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Systems Experts

1. Easy scalable ML development (ML Developers)
2. User-friendly ML at scale (End Users)

Along the way, we gain insight into data intensive
computing
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Matlab Stack

Single Machine

+ Lapack: low-level Fortran linear algebra library

+ Matlab Interface
+ Higher-level abstractions for data access / processing
+ More extensive functionality than Lapack
+ Leverages Lapack whenever possible

+ Similar stories for R and Python
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MLbase Stack

ML Optimizer
Matlab Interface MLI

Single Machine Spark

Spark: cluster computing system designed for iterative computation

MLlib: low-level ML library in Spark

MLI: APl / platform for feature extraction and algorithm development
+ Platform independent

ML Optimizer: automates model selection
+ Solves a search problem over feature extractors and algorithms in MLI
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Example: MLIib

def main(args: Array[String]) {
val sc = new SparkContext ("local", "SparkLR")

//Load data from HDFS
val data = sc.textFile(args(0)) //RDD[String]

//User is responsible for formatting/featurizing/normalizing their RDD!
val featurizedData: RDD[ (Double,Array[Double])] = processData (data)
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+ Featurize data manually




Example: MLIib

def main(args: Array[String]) {
val sc = new SparkContext ("local", "SparkLR")

//Load data from HDFS
val data = sc.textFile(args(0)) //RDD[String]

//User 1s responsible for formatting/featurizing/normalizing their RDD!
val featurizedData: RDD[ (Double,Array[Double])] = processData (data)

O oo ~ (@)} )} BN W N} —_

//Train the model using MLlib.

val model = new LogisticRegressionlLocalRandomSGD ()
.setStepSi1ize (0.1)
.setNumIterations (50)
.train (featurizedData)

e e e e T e
N A W N = O

4+ Goal: Classification of text file
+ Featurize data manually
4+ Calls MLIlib’s LR function
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def main(args: Array[String]) {
val mc = new MLContext ("local", "MLILR")

//Read in file from HDFS
val rawTextTable = mc.csvFile(args(0), Seqg("class","text"))

//Run feature extraction

val classes = rawTextTable(??, "class")

val ngrams = tfIdf (nGrams (rawTextTable (?7?, "text"), n=2, top=30000))
val featureiZEE?EETE-;-ETEsseS.zip(ngrams)

+ Use built-in feature extraction functionality
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def main(args: Array[String]) {
val mc = new MLContext ("local", "MLILR")

//Read in file from HDFS
val rawTextTable = mc.csvFile(args(0), Seqg("class","text"))

//Run feature extraction
val classes = rawTextTable(??, "class")
val ngrams = tfIdf (nGrams (rawTextTable (?7?, "text"), n=2, top=30000))

val featureizedTable = classes.zip (ngrams)

//Classify the data using Logistic Regression.
val 1rModel = LogisticRegression (featurizedTable, stepSize=0.1, numlter=12

+ Use built-in feature extraction functionality
+ MLI Logistic Regression leverages MLIib




Example: MLI

def main(args: Array[String]) {
val mc = new MLContext ("local", "MLILR")

//Read in file from HDFS
val rawTextTable = mc.csvFile(args(0), Seqg("class","text"))

//Run feature extraction

val classes = rawTextTable(??, "class")

val ngrams = tflIdf (nGrams (rawTextTable (??, "text"), n=2, top=30000))
val featureiZEE?EBTE-;-ETEsseS.zip(ngrams)
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//Classify the data using Logistic Regression.
val 1rModel = LogisticRegression (featurizedTable, stepSize=0.1, numlter=12

}
+ Use built-in feature extraction functionality

+ MLI Logistic Regression leverages MLIib

+ Extensions:
+ Embed in cross-validation routine
4+ Use different feature extractors / algorithms
+ Write new ones




Example: ML Optimizer

var X = load(”text_file”, 2 to 10)
var y = load(”text file”, 1)
var (fn-model, summary) = doClassify(X, y)

+ User declaratively specifies task
+ ML Optimizer searches through MLI
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+ User declaratively specifies task
+ ML Optimizer searches through MLI
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Matlab, R MATLAB ‘\ @

X + Easy (Resembles math, limited set up)

+ Sufficient for prototyping / writing papers
— Ad-hoc, non-scalable scripts
— Loss of translation upon re-implementation

+ Scalable and (sometimes) fast

Mahout  GraphlLab, VW + Existing open-source libraries
X X — Difficult to set up, extend

Performance, %

Scalability

Ease of use
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Examples

‘Distributed’ Divide-Factor-Combine (DFC)
4+ Initial studies in MATLAB (Not distributed)
+ Distributed prototype involving compiled MATLAB

Mahout ALS with Early Stopping
+ Theory: simple if-statement (3 lines of code)
4+ Practice: sift through 7 files, nearly 1K lines of code
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OLD
Array[Double]]
spark.util.Vector]

breeze.linalg.Vector]
BIDMat.SMat]
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ML Developer APl (MLI)

OLD NEW
D[Array[Dou val x: MLTable
Vector]

lg.Vector]

+ Abstract interface for arbitrary backend
+ Common interface to support an optimizer
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Shield ML Developers from low-details
+ provide familiar mathematical operators in distributed setting

Table Computation (MLTable)

+ Flexibility when loading data (heterogenous, missing)
+ Common interface for feature extraction / algorithms
+ Supports MapReduce and relational operators

Linear Algebra (MLSubMatrix)

+ Linear algebra on *local* partitions
+ Sparse and Dense matrix support

Optimization Primitives (MLSolve)

+ Distributed implementations of common patterns

DFC: ~50 lines of code
ALS: early stopping in 3 lines; < 40 lines total
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MLI Ease of Use

Logistic Regression

Matlab 11
Vowpal Wabbit

MLI

Alternating Least Squares

Matlab 20

Mahout
Graphlab

MLI
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MLI/Spark Performance

+ Walltime: elapsed time to execute task

+ Weak scaling
+ fix problem size per processor
+ ideally: constant walltime as we grow cluster

+ Strong scaling
+ fix total problem size
+ ideally: linear speed up as we grow cluster

+ EC2 Experiments
+ m2.4xlarge instances, up to 32 machine clusters
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4+ Full dataset: 200K images, 160K dense features




Logistic Regression - Weak Scaling

10

(o)

(*2]

)
£
=
'©

=

)
=
h—
©

)

S

S

15 20
# machines

4+ Full dataset: 200K images, 160K dense features
4+ Similar weak scaling
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4+ Full dataset: 200K images, 160K dense features

4+ Similar weak scaling
+ MLI/Spark within a factor of 2 of VW’s walltime
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4+ Fixed Dataset: 50K images, 160K dense features
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4+ Fixed Dataset: 50K images, 160K dense features

+ MLI/Spark exhibits better scaling properties
4+ MLI/Spark faster than VW with 16 and 32 machines
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ALS - Walltime

Matlab 15443
Mahout 4206
Graphlab 291

MLI/Spark 481

4+ Dataset: Scaled version of Netflix data (9X in size)

4+ Cluster: 9 machines

+ MLI/Spark an order of magnitude faster than Mahout
+ MLI/Spark within factor of 2 of GraphLab
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Regression: Linear Regression (+Lasso, Ridge)

Collaborative Filtering: Alternating Least Squares

Clustering: K-Means

Classification: Logistic Regression, Linear SVM (+L1, L2)

Optimization Primitives: Parallel Gradient




MLI Functionality

Regression: Linear Regression (+Lasso, Ridge)
Collaborative Filtering: Alternating Least Squares, DFC
Clustering: K-Means, DP-Means

Classification: Logistic Regression, Linear SVM (+L1, L2), Multinomial
Regression, Naive Bayes, Decision Trees

Optimization Primitives: Parallel Gradient, Local SGD, L-BFGS, ADMM, Adagrad

Feature Extraction: Principal Component Analysis (PCA), N-grams, feature
normalization

ML Tools: Cross Validation, Evaluation Metrics
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Goal I:
Summer Release

@

ML Developer

ML Optimizer

Goal 2:
Winter Release




Future Directions

Identify minimal set of ML operators
+ Expose internals of ML algorithms to optimizer

Plug-ins to Python, R
Visualization for unsupervised learning and exploration

Advanced ML capabilities

Time-series algorithms

Graphical models

Advanced Optimization (e.g., asynchronous computation)
Online updates

Sampling for efficiency
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Spark, MLI [ Obtain / Load Raw Data

<

Spark, [MLI] [ Data Exploration

)

)
<
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)

MLI [ Feature Extraction

<

MLI, MLIib [ Learning

Adapted from slides by Ariel Kleiner
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Binary Classification

Goal: Learn a mapping from entities to discrete labels

Example: Spam Classification
+ Entities are emails
+ Labels are {spam, not-spam}

+ Given past labeled emails, we want to predict whether
a new email is spam or not-spam

Adapted from slides by Ariel Kleiner



Binary Classification

Goal: Learn a mapping from entities to discrete labels

Other Examples:

+ Click (and clickthrough rate) prediction
Fraud detection

+

+ Face detection

+ Exercise: “ARTS” vs “LIFE” on Wikipedia
+ Real data

Adapted from slides by Ariel Kleiner
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training .
classifier
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dataset

test set

1. Randomly split full data into disjoint subsets

2. Featurize the data
3. Use training set to learn a classifier
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Classification Pipeline

training .
classifier
full set

dataset

test set

accuracy

. Randomly split full data into disjoint subsets

. Featurize the data

. Use training set to learn a classifier

. Evaluate classifier on test set (avoid overfitting)
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Classification Pipeline

training .
classifier
full set

dataset

test set new entity

L/

accuracy prediction

. Randomly split full data into disjoint subsets

. Featurize the data

. Use training set to learn a classifier

. Evaluate classifier on test set (avoid overfitting)
. Use classifier to predict in the wild

Adapted from slides by Ariel Kleiner



E.g., Spam Classification

full
dataset

From: illegitimate@bad.com

"Eliminate your debt by
giving us your money..."

From: boblgood.com

"Hi, 1t's been a while!
How are you? ..."

training
set

— classifier

new entity

/

accuracy prediction

test set

0000 0000000000

g

not-spam
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Featurization

full
dataset

training
set

—- classifier

new entity

000 0000000000

g

test set

Ny

accuracy prediction

Adapted from slides by Ariel Kleiner
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Featurization

+ Most classifiers require numeric descriptions of
entities

+ Featurization: Transform each entity into a vector

of real numbers
4+ Opportunity to incorporate domain knowledge
+ Useful even when original data is already numeric

Adapted from slides by Ariel Kleiner



E.g., “Bag of Words”

full
dataset

From: illegitimate@bad.com

"Eliminate your debt by
giving us your money..."

From: boblgood.com

"Hi, it's been a while!
How are you? ..."

training
set

—- classifier

new entity
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accuracy prediction

test set

000 0000000000
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E.g., “Bag of Words”

training

4+ Entities are documents [

test set

—- classifier

new entity

A% /

accuracy prediction

000 0000000000

g

From: illegitimate@bad.com

"Eliminate your debt by
giving us your money..."

From: boblgood.com

"Hi, it's been a while!
How are you? ..."
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E.g., “Bag of Words”

training

4+ Entities are documents [

—- classifier

000 0000000000

test set

+ Build Vocabulary A4 /

new entity

g

From: illegitimate@bad.com
Vocabular
"Eliminate your debt by OCa a y

iving us vyour money..."
g g Y Y been

debt
eliminate
giving
how

From: boblgood.com it's
money

"Hi, it's been a while! while
How are you? ..."

Adapted from slides by Ariel Kleiner



E.g., “Bag of Words”

+ Entities are documents | *

test set

+ Build Vocabulary

+ Derive feature vectors from Vocabulary
+ Exercise: we'll use bigrams

been

debt

eliminate

From: illegitimate@bad.com .
giving
"Eliminate your debt by

L how
glving us your money..."

it's

money

while

Adapted from slides by Ariel Kleiner
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Support Vector Machines (SVMs)

classifier

/|

training
full set
dataset

0000000000

[EEEEEEEEEEEEE]
test set | ==pp D

ooo

new entity

N7

accuracy prediction

Credit: Foundations of Machine Learning
Mohri, Rostamizadeh, Talwalkar




Support Vector Machines (SVMs)

+ “Max-Margin”: find linear separator | w /"'~
with the largest separation between

the two classes
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Support Vector Machines (SVMs)

+ “Max-Margin”: find linear separator | w /"'~
with the largest separation between
the two classes

+ Extensions:
+ non-separable setting
+ non-linear classifiers (kernels)

Credit: Foundations of Machine Learning
Mohri, Rostamizadeh, Talwalkar
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Model Evaluation

+ Test set simulates performance on new entity
4+ Performance on training data overly optimistic!
+ “Overfitting”; “Generalization”
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+ Test set simulates performance on new entity

4+ Performance on training data overly optimistic!
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test set

+ Test set simulates performance on new entity

4+ Performance on training data overly optimistic!
+ “Overfitting”; “Generalization”

+ Various metrics for quality; accuracy is most common

+ Evaluation process

4+ Train on training set (don’t expose test set to classifier)
+ Make predictions using test set (ignoring test labels)
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Model Evaluation

+ Test set simulates performance on new entity
4+ Performance on training data overly optimistic!
+ “Overfitting”; “Generalization”

+ Various metrics for quality; accuracy is most common

+ Evaluation process
4+ Train on training set (don’t expose test set to classifier)
+ Make predictions using test set (ignoring test labels)
+ Compute fraction of correct predictions on test set

Adapted from slides by Ariel Kleiner



Model Evaluation

Test set simulates performance on new entity
4+ Performance on training data overly optimistic!
+ “Overfitting”; “Generalization”

Various metrics for quality; accuracy is most common

Evaluation process

4+ Train on training set (don’t expose test set to classifier)
+ Make predictions using test set (ignoring test labels)

+ Compute fraction of correct predictions on test set

Other more sophisticated evaluation methods, e.g.,
cross-validation
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Contributions
encouraged!

biglearn.org


http://www.mlbase.org
http://www.mlbase.org

