,	and	AppFW	leave	off	

Page	3	of	6	
	

sense),	is	primarily	implemented	using	OS	and	kernel	extensions.		

Fundamentally,	AGL	security	tools	such	as	Smack,	Cynara	or	AppFW	implement	MAC.	These	
security	 tools	 enable	 system	 integrators	 to	 limit	 access	 to	 resources,	 communication	
mechanisms,	OS	facilities,	hardware,	and	separate	applications,	libraries,	and	data.	MAC	can	
even	limit	what	the	root	or	administrator	user	can	do	and	access	on	the	system,	making	it	
even	more	difficult	for	an	attacker	to	gain	total	control	of	the	system	and	exploit	the	rest	of	
the	vehicle	systems.	MAC	can	be	thought	of	as	a	series	of	explicit	policies,	governing	what	
exactly	a	user,	application	or	defined	role	can	do	on	the	system.	MAC	policies	are	generally	
either	established	during	a	learning	phase,	in	which	normal	system	activity	is	recorded	over	
a	set	interval,	or	the	policy	is	explicitly	defined	by	the	system	developer.	In	the	case	where	
the	 policy	 is	 developed	 based	 on	 actual	 use	 of	 the	 system	 over	 a	 defined	 interval,	 the	
established	policy	 can	be	 tailored	 to	provide	 additional	 protection,	 and	 address	paths	or	
access	vectors	not	exercised	during	the	learning	cycle.	The	MAC	policies	are	used	to	identify	
permitted	 activities	 and	 accesses	 on	 the	 system,	 under	 the	 premise	 of	 that	which	 is	 not	
explicitly	permitted	is	denied.		

Smack	extends	MAC	to	the	network	stack,	enabling	network	traffic	to	be	filtered	at	the	per-
application	 level.	 Additionally,	 Smack	 simplifies	 the	 implementation	 of	MAC,	 by	 enabling	
default	labels	or	contexts	to	be	applied	to	filesystem	objects	that	are	unlabeled.	Smack	also	
provides	 the	 concepts	 of	 containers,	 and	 utilizes	 several	 containers	 to	 simplify	 the	
implementation	of	Smack	on	AGL.	AGL’s	implementation	of	Smack	is	primarily	focused	on	
separating	users,	from	system	and	IVI	processes.		

Cynara	 extends	 Smack	 to	 include	 Android	 style,	 fine	 grained	 permissions.	 Cynara	
implements	a	policy	check	service	that	can	be	utilized	by	a	library	and	dbus	components.	
Cynara	 enables	 integrators	 to	 extend	 MAC	 from	 the	 OS-level	 (ie.	 files,	 and	 sockets)	 to	
individual	API	calls	within	applications	and	libraries.	

Leveraging	 MAC	 on	 a	 system	 such	 as	 an	 Electronic	 Control	 Unit	 (ECU)	 or	 In-vehicle	
Infotainment	(IVI)	platform,	significantly	increases	the	burden	for	the	attacker,	and	works	
to	limit	the	exposure	once	an	attacker	gains	access	to	the	system.	During	the	initial	access	
phase,	MAC	decreases	the	available	attack	surface,	and	can	make	it	harder	to	gain	execution,	
alter	system	firmware,	interact	with	hardware	devices,	and	elevate	privileges.	Attackers	will	
need	to	spend	more	time	and	resources	analyzing	the	system	and	preparing	attacks,	thereby	
enabling	more	chances	for	detection,	mitigation	and	prevention	of	the	attack.	MAC	can	also	
be	used	to	limit	the	resources	available	to	an	attacker,	thereby	significantly	decreasing	the	
available	attack	surface,	and	 increasing	the	burden	for	analysis	as	attackers	are	 forced	to	
look	for	even	smaller	attack	vectors.	Once	an	attacker	gains	execution	on	the	system,	MAC	
can	 prevent	 the	 attacker	 from	 elevating	 privileges,	 subverting	 trusted	 boot	mechanisms,	
interacting	with	other	components	of	the	system,	and	transferring	aspects	of	the	system	for	



AGL	security	where	Smack,	Cynara,	and	AppFW	leave	off	

Page	4	of	6	
	

offline	analysis.	MAC	can	also	be	used	to	prevent	an	attacker	from	bringing	their	own	tools	
(by	 limiting	 access	 to	 system	calls,	 not	 being	 able	 to	 execute	untrusted	 applications,	 and	
preventing	 execution	 access	 from	 directories	 the	 attacker	 controls),	 which	 further	 helps	
preserve	integrity	of	the	system.		

Decreasing	the	Attack	Space		

In	addition	to	the	AGL	MAC	tools,	it	is	important	to	decrease	the	attack	surface	of	both	the	
operating	environment	and	the	protection	services	to	minimize	the	attacker’s	opportunity	
to	subvert	the	protections	and	gain	complete	control	of	the	vehicle’s	systems.	For	example,	
simply	 removing	 binaries	 (i.e.	 gdb,	 strace,	 kexec)	 from	 a	 system	 does	 not	 mean	 the	
functionality	has	been	removed.	The	functionality	may	still	exist	(i.e.	in	terms	of	system	calls	
and	kernel	functionality),	and	if	an	attacker	can	bring	their	own	tools,	the	latent	functionality	
can	then	be	leveraged	to	further	knowledge	of	the	systems	and	increase	an	attacker’s	access	
to	the	system.	Functionality	should	be	removed	from	the	host	operating	environment	first,	
and	 if	 necessary,	 supplemented	 using	 a	 hypervisor	 and	 trusted	 execution	 environment.	
Additionally,	systems	should	implement	some	sort	of	application	whitelist,	which	works	to	
prevent	an	attacker	from	bringing	their	own	tools,	exploits,	and	applications.		

Software	Partitioning	and	Containerization	
Increasing	the	protections	afforded	by	MAC,	can	be	achieved	through	software	partitioning	and	
executing	it	within	its	own	context.	Available	software	partitions	mechanisms	include	separate	
processes,	 lightweight	containers,	and	virtualization.	Software	can	be	partitioned	using	 logical	
divisions,	such	as	independent	functions,	existing	IPC	and	synchronous	mechanisms,	or	resource-
based	 slicing.	 Software	 partitioning	 has	 numerous	 benefits	 including	 reduced	 attack	 surface,	
better	 performance,	 reduced	 complexity,	 and	 better	 scalability.	 Software	 partitioning	 can	 be	
done	using	both	manual	and	automatic	(software-based)	means.	Like	many	trade-offs	in	security,	
the	means	available	for	both	slicing	and	containerization	are	often	limited	by	existing	designs,	
and	whether	the	systems	are	being	designed	from	the	ground	up	to	support	containerization	and	
slicing.	
	
Splitting	applications	into	multiple	process	spaces	is	not	always	feasible,	such	as	is	the	case	for	
interpreted	 applications	 like	 Java.	 Additionally,	 applications	 running	 within	 separate	 process	
spaces	are	still	vulnerable	to	a	variety	of	kernel	and	user-based	attacks	including	snooping,	side	
channel	analysis,	and	privilege	escalation.		
	
Lightweight	 containers	 such	 as	 docker	 or	 chroot	 environment	 provide	 stand-alone	 execution	
environments	 for	application	 slices.	These	environments	execute	within	 the	 same	kernel,	but	
have	increased	separation	and	greatly	reduced	attack	space,	as	they	are	essentially	light-weight	
virtual	machines	with	only	the	necessary	kernel	interfaces,	applications,	libraries,	and	network	



AGL	security	where	Smack,	Cynara,	and	AppFW	leave	off	

Page	5	of	6	
	

services	running.	Lightweight	kernels	execute	using	the	existing	process	and	resource	scheduling	
making	 them	 more	 highly	 performant	 and	 easier	 to	 manage	 and	 deploy.	 Additionally,	 the	
provisioning	 of	 containers	 provides	 another	 mechanism	 for	 enforcing	 an	 additional	 level	 of	
security	within	the	AGL	environment.	
	
MAC	 and	 containerization	 implemented	 in	 the	 kernel	 provides	 application	 and	 resource	
separation,	however	it	also	runs	at	the	same	achievable-access	level	as	the	attacker,	providing	
the	attacker	a	potential	mechanism	 for	 subverting	 the	afforded	protections	and	escaping	 the	
container.	Using	a	hypervisor	or	separation	kernel,	not	only	are	the	protections	removed	from	
the	 purview	 of	 the	 attacker	 and	moved	 to	 a	 lower	 level	 in	 the	 system	 (where	 they	 can	 be	
monitored	 and	 verified	 by	 other	 hardware	 protections),	 but	 additional	 access	 controls	 and	
separation	can	be	enforced.	Using	a	hypervisor	for	separation	also	enables	each	application	or	
service	to	be	executed	in	its	own	context	independent	of	other	applications	or	services	on	the	
system.	Placing	each	application	in	its	own	execution	context	not	only	guarantees	resources,	but	
also	 enables	 finer	 grained	 control	 over	 resources,	 and	 access	 to	 the	 rest	 of	 the	 system	 (i.e.	
peripherals,	data,	etc.).	
	
Running	 each	 application	 or	 service	 in	 a	 separate	 execution	 context	 (whether	 container	 or	
virtualization	 environment),	 enables	 the	 application	 to	 be	 executed	 in	 a	 similar	 fashion	 to	 a	
unikernel.	As	 such,	only	 the	 required	 system	 services,	 access	mechanisms,	 and	 resources	 are	
available	 to	 the	 application,	 significantly	 decreasing	 the	 attack	 space,	 and	 increasing	 the	
protections	afforded	to	the	system	and	application.		
	
Separate	execution	contexts	can	also	be	created	for	encryption	services,	enabling	the	encryption	
of	applications,	libraries,	data,	and	other	resources	to	happen	transparently	behind	the	scenes,	
without	 exposing	 the	 operations	 or	 keys	 to	 an	 attacker.	 The	 combination	 of	 hardware	
acceleration,	offloading	to	a	hardware	security	module	(HSM)	and	implementing	encryption,	key	
management,	and	signature	checking	 in	a	separate	execution	context	or	virtual	machine,	can	
make	it	increasingly	difficult	for	an	attacker	to	dump	or	analyze	the	keys	and	subvert	the	afforded	
protections.	 Additionally,	 a	 separate	 execution	 domain	 can	 be	 established	 for	 software	 and	
firmware	updates.	The	update	and	maintenance	execution	context	can	be	configured	as	the	only	
environment	that	can	access	hardware	write	mechanisms,	security	processors,	and	trusted	boot	
mechanisms,	which	themselves	can	be	protected	by	other	security	mechanisms	within	the	larger	
integrated	platform.	
	
Wrap	Up	
Using	 the	 AGL	 CES	 Demo	 and	 Jeep	 hack	 as	 exemplars,	 this	 talk	 will	 take	 developers	 and	
integrators	through	providing	a	complete	security	solution	for	their	AGL	platforms.		The	talk	will	



AGL	security	where	Smack,	Cynara,	and	AppFW	leave	off	

Page	6	of	6	
	

focus	on	 identifying	 classes	of	 threats	AGL	developers	 need	 to	be	 familiar	with,	 the	 limits	 of	
security	 solutions	 integrated	 into	 AGL,	 and	 applying	 solutions	within	 the	 Linux	 ecosystem	 to	
address	various	threats	to	vehicle	platforms.	Developers	will	leave	with	the	skills	and	experience	
to	develop	threat	models	 for	systems	built	using	AGL,	a	better	understanding	of	AGL	security	
solutions	 and	 their	 limitations,	 and	 how	 to	 use	 other	 solutions	 available	 within	 the	 Linux	
environment	to	address	various	threats	to	a	system,	and	to	integrate	security	into	product	life	
cycle.	The	talk	will	focus	on	identifying	vulnerabilities	and	limitations	in	AGL	security	solutions,	
and	layering	security	solutions	to	provide	more	complete	protection	for	AGL	platforms.	
	


