Strata
sel 3l e B Shark: SQL and Rich

Analytics at Scale

() Feb. 26 - 28, 2013

SANTA CLARA, CA Reynold Xin
UC Berkeley

lab

Challenges in Modern Data Analysis

= Data volumes expanding.
= Faults and stragglers complicate parallel database design.
= Complexity of analysis: machine learning, graph algorithms, etc.

= | ow-latency, interactivity.

MapReduce

= Apache Hive, Google Tenzing, Turn Cheetah...

= Enables fine-grained fault-tolerance, resource sharing, scalability.
= Expressive Machine Learning algorithms.

= High-latency, dismissed for interactive workloads.

MPP Databases

= Vertica, SAP HANA, Teradata, Google Dremel, Google PowerDirill, Cloudera Impala...
= Fast!

= Generally not fault-tolerant; challenging for long running queries as clusters scale up.
= |_ack rich analytics such as machine learning and graph algorithms.

Apache Hive

= A data warehouse
- Initially developed by Facebook
- puts structure/schema onto HDFS data (schema-on-read)
- compiles HiveQL queries into MapReduce jobs
- flexible and extensible: support UDFs, scripts, custom serializers, storage formats.

= Popular: 90+% of Facebook Hadoop jobs generated by Hive

= But slow: 30+ seconds even for simple queries

What is Shark?

= A data analysis (warehouse) system that

- builds on Spark (MapReduce deterministic, idempotent tasks),

- scales out and is fault-tolerant,

- supports low-latency, interactive queries through in-memory computation,
- supports both SQL and complex analytics such as machine learning,

- Is compatible with Apache Hive (storage, serdes, UDFs, types, metadata).

What is Shark?

= A data analysis (warehouse) system that
HOW DO | FIT PB OF DATA IN MEMORY???

- builds on Spark (MapReduce deterministic, idempotent tasks),

- scales out and is fault-tolerant,

- supports low-latency, interactive queries througf in-memory omputation,
- supports both SQL and complex analytics such as machine learning,

- Is compatible with Apache Hive (storage, serdes, UDFs, types, metadata).

Jure Leskovec b 8
: @jure

Median Hadoop job input data size at
Microsoft, Yahoo and Facebook is only about

15gb!
research.microsoft.com/pubs/163083/ho...

& Reply 13 Retweeted W Favorite Pocket

B -8a02e4

from SoMa
San Francisco, CA

36 23
RETWEETS = FAVORITES

i@ nia TA- L Fad

Lombard St Russian Hill

A-
e

%
gl

4:33 PM - 9 Jul 12 via Twitter for iPhone - Embed this Tweet

lllll | 'I'?nl - ll- . ‘/\/ \l‘/" - \

_,f”l" -v./\/l e
N R R NN N N
R EER] ERRER

',.9h¥i .
I R RE
1_--I!!-ul= R R T T

Driver

Physical Plan

Query
Optimizer

SQL Parser SerDes, UDFs

Execution

Hive Architecture

Driver

D _SerDeS, UDFs

Shark Architecture

Analyzing Data

= CREATE EXTERNAL TABLE wik1

(1d BIGINT, title STRING, last_modified STRING, xml STRING, text STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'

LOCATION 's3n://spark-data/wikipedia-sample/"';

= SELECT COUNT(C*) FROM wiki_small WHERE TEXT LIKE '%Berkeley%';

Caching Data in Shark

- CREATE TABLE wiki_small_in_mem TBLPROPERTIES ("shark.cache" = "true") AS
SELECT * FROM wiki:

= CREATE TABLE wiki_cached AS SELECT * FROM wik1;

= Creates a table that is stored in a cluster's memory using RDD.cache().

Tuning the Degree of Parallelism

= Relies on Spark to infer the number of map tasks (automatically based on input size).

= Number of reduce tasks needs to be specified by the user.
- SET mapred.reduce.tasks=499;

= Out of memory error on slaves if the number is too small.

= |t is usually OK to set a higher value since the overhead of task launching is low in Spark.

Demo

18 months of Wikipedia traffic statistics

Engine Extensions and Features

= Partial DAG Execution (coming soon)

= Columnar Memory Store

= Machine Learning Integration

= Hash-based Shuffle vs Sort-based Shuffle

= Data Co-partitioning (coming soon)

= Partition Pruning based on Range Statistics
= Distributed Data Loading

= Distributed sorting

= Better push-down of limits

Partial DAG Execution (PDE)

= How to optimize the following query?

= SELECT * FROM tablel a JOIN tableZ2 b ON a.key=b.key
WHERE my_crazy_udf(b.fieldl, b.field2) = true;

Partial DAG Execution (PDE)

= How to optimize the following query?

= SELECT * FROM tablel a JOIN tableZ2 b ON a.key=b.key
WHERE my_crazy_udf(b.fieldl, b.field2) = true;

= Hard to estimate cardinality!
= Without cardinality estimation, cost-based optimizer breaks down.

Partial DAG Execution (PDE)

= PDE allows dynamic alternation of query plans based on statistics collected at run-time.

= Can gather customizable statistics at global and per-partition granularities while
materializing map output.

- partition sizes, record counts (skew detection)
- “heavy hitters”
- approximate histograms

Partial DAG Execution (PDE)

= PDE allows dynamic alternation of query plans based on statistics collected at run-time.

= Can gather customizable statistics at global and per-partition granularities while
materializing map output.

Table 2

0]
et
Q
Q
®
N

- partition sizes, record counts (skew detection) ® @+
N\
- “heavy hitters” QN O
S NS
- approximate histograms @ \\\\‘ @+
o
e 0o @
= Alter query plan based on such statistics. O O O _

- map join vs shuffle join T\% Rosul @; Resul

- symmetric vs non-symmetric hash join Map joir Shuffle join

Columnar Memory Store

= Simply caching Hive records as JVM objects is inefficient.
= Shark employs column-oriented storage using arrays of primitive objects.

Row Storage Column Storage

1 john

1 2 3
2 mike john mike sally

3 sally

= Compact storage (as much as 5X less space footprint).
= JVM garbage collection friendly.
= CPU-efficient compression (e.g. dictionary encoding, run-length encoding, bit packing).

Machine Learning Integration

= Unified system for query
processing and machine learning

= Write machine learning algorithms
in Spark, optimized for iterative

computations

= Query processing and ML share
the same set of workers and
caches

def logRegress(points: RDD[Point]): Vector {
var w = Vector(D, @ => 2 * rand.nextDouble - 1)

for (1 <- 1 to ITERATIONS) {
val gradient = points.map { p =>
val denom = 1 + exp(-p.y * (w dot p.X))
(1 / denom - 1) * p.y * p.X
}.reduce(_ +)
w —-= gradient

}

W

}

val users = sql2rdd("SELECT * FROM user u
JOIN comment ¢ ON c.uid=u.uid")

val features = users.mapRows { row =>
new Vector (extractFeaturel(row.getInt("age")),
extractFeature2 (row.getStr (' "country")),
ce.)}

val trainedVector = logRegress(features.cache())

Conviva Warehouse Queries (1.7 TB)

Shark Shark (disk) ive

100

< 75
-
O
O
.
L

o 2°
S
)
-

g 25

1.1 0.8 0.7 1.0
O
Q1 Q2 Q3 Qs

Machine Learning (1B records, 10 features/record)

Shark/Spark | 4.1
Hadoop

0 30 60 90 120 150
k-means
Shark/Spark | 0.96
Hadoop

0 20 4O 60 80 100 120

logistic regression

Getting Started

= ~ 5 mins to install Shark locally
- https://github.com/amplab/shark/wiki

= The Spark EC2 AMI comes with Shark installed (in /root)

- spark-ec2 -k <keypair> -1 <key-file> -s <num-slaves> launch <cluster-name>

= Also supports Amazon Elastic MapReduce (EMR)
- http://tinyurl.com/spark-emr

= Use Apache Mesos or Spark standalone cluster mode for private cloud,

https://github.com/amplab/shark/wiki
https://github.com/amplab/shark/wiki
http://aws.amazon.com/articles/4926593393724923
http://aws.amazon.com/articles/4926593393724923

Open Source Development

= Spark/Shark is a very small code base.
- Spark: 20K LOC
- Shark: 7K LOC
= Easy to adapt and tailor to specific use cases.

= Already accepted major contributions from Yahoo!, ClearStory Data, Intel.

= Mailing list: shark-users @ googlegroups

Summary

= By using Spark as the execution engine and employing novel and traditional database
techniques, Shark bridges the gap between MapReduce and MPP databases.

= |t can answer queries up to 100X faster than Hive and machine learning 100X faster than
Hadoop MapReduce.

= Try it out on EC2 (takes 10 mins to spin up a cluster): http://shark.cs.berkeley.edu

http://shark.cs.berkeley.edu
http://shark.cs.berkeley.edu

Strata

CONFERENCE

backup slides

E) Feb. 26 - 28, 2013
SANTA CLARA, CA

strataconf.com
#strataconf

Shark Impala
Focus ig(’:c)?rg]gglaet)e(Sr%lfy\’:\llgg data warehouse / OLAP
Execution Spark (MapReduce like) Parallel Databases
In-memory iIn-memory tables no (buffer cache)

Fault-tolerance tolerate slave failures no
Large (out-of-core) joins yes no
UDF yes no

Why are previous MR-based systems slow?

= Disk-based intermediate outputs.
= |nferior data format and layout (no control of data co-partitioning).
= Execution strategies (lack of optimization based on data statistics).

= Task scheduling and launch overhead!

Task Scheduling and Launch Overhead

= Hadoop uses heartbeat to communicate scheduling decisions.

= Hadoop task launch delay 5 - 10 seconds.

= Spark uses an event-driven architecture and can launch tasks in dms.
- better parallelism
- easiler straggler mitigation
- elasticity
- multi-tenancy resource sharing

Task Scheduling and Launch Overhead

o
O S
o N
o
= g B~
L < L o
QO D O
E o IS
- o _ —
S
N
o |
L0 _/
O S
| | | | | | | | | | | |
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Number of Hadoop Tasks Number of Spark Tasks

