

HOW TO CONNECT VEHICLE IN SAFE AND SECURE WAY

MIKKO HURSKAINEN TECHNOLOGIST NOMOVOK

link / motion

17+

YEARS IN EMBEDDED SOFTWARE BUSINESS

200+

AUTOMOTIVE SOFTWARE PROJECTS DELIVERED

70+

TOP NOTCH PROFESSIONALS BUILDING THE PRODUCTS 5

LOCATIONS AROUND THE GLOBE SHANGHAI OFFICE IN 2017 H2 SHENZHEN OFFICE IN 2017 H2

CONTENTS

- Connected vehicles
- What is security?
- Security solutions
- What's next?

CONNECTED VEHICLES

- Connected car market is
 experiencing rapid growth
- There's a need for secure and safe solutions

Vehicle Computer and Platform

SDK

Connected Vehicle

APPSTACLE PLATFORM

- European collaboration project for open connected car architecture
- Link Motion is promoting AGL

APPSTACLE ARCHITECTURE

ASSETS

Assets in connected vehicle

- Data. If data has been compromised, it can lead to hijacking of vehicle, lost property or manipulation of operation. Examples of data include remote control keys, maintenance data, routing information
- Privacy. Lack of privacy can lead to uncomfortable situation or expose user to greater security risks. Examples of privacy assets include location information, route history and consumer habits
- Control. Loss of control can lead to unwanted behaviour of vehicle during driving or even hijacking of passengers inside the vehicle. Loss of control also compromises owner's ability to use car

Tangible and intangible

THREATS

- Ransomware
- Publicized vulnerability
- Leakage of privacy data
- Blocking use of system
- => Remotely attack fleet

SAFETY AND SECURITY

Source: SAE J3061

SECURITY FEATURES

- Modularity and layering
- Hierarchical protection
- Attack surface minimization
 - Least privilege principle
- Predicate permission
- Defense-in-depth

SANDBOXING OF THE SYSTEM

DEFENSE IN DEPTH

- Minimizes impact of successful attacks
- Allows protection according to needs
- Innermost layer (TCB) is compact and most secure

VEHICLE NETWORK DATAFLOWS

link / motion

VEHICLE NETWORK CONTROLLED ACCESS

link / motion

SECURITY MINDED DESIGN PATTERN

- Follows automotive design patterns
- Separation of control, critical control and rich control
- Example: Diagnostics vECU

HARDWARE SECURITY TECHNOLOGIES

ARM TrustZone

MORE SECURITY SOLUTIONS

- Vehicle network protection
- Cryptography
- Intrusion detection system
- Open source development model
- External partners
- Research
- Training

SECURITY FORMALIZATION

- Broader analysis
- NIST SP-800, SAE J3061, ISO 15288
- Privacy standards
- Integration to processes
- Secure System State
- Security Taxonomy
- Mathematical proofs

SECURITY TAXONOMY

SECURITY DESIGN PRINCIPLES

Security Architecture and Design	
Clear Abstraction	Hierarchical Trust
Least Common Mechanism	Inverse Modification Threshold
Modularity and Layering	Hierarchical Protection
Partially Ordered Dependencies	Minimized Security Elements
Efficiently Mediated Access	Least Privilege
Minimized Sharing	Predicate Permission
Reduced Complexity	Self-Reliant Trustworthiness
Secure Evolvability	Secure Distributed Composition
Trusted Components	Trusted Communication Channels
Security Capability and Intrinsic Behaviors	
Continuous Protection	Secure Failure and Recovery
Secure Metadata Management	Economic Security
Self-Analysis	Performance Security
Accountability and Traceability	Human Factored Security
Secure Defaults	Acceptable Security
Life Cycle Security	
Repeatable and Documented Procedures	Secure System Modification
Procedural Rigor	Sufficient Documentation

link / motion

SECURE SYSTEM STATE

- Design with safe state (ISO 26262)
- Example implementation:
 - Reference monitor (IDS)
 - Re-flash from ROM

Source: NIST SP 800-160

INTEGRATION TO PROCESSES

System Life Cycle Processes

Recursive, Iterative, Concurrent, Parallel, Sequenced Execution

- ISO 15288 good framework
- Code first vs specification
- Not just engineering
- Aims to enable 'organizational learning' -> same breach does not happen twice
- Work split between OEM/T1 and AGL ?

MORE SECURITY SOLUTIONS

- More cost-efficient solutions enable better security

 AGL, APPSTACLE, ASSET
- Improve overall level of security
- Implement HW solutions with SW
- Developer training

SOFTWARE DEFINED CAR

SUMMARY

- Connected vehicles are happening
 now
- Need uncompromised solutions
 - Same as safety
- There are plenty of solutions
 - But none solves it alone
- More holistic approach is future

link/ motion NOMOVOK

08

¢

 \mathcal{G}

0

LINK-MOTION.COM

info@link-motion.com

mikko.hurskainen@link-motion.com kanae.kubota@link-motion.com