

Detecting and Propagating Traffic Accident Events Using Sensors in Smartphones

NW R&D Center SK Telecom

Content

- Introduction
- Challenges
- Approach
- Data collection and preparation
- Analytics
- Propagation of events
- Preliminary Result
- Future Work

Introduction

- V2X communication has been around for several years
 - 802.11p (aka WAVE): draft from 2005, finished in 2010
 - LTE-V2X: first version is included in LTE Rel.14
- However, the commercialization of V2X has been delayed due to various reasons, such as
 - Lack of interest from car OEMs
 - Delay of regulation requiring mandatory V2X connectivity
- Some of the scenarios of V2X is possible to implement without full-fledged
 V2X communication
 - Many V2I scenarios
 - Some V2V scenarios

Detecting of 'hard breaking' and propagating to the following cards

Challenges

Hard to detect hard breaking using inertial sensors

O Gravity is larger than the acceleration when sudden stop

	Dist. (m)		Accel. (g)	
	Wet	Dry	Wet	Dry
Avante	43.32	45.91	0.91	0.86
<u>Carnibal</u>	42.9	45.5	0.92	0.86
Grandeur	41.9	42.4	0.94	0.93
BMW 520d	38.3	39.6	1.03	0.99

Source: KNCAP

Issues:

- O Deviation is high among devices, and noise is common in the result
- It is essential to minimize the delay the event should be emitted ASAP
- O Care should be taken not to drain the battery heavily

Approach

To improve the performance and portability:

- O Gyroscope and sensor fusion should be used to compensate rotation effect
- The acceleration in the direction of driving is used as the primary feature
 - If it is larger than the threshold, SVM is used to validate if a hard breaking happened
 - Three features are used as the input to SVM
- SVM is chosen because of
 - its low complexity (compared to CNN) and applicability to smartphones, and
 - the existence of open-source solution (LIBSVM, MIT license)
- Key algorithm is written in C for portability among OSes (Android and iOS)

Data collection

Have collected data for about 800 km, using 11 handsets, with various mounts

[Mounting positions]

[Driving records]

Data Preparation

Event edit tool: recording, marking, synchronizing, etc

Analytics

Comparing motion-sensor and GPS

○ GPS is slow to detect hard breaking – Delay of 1~3 sec is inevitable

Analytics

Acceleration over threshold is detected

Analytics: SVM

- O When a segment exceeds the thredhold, SVM is used to validate
- Trained using 70% of samples, and validated using 30%

Propagation

Challenge

Latency – should be minimal, compared with ADAS-based approach

Solution

- Customizing MQTT Protocol is developed for the multicasting communication
- MQ Proxy (Broker) is located behind the LTE core network to minimize latency

Preliminary Result

Comparable or better than vision-based ADAS solution

Future Work

- O Lowering the possibility of errors
 - Ex. false positive due to device mounting/unmounting
- SVM model improvement
 - Training-set generation
 - Algorithm visualization for analytics
- Commercialization
 - Crowd sourcing
 - Android: reliability, battery, OS compatibility
 - iOS support