
Shark: SQL and Rich
Analytics at Scale

Reynold Xin
UC Berkeley

Challenges in Modern Data Analysis

§ Data volumes expanding.

§ Faults and stragglers complicate parallel database design.

§ Complexity of analysis: machine learning, graph algorithms, etc.

§ Low-latency, interactivity.

MapReduce
§ Apache Hive, Google Tenzing, Turn Cheetah...
§ Enables fine-grained fault-tolerance, resource sharing, scalability.
§ Expressive Machine Learning algorithms.
§ High-latency, dismissed for interactive workloads.

MPP Databases
§ Vertica, SAP HANA, Teradata, Google Dremel, Google PowerDrill, Cloudera Impala...
§ Fast!
§ Generally not fault-tolerant; challenging for long running queries as clusters scale up.
§ Lack rich analytics such as machine learning and graph algorithms.

Apache Hive

§ A data warehouse
- initially developed by Facebook
- puts structure/schema onto HDFS data (schema-on-read)
- compiles HiveQL queries into MapReduce jobs
- flexible and extensible: support UDFs, scripts, custom serializers, storage formats.

§ Popular: 90+% of Facebook Hadoop jobs generated by Hive

§ But slow: 30+ seconds even for simple queries

What is Shark?

§ A data analysis (warehouse) system that

- builds on Spark (MapReduce deterministic, idempotent tasks),
- scales out and is fault-tolerant,
- supports low-latency, interactive queries through in-memory computation,
- supports both SQL and complex analytics such as machine learning,
- is compatible with Apache Hive (storage, serdes, UDFs, types, metadata).

What is Shark?

§ A data analysis (warehouse) system that

- builds on Spark (MapReduce deterministic, idempotent tasks),
- scales out and is fault-tolerant,
- supports low-latency, interactive queries through in-memory computation,
- supports both SQL and complex analytics such as machine learning,
- is compatible with Apache Hive (storage, serdes, UDFs, types, metadata).

HOW DO I FIT PB OF DATA IN MEMORY???

Hadoop&Storage&(e.g.&HDFS,&HBase)

Meta

store

MapReduce

Execution

Physical&Plan

Query&

Optimizer
SQL&Parser SerDes,&UDFs

Driver

CommandHline&shell Thrift&/&JDBC

BI&software

(e.g.&Tableau)

Hive Architecture

Shark Architecture

Hadoop&Storage&(e.g.&HDFS,&HBase)

Meta

store

Spark

Execution

Physical&Plan

Query&

Optimizer
SQL&Parser SerDes,&UDFs

Driver

CommandHline&shell Thrift&/&JDBC

BI&software

(e.g.&Tableau)

Analyzing Data

§ CREATE EXTERNAL TABLE wiki
(id BIGINT, title STRING, last_modified STRING, xml STRING, text STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION 's3n://spark-data/wikipedia-sample/';

§ SELECT COUNT(*) FROM wiki_small WHERE TEXT LIKE '%Berkeley%';

Caching Data in Shark

§ CREATE TABLE wiki_small_in_mem TBLPROPERTIES ("shark.cache" = "true") AS
SELECT * FROM wiki;

§ CREATE TABLE wiki_cached AS SELECT * FROM wiki;

§ Creates a table that is stored in a cluster’s memory using RDD.cache().

Tuning the Degree of Parallelism

§ Relies on Spark to infer the number of map tasks (automatically based on input size).

§ Number of reduce tasks needs to be specified by the user.
- SET mapred.reduce.tasks=499;

§ Out of memory error on slaves if the number is too small.

§ It is usually OK to set a higher value since the overhead of task launching is low in Spark.

Demo

18 months of Wikipedia traffic statistics

Engine Extensions and Features

§ Partial DAG Execution (coming soon)
§ Columnar Memory Store
§ Machine Learning Integration
§ Hash-based Shuffle vs Sort-based Shuffle
§ Data Co-partitioning (coming soon)
§ Partition Pruning based on Range Statistics
§ Distributed Data Loading
§ Distributed sorting
§ Better push-down of limits
§ ...

Partial DAG Execution (PDE)

§ How to optimize the following query?

§ SELECT * FROM table1 a JOIN table2 b ON a.key=b.key
WHERE my_crazy_udf(b.field1, b.field2) = true;

Partial DAG Execution (PDE)

§ How to optimize the following query?

§ SELECT * FROM table1 a JOIN table2 b ON a.key=b.key
WHERE my_crazy_udf(b.field1, b.field2) = true;

§ Hard to estimate cardinality!
§ Without cardinality estimation, cost-based optimizer breaks down.

Partial DAG Execution (PDE)

§ PDE allows dynamic alternation of query plans based on statistics collected at run-time.

§ Can gather customizable statistics at global and per-partition granularities while
materializing map output.
- partition sizes, record counts (skew detection)
- “heavy hitters”
- approximate histograms

Partial DAG Execution (PDE)

§ PDE allows dynamic alternation of query plans based on statistics collected at run-time.

§ Can gather customizable statistics at global and per-partition granularities while
materializing map output.
- partition sizes, record counts (skew detection)
- “heavy hitters”
- approximate histograms

§ Alter query plan based on such statistics.
- map join vs shuffle join
- symmetric vs non-symmetric hash join Shuffle join

Stage 1

Stage 2

Join
Result

Map join

Table 2

Table 1

Join
Result

Columnar Memory Store

§ Simply caching Hive records as JVM objects is inefficient.
§ Shark employs column-oriented storage using arrays of primitive objects.

§ Compact storage (as much as 5X less space footprint).
§ JVM garbage collection friendly.
§ CPU-efficient compression (e.g. dictionary encoding, run-length encoding, bit packing).

1"

Column'Storage'

2" 3"

john" mike" sally"

4.1" 3.5" 6.4"

Row'Storage'

1" john" 4.1"

2" mike" 3.5"

3" sally" 6.4"

Machine Learning Integration

§ Unified system for query
processing and machine learning

§ Write machine learning algorithms
in Spark, optimized for iterative
computations

§ Query processing and ML share
the same set of workers and
caches

def logRegress(points: RDD[Point]): Vector {
 var w = Vector(D, _ => 2 * rand.nextDouble - 1)
 for (i <- 1 to ITERATIONS) {
 val gradient = points.map { p =>
 val denom = 1 + exp(-p.y * (w dot p.x))
 (1 / denom - 1) * p.y * p.x
 }.reduce(_ + _)
 w -= gradient
 }
 w
}

val users = sql2rdd("SELECT * FROM user u
 JOIN comment c ON c.uid=u.uid")

val features = users.mapRows { row =>
 new Vector(extractFeature1(row.getInt("age")),
 extractFeature2(row.getStr("country")),
 ...)}
val trainedVector = logRegress(features.cache())

Conviva Warehouse Queries (1.7 TB)

0

25

50

75

100

Q1 Q2 Q3 Q4

Ru
nt
im

e	

(s
ec

on
ds

)

Shark Shark	
 (disk) Hive

1.1 0.8 0.7 1.0

Machine Learning (1B records, 10 features/record)

Shark/Spark
Hadoop

0 30 60 90 120 150

4.1

Shark/Spark
Hadoop

0 20 40 60 80 100 120

0.96

logistic	
 regression

k-­‐means

Getting Started

§ ~ 5 mins to install Shark locally
- https://github.com/amplab/shark/wiki

§ The Spark EC2 AMI comes with Shark installed (in /root)
- spark-ec2 -k <keypair> -i <key-file> -s <num-slaves> launch <cluster-name>

§ Also supports Amazon Elastic MapReduce (EMR)
- http://tinyurl.com/spark-emr

§ Use Apache Mesos or Spark standalone cluster mode for private cloud,

https://github.com/amplab/shark/wiki
https://github.com/amplab/shark/wiki
http://aws.amazon.com/articles/4926593393724923
http://aws.amazon.com/articles/4926593393724923

Open Source Development

§ Spark/Shark is a very small code base.
- Spark: 20K LOC
- Shark: 7K LOC

§ Easy to adapt and tailor to specific use cases.

§ Already accepted major contributions from Yahoo!, ClearStory Data, Intel.

§ Mailing list: shark-users @ googlegroups

Summary

§ By using Spark as the execution engine and employing novel and traditional database
techniques, Shark bridges the gap between MapReduce and MPP databases.

§ It can answer queries up to 100X faster than Hive and machine learning 100X faster than
Hadoop MapReduce.

§ Try it out on EC2 (takes 10 mins to spin up a cluster): http://shark.cs.berkeley.edu

http://shark.cs.berkeley.edu
http://shark.cs.berkeley.edu

backup slides

Shark Impala

Focus integrate SQL with
complex analytics data warehouse / OLAP

Execution Spark (MapReduce like) Parallel Databases

In-memory in-memory tables no (buffer cache)

Fault-tolerance tolerate slave failures no

Large (out-of-core) joins yes no

UDF yes no

Why are previous MR-based systems slow?

§ Disk-based intermediate outputs.

§ Inferior data format and layout (no control of data co-partitioning).

§ Execution strategies (lack of optimization based on data statistics).

§ Task scheduling and launch overhead!

Task Scheduling and Launch Overhead

§ Hadoop uses heartbeat to communicate scheduling decisions.

§ Hadoop task launch delay 5 - 10 seconds.

§ Spark uses an event-driven architecture and can launch tasks in 5ms.
- better parallelism
- easier straggler mitigation
- elasticity
- multi-tenancy resource sharing

Task Scheduling and Launch Overhead

0 1000 2000 3000 4000 5000

0
20

00
40

00
60

00

Number of Hadoop Tasks

Ti
m

e
(s

ec
on

ds
)

0 1000 2000 3000 4000 5000

50
10

0
15

0
20

0

Number of Spark Tasks

Ti
m

e
(s

ec
on

ds
)

