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Machine learning at scale

● Combining A, M and P in a real application:
● Complex models (car traffic estimation)
● Crowd-sourced data (mobile phones)
● Computations on the cloud

● How we run Spark inside Mobile Millennium
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Plan

● Why car traffic estimation
● Overview of Mobile Millennium
● 2 minutes of applied Machine Learning
● Programming with the Spark framework
● Conclusion: the good, the bad, the not so beautiful
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Need for good traffic estimation

● Traffic congestion affects everyone
● Up-to-date estimation is critical
● Complex for urban streets (arterial roads)
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Real-time processing of fleet data

● Input: sampled position of 
taxicabs

● Observed every minute
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Estimating the travel times

● Input: sampled position of 
taxicabs

● Observed every minute

● Covers the whole SF Bay

● 0.5 Million points / day
(60M / day total)

● 0.1 Million road links



August 22, 2012 MM on BDAS - AMP Camp 2012 7/34

Filtering of fleet data

Preprocessing:

● Recovering trajectories from 
GPS points
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Mobile Millennium

● A cyberphysical system for participatory sensing



August 22, 2012 MM on BDAS - AMP Camp 2012 9/34

Mobile Millennium

● A cyberphysical system for participatory sensing

Today:
Batch jobs outsourced
to the cloud

Today:
Batch jobs outsourced
to the cloud
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Estimation of arterial traffic

● Input:
● Pieces of trajectories between GPS points

● Output: probability distributions of travel time
● For each link
● Parametrized by vector θ (mean and variance of link 

travel time)
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The way things work

● Example road network

● Associated link travel times:
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The way things work
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The way things work

Measurement sent
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The way things work

Measurement sent
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The way things work

...
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The way things work

...
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Life is not so simple

Measurement sent



August 22, 2012 MM on BDAS - AMP Camp 2012 18/34

Life is not so simple

● Long time between observations Measurement sent
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Life is not so simple

● Long time between observations Measurement sent

● Solution: sample!
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Life is not so simple

● Long time between observations Measurement sent



August 22, 2012 MM on BDAS - AMP Camp 2012 23/34

Machine learning without saying it

● Procedure called Expectation Maximization
● Iterative in nature:

● Alternates between sampling (E step) and learning (M step)

● Some figures:
● 50k road links ( parameters)
● 50M observations (15GB, avg. 4 links / observation)
● 200M partial travel times
● x1000 samples per partial travel times
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System workflow

Start link parameters
(on master node)

Observations
(distributed, persisted
 across nodes)
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System workflow

Network parameters
(distributed over the nodes)



August 22, 2012 MM on BDAS - AMP Camp 2012 26/34

System workflow

Travel time samples
For each observation link
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System workflow

Travel time samples aggregated
on a link basis
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System workflow

New parameters are generated
The maximize sampled travel times
for each link.

The master collects the vector of
new parameters.
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Using the Spark programming model

Main loop of the program
val observations = spark.textFile(“hdfs:...”)
  .map(parseObservation _)
  .cache()
var params = // Initialize models parameters
while (!converged) {

  val samples = observations.flatMap( obs =>
    generateSamples(obs, params))

  params = samples.groupByKey(false).map(
    case (linkId, vals) => 
        mostLikelyParam(linkId, vals)
  ).collect()
}

Step 1 (E step)

Step 2 (M step)
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The good

● Before using Spark:
● 3.5x slower than real-time
● Could not even handle all the data

● With Spark:
● Similar programming interface (methods on scala 

collections)
● Very good scalability (near linear)
● Each iteration 3x faster than reloading from disk

cores

runtime

NERSC cluster:
quad-core Xeon
4X QDR InfiniBand interconnect
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Efficient utilization of memory

● The observation data is stored in memory:
● Be careful with the memory footprint
● Look at logs to monitor GC status

● We cache pointer-based structures 
● Significant overhead in the JVM

● Workaround: use compact collection structures (arrays) 
and make liberal use of .toArray()

● Workaround: RDDs of serialized data
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Broadcast of large parameters

● Need to share data between all workers:
● At the start of the job (network description, > 40MB)
● Between iterations (updated parameters θ)

● Using Spark's broadcast
● Data loading time reduced by 79%

val network = // load network
val bc_net = spark.broadcast(network)
val observations = spark.textFile(“...”)
  .map(parseObservation(_, bc_net.get()))

val network = // load network
val observations = spark.textFile(“...”)
  .map(parseObservation(_, network))
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Conclusion

● An application of Spark:
● Real-world ML problem
● Crowd-sourced data

● Implementation now (much) faster than real time
● Not limited by computations:

● We can use more complex ML tools than before
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Thank you


