
© 2017 ATS Advanced Telematic Systems GmbH – Confidential –

Getting started with SOTA in AGL
2017-06-01
Phil Wise

Page / 2

Introduction

AGL Automotive Grade Linux supports SOTA today

Overview of OSTree technology

Security

Getting started walk-through

Page / 3

Introduction

I’m a senior software engineer at ATS Advanced
Telematic Systems

Open source and open standard for connected
mobility.

Happy user of AGL and OSTree, but these aren’t
official viewpoints of either project :)

Page

Goals

4

AGL isn’t a single product/platform

Lots of products

Lots of boards

Must meet people where they are

Simple adoptionGOALS

Page

Portability

To get benefits of collaboration

More than just OSS/on github

Needs to be portable to lots of applications

5

Must be
shareable

Page

Update methods

Package-based
(rpm, dpkg etc.)

6

Atomic differential
(OSTree)

+ Simple

— Unsafe for power-off

— Dependency
resolution can get suck

Full file system
update

+ Combines robustness
with minimal bandwidth
consumption

+ Modern approach

+ Easy to make reusable

+ Robust

— Tends to end up
device-specific

— Need rsync or similar

Page

OSTree Background

7

Not developed by me

Colin Walters / Gnome

Originally designed for Gnome CI

“Like git but for a root file system”OSTree

Page 8

OSTree

- Like git for a filesystem

- Commits are a rootfs

- 1 flash partition

- Multiple systems (chroots)

OSTree

“It’s like git for a
filesystem”

Page 9

OSTree

OSTree

“It’s like git for a
filesystem”

- Incremental fetches (like git pull)

- Hardlink identical files

- Not actually git: Extended Attributes for

selinux/smack

Page /10

Update Security

Update security important

More details in Arthur Taylor’s talk

UPTANE framework provides defence in depth

Developed by security researchers and OEMs

Compliance Q2 2017

Page 11

Integration Part 1/2

Yocto / OE
Integration

Added image_types_ostree to bitbake

Modifies rootfs to be updatable

Moves R/W data to var

Usrmove

Commits result to an OSTree repo

Uploads to Software Update Server

Creates initial bootable flash image

...all from ‘bitbake myimage’

Page 12

Integration Part 2/2

Also need some per-board work

Mostly bootloader

Today:

- Renesas R-Car Porter

- Renesas R-Car M3

- Qemu (U-Boot)

- Minnowboard Max (EFI)

- R-Pi (chain load U-Boot)

Other bootloaders straightforward

Yocto / OE
Integration

Page /

Demo Time

13

Demo Time

Page /14

Getting the software

OpenEmbedded

Include meta-updater layer from

github.com/advancedtelematic/m

eta-updater

Create sota_mymachine.bbclass

from examples in

meta-updater/classes

AGL

Include ‘agl-sota’ feature in

aglsetup.sh

=> Done

Raspberry Pi 3 / Poky

Small, fully functioning example

built from Poky at

docs.atsgarage.com

https://github.com/advancedtelematic/meta-updater
https://github.com/advancedtelematic/meta-updater
https://github.com/advancedtelematic/meta-updater

Page /

Questions?

Questions

15

Page

Why software updates are needed

16

?

Page

Why software updates are needed
early in the release cycle

17

You obviously need it eventually

But having it early is great:

- Battle harden the process

- Test fleets

- Sales demos

- If the development team have to use it daily,

it will magically improve

?

Contact Us.

© 2017 ATS Advanced Telematic Systems GmbH

ATS Advanced Telematic Systems GmbH
advancedtelematic.com

Phil Wise

+49 (0)30 95 99 97 54 11

phil@advancedtelematic.com

– Confidential –

Thank you!

Page /

Backup

Backup Slides

19

Page

OSTree basics

20

mmcblk0p1

MLO
u-boot.bin
uEnv.txt

/boot/loader/uEnv.txt

/ostree/repo/objects/…

/ostree/deploy/myos/a3c83…/
 /usr/bin/bash
 /usr/bin/echo

/ostree/deploy/myos/29ff9…/
 /usr/bin/bash
 /usr/bin/echo

mmcblk0p2

1
ph

ys
ic

al
 s

ys
ro

ot Multiple deployment sysroots

Rootfs #1

Rootfs #2

OSTree Hard link trees

Files shared using hard links:

/ostree/repo/4b/cdef…
 /b2/…

/ostree/deploy/osname/v1/etc/…
 /usr/bin/bash
 …

/ostree/deploy/osname/v2/etc/…
 /usr/bin/bash

bash

Page

OSTree basics.

22

● Physical sysroot - just one per device.
Contains OSTree repo, OSTree deployments
and /boot directory with information about
current deployment sysroot. Device never
boots into physical sysroot.

● Deployment sysroots - one device can contain
multiple deployments (two by default). They
are stored in /ostree/deploy under physical
sysroot. Physical sysroot is mounted to
/sysroot mountpoint of deployment sysroot so
that OSTree can access its repository.

mmcblk0p1
MLO
u-boot.bin
uEnv.txt

/boot/loader/uEnv.
txt

/ostree/repo/objec
ts/…

/ostree/deploy/my_
os/a3c386d83…

/ostree/deploy/my_
os/29ff96760…

mmcblk0p2

Page

OSTree basics: sysroot

23

/boot/

 /loader/uEnv.txt

/ostree

 /deploy/os/deploy/da3045…

 /deploy/os/deploy/4eda05…

 /deploy/os/var

/ostree/repo/objects/4eda...4.commit

/ostree/repo/objects/c4b5...5.dirtree

/ostree/repo/objects/805d...a.file

/ostree/repo/objects/7d11…0.file

bootargs=ostree=/ostree/deploy/
os/deploy/4eda...4/

 Deployment sysroot

 /bin -> /usr/bin
 /lib -> /usr/lib
 /var
 /usr
 /lib
 /libostree-1.so.1

Page 24

Boot Process

- Bootloader picks deployment

- Boot kernel

- initrd chroots to correct deployment
U-Boot
Kernel
OSTree initrd
/sbin/init

Page 25

Integration Part 1/2

Yocto / OE
Integration

Added image_types_ostree to bitbake

Modifies rootfs to be updatable

Moves R/W data to var

Usrmove

Commits result to an OSTree repo

Uploads to Software Update Server

Creates initial bootable flash image

...all from ‘bitbake myimage’

Page 26

Integration Part 2/2

Also need some per-board work

Mostly bootloader

Today:

- Renesas R-Car Porter

- Qemu (U-Boot)

- Minnowboard Max (U-Boot!)

- R-Pi (chain load U-Boot)

Other bootloaders straightforward

Yocto / OE
Integration

Page 27

RO / RW Split

OSTree uses hardlinks to share files

Must not modify them mounted RO

Writable files in /var

User data in /var

Page 28

Case of AGL Application Framework (1).

Two update
domains.

1. Full file system updates with OSTree.

2. Application updates with Application Framework.

Application database is located in /var/lib/afm. Some applications
come pre-installed in the file system, while others can be installed
in runtime.

How do we manage /var/lib/afm?

Page

Case of AGL Application Framework (2).

Just ignore initial
database.

29

Populate /var/lib/afm
from /usr/afm just once.

+ Almost zero
integration effort

— No pre-installed apps

Merge initial
database in /usr/afm
with the one
generated runtime.

+ Applications can be
updated both with
OSTree and AppFW

— A lot of integration
effort, merger can fail or
give unexpected results.

+ Moderate integration
effort, very robust.

— Pre-installed apps
are populated just once,
can’t update apps with
OSTree.

Page 30

Getting Started with AGL and SOTA

The ‘Charming Chinook’ release of AGL

comes with SOTA.

Pass ‘agl-sota’ to aglsetup.sh to enable

it

=> Done

Code is in meta-agl-extra/meta-sota

Getting Started
(AGL)

https://wiki.automotivelinux.org/subsystem/agl-sota/ostree

https://wiki.automotivelinux.org/subsystem/agl-sota/ostree
https://wiki.automotivelinux.org/subsystem/agl-sota/ostree

Page

OSTree integration.

31

1. Prepare physical sysroot.

2. Prepare deployment sysroot.

3. Make bootloader and initramfs work together to boot the deployment.

4. Make sure you control mutable state in your system.

Already done in
meta-updater

Page

OSTree basics: boot procedure.

32

● Bootloader reads kernel, initramfs and deployment sysroot location
from /boot/loader/uEnv.txt and boots into initramfs.

● Initramfs prepares deployment sysroot: mounts /var, /home and
/sysroot, remounts /usr as read only.

● After the sysroot is prepared, initramfs boots into it.

Page 33

What if I just commit my rootfs to OSTree?

Deployed files are hardlinks to objects in OSTree repo and are shared between
deployments. Therefore they can’t be modified by running system.

● All files managed by OSTree should reside in /usr that is mounted read-only.

● Writable files should reside in /var, but software should be aware of how to
populate it with initial data.

● OSTree already manages /etc. Not really fit for embedded systems.

Page 34

Meta-updater: Yocto/OE layer for OSTree updates.

Implements

● Seamless integration into Yocto build process.
● Deployment sysroot as an OSTree commit.
● Physical sysroot and bootable images for supported platforms.
● Pushing OSTree commits to a server through a well-documented protocol.

Does not implement

● Population of /var. It is really application-dependent.
● Support for arbitrary board. Currently Raspberry Pi 2/3, Minnowboard Turbot,

Renesas RCar Porter board and qemux86-64 are supported.

Page 35

Open issues.

● /etc merger. The way it is implemented in OSTree doesn’t work well for
embedded systems.

● File system stability. Physically there is only one file system, and if it gets
corrupted due to hardware bugs, driver bugs etc. the system becomes
unbootable.

● OSTree itself is a part of deployment sysroot => system can be bricked.

● Rollback logic is not a part of OSTree. Ideally it should be implemented in
the bootloader.

Page 36

Links.

● OSTree: https://github.com/ostreedev/ostree

● AGL: https://www.automotivelinux.org/

● Meta-updater: https://github.com/advancedtelematic/meta-updater

● Quickstart with meta-updater and Raspberry Pi:
https://github.com/advancedtelematic/garage-quickstart-rpi

Page /37

Lorem Ipsum Dolor.

