
baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML baseCollaborators:	
  Tim	
  Kraska2,	
  Virginia	
  Smith1,	
  Xinghao	
  Pan1,	
  Shivaram	
  
Venkataraman1,	
  Matei	
  Zaharia1,	
  Rean	
  Griffith3,	
  John	
  Duchi1,	
  Joseph	
  Gonzalez1,	
  

Michael	
  Franklin1,	
  Michael	
  I.	
  Jordan1	
  

1UC	
  Berkeley	
  	
  	
  	
  	
  	
  2Brown	
  	
  	
  	
  	
  3VMware

www.mlbase.org

Evan	
  Sparks	
  and	
  Ameet	
  Talwalkar
UC	
  Berkeley

UC Berkeley

http://www.mlbase.org
http://www.mlbase.org


Problem:	
  Scalable	
  implementa>ons	
  
difficult	
  for	
  ML	
  Developers…

ML Developer

Meta-Data

Statistics

User

Declarative 
ML Task 

ML Contract + 
Code

Master Server

….

result 
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

LLP

PLP

M
aster

S
laves



Problem:	
  Scalable	
  implementa>ons	
  
difficult	
  for	
  ML	
  Developers…

ML Developer

Meta-Data

Statistics

User

Declarative 
ML Task 

ML Contract + 
Code

Master Server

….

result 
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

LLP

PLP

M
aster

S
laves



Problem:	
  Scalable	
  implementa>ons	
  
difficult	
  for	
  ML	
  Developers…

ML Developer

Meta-Data

Statistics

User

Declarative 
ML Task 

ML Contract + 
Code

Master Server

….

result 
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

LLP

PLP

M
aster

S
laves



Too	
  many	
  
algorithms…

Problem:	
  ML	
  is	
  difficult
for	
  End	
  Users…



Too	
  many	
  
algorithms…

Too	
  many	
  
knobs…

Problem:	
  ML	
  is	
  difficult
for	
  End	
  Users…



Too	
  many	
  
algorithms…

Too	
  many	
  
knobs…

Problem:	
  ML	
  is	
  difficult
for	
  End	
  Users…

Difficult	
  to	
  
debug…



Too	
  many	
  
algorithms…

Too	
  many	
  
knobs…

Problem:	
  ML	
  is	
  difficult
for	
  End	
  Users…

Difficult	
  to	
  
debug…

Doesn’t	
  scale…



Too	
  many	
  
algorithms…

Too	
  many	
  
knobs…

Problem:	
  ML	
  is	
  difficult
for	
  End	
  Users…

Difficult	
  to	
  
debug…

Reliable

Fa
st

Accurate

Pr
ov
ab
le

Doesn’t	
  scale…



ML	
  Experts Systems	
  ExpertsMLbase



1. Easy	
  scalable	
  ML	
  development	
  (ML	
  Developers)
2. User-­‐friendly	
  ML	
  at	
  scale	
  (End	
  Users)

ML	
  Experts Systems	
  ExpertsMLbase



1. Easy	
  scalable	
  ML	
  development	
  (ML	
  Developers)
2. User-­‐friendly	
  ML	
  at	
  scale	
  (End	
  Users)

Along	
  the	
  way,	
  we	
  gain	
  insight	
  into	
  data	
  intensive	
  
compuJng

ML	
  Experts Systems	
  ExpertsMLbase



Vision
MLI	
  Details
Current	
  Status
ML	
  Workflow



Matlab	
  Stack



Matlab	
  Stack

Single Machine



Lapack

Matlab	
  Stack

Single Machine

✦ Lapack:	
  low-­‐level	
  Fortran	
  linear	
  algebra	
  library



Lapack

Matlab Interface

Matlab	
  Stack

Single Machine

✦ Lapack:	
  low-­‐level	
  Fortran	
  linear	
  algebra	
  library
✦ Matlab	
  Interface

✦ Higher-­‐level	
  abstracVons	
  for	
  data	
  access	
  /	
  processing
✦ More	
  extensive	
  funcVonality	
  than	
  Lapack
✦ Leverages	
  Lapack	
  whenever	
  possible



Lapack

Matlab Interface

Matlab	
  Stack

Single Machine

✦ Lapack:	
  low-­‐level	
  Fortran	
  linear	
  algebra	
  library
✦ Matlab	
  Interface

✦ Higher-­‐level	
  abstracVons	
  for	
  data	
  access	
  /	
  processing
✦ More	
  extensive	
  funcVonality	
  than	
  Lapack
✦ Leverages	
  Lapack	
  whenever	
  possible

✦ Similar	
  stories	
  for	
  R	
  and	
  Python



MLbase	
  Stack

Lapack

Matlab Interface

Single Machine



MLbase	
  Stack

Runtime(s)

Lapack

Matlab Interface

Single Machine



MLbase	
  Stack

Runtime(s)Spark

Lapack

Matlab Interface

Single Machine

Spark:	
  cluster	
  compuJng	
  system	
  designed	
  for	
  iteraJve	
  computaJon



MLbase	
  Stack

Runtime(s)

MLlib

Spark

Lapack

Matlab Interface

Single Machine

Spark:	
  cluster	
  compuJng	
  system	
  designed	
  for	
  iteraJve	
  computaJon

MLlib:	
  low-­‐level	
  ML	
  library	
  in	
  Spark



MLbase	
  Stack

Runtime(s)

MLlib

MLI

Spark

Lapack

Matlab Interface

Single Machine

Spark:	
  cluster	
  compuJng	
  system	
  designed	
  for	
  iteraJve	
  computaJon

MLlib:	
  low-­‐level	
  ML	
  library	
  in	
  Spark

MLI:	
  API	
  /	
  plaPorm	
  for	
  feature	
  extracJon	
  and	
  algorithm	
  development
✦ PlaXorm	
  independent



MLbase	
  Stack

Runtime(s)

MLlib

MLI

ML Optimizer

Spark

Lapack

Matlab Interface

Single Machine

Spark:	
  cluster	
  compuJng	
  system	
  designed	
  for	
  iteraJve	
  computaJon

MLlib:	
  low-­‐level	
  ML	
  library	
  in	
  Spark

MLI:	
  API	
  /	
  plaPorm	
  for	
  feature	
  extracJon	
  and	
  algorithm	
  development
✦ PlaXorm	
  independent

ML	
  Op>mizer:	
  automates	
  model	
  selecJon
✦ Solves	
  a	
  search	
  problem	
  over	
  feature	
  extractors	
  and	
  algorithms	
  in	
  MLI



Example:	
  MLlib



Example:	
  MLlib

✦ Goal:	
  ClassificaVon	
  of	
  text	
  file



Example:	
  MLlib

✦ Goal:	
  ClassificaVon	
  of	
  text	
  file
✦ Featurize	
  data	
  manually

1 def main(args: Array[String]) {
2 val mc = new MLContext("local", "MLILR")
3

4 //Read in file from HDFS
5 val rawTextTable = mc.csvFile(args(0), Seq("class","text"))
6

7 //Run feature extraction
8 val classes = rawTextTable(??, "class")
9 val ngrams = tfIdf(nGrams(rawTextTable(??, "text"), n=2, top=30000))

10 val featureizedTable = classes.zip(ngrams)
11

12 //Classify the data using Logistic Regression.
13 val lrModel = LogisticRegression(featurizedTable, stepSize=0.1, numIter=12)
14 }

1 def main(args: Array[String]) {
2 val sc = new SparkContext("local", "SparkLR")
3

4 //Load data from HDFS
5 val data = sc.textFile(args(0)) //RDD[String]
6

7 //User is responsible for formatting/featurizing/normalizing their RDD!
8 val featurizedData: RDD[(Double,Array[Double])] = processData(data)
9

10 //Train the model using MLlib.
11 val model = new LogisticRegressionLocalRandomSGD()
12 .setStepSize(0.1)
13 .setNumIterations(50)
14 .train(featurizedData)
15 }

Fig. 15: Matrix Factorization via ALS code in MATLAB (top) and MLI (bottom).



Example:	
  MLlib

✦ Goal:	
  ClassificaVon	
  of	
  text	
  file
✦ Featurize	
  data	
  manually
✦ Calls	
  MLlib’s	
  LR	
  funcVon

1 def main(args: Array[String]) {
2 val mc = new MLContext("local", "MLILR")
3

4 //Read in file from HDFS
5 val rawTextTable = mc.csvFile(args(0), Seq("class","text"))
6

7 //Run feature extraction
8 val classes = rawTextTable(??, "class")
9 val ngrams = tfIdf(nGrams(rawTextTable(??, "text"), n=2, top=30000))

10 val featureizedTable = classes.zip(ngrams)
11

12 //Classify the data using Logistic Regression.
13 val lrModel = LogisticRegression(featurizedTable, stepSize=0.1, numIter=12)
14 }

1 def main(args: Array[String]) {
2 val sc = new SparkContext("local", "SparkLR")
3

4 //Load data from HDFS
5 val data = sc.textFile(args(0)) //RDD[String]
6

7 //User is responsible for formatting/featurizing/normalizing their RDD!
8 val featurizedData: RDD[(Double,Array[Double])] = processData(data)
9

10 //Train the model using MLlib.
11 val model = new LogisticRegressionLocalRandomSGD()
12 .setStepSize(0.1)
13 .setNumIterations(50)
14 .train(featurizedData)
15 }

Fig. 15: Matrix Factorization via ALS code in MATLAB (top) and MLI (bottom).



Example:	
  MLI



Example:	
  MLI

✦ Use	
  built-­‐in	
  feature	
  extracVon	
  funcVonality

1 def main(args: Array[String]) {
2 val mc = new MLContext("local", "MLILR")
3

4 //Read in file from HDFS
5 val rawTextTable = mc.csvFile(args(0), Seq("class","text"))
6

7 //Run feature extraction
8 val classes = rawTextTable(??, "class")
9 val ngrams = tfIdf(nGrams(rawTextTable(??, "text"), n=2, top=30000))

10 val featureizedTable = classes.zip(ngrams)
11

12 //Classify the data using Logistic Regression.
13 val lrModel = LogisticRegression(featurizedTable, stepSize=0.1, numIter=12)
14 }

1 def main(args: Array[String]) {
2 val sc = new SparkContext("local", "SparkLR")
3

4 //Load data from HDFS
5 val data = sc.textFile(args(0)) //RDD[String]
6

7 //User is responsible for formatting/featurizing/normalizing their RDD!
8 val featurizedData: RDD[(Double,Array[Double])] = processData(data)
9

10 //Train the model using MLlib.
11 val model = new LogisticRegressionLocalRandomSGD()
12 .setStepSize(0.1)
13 .setNumIterations(50)
14 .train(featurizedData)
15 }

Fig. 15: Matrix Factorization via ALS code in MATLAB (top) and MLI (bottom).



Example:	
  MLI

✦ Use	
  built-­‐in	
  feature	
  extracVon	
  funcVonality
✦ MLI	
  LogisVc	
  Regression	
  leverages	
  MLlib

1 def main(args: Array[String]) {
2 val mc = new MLContext("local", "MLILR")
3

4 //Read in file from HDFS
5 val rawTextTable = mc.csvFile(args(0), Seq("class","text"))
6

7 //Run feature extraction
8 val classes = rawTextTable(??, "class")
9 val ngrams = tfIdf(nGrams(rawTextTable(??, "text"), n=2, top=30000))

10 val featureizedTable = classes.zip(ngrams)
11

12 //Classify the data using Logistic Regression.
13 val lrModel = LogisticRegression(featurizedTable, stepSize=0.1, numIter=12)
14 }

1 def main(args: Array[String]) {
2 val sc = new SparkContext("local", "SparkLR")
3

4 //Load data from HDFS
5 val data = sc.textFile(args(0)) //RDD[String]
6

7 //User is responsible for formatting/featurizing/normalizing their RDD!
8 val featurizedData: RDD[(Double,Array[Double])] = processData(data)
9

10 //Train the model using MLlib.
11 val model = new LogisticRegressionLocalRandomSGD()
12 .setStepSize(0.1)
13 .setNumIterations(50)
14 .train(featurizedData)
15 }

Fig. 15: Matrix Factorization via ALS code in MATLAB (top) and MLI (bottom).



Example:	
  MLI

✦ Use	
  built-­‐in	
  feature	
  extracVon	
  funcVonality
✦ MLI	
  LogisVc	
  Regression	
  leverages	
  MLlib
✦ Extensions:

✦ Embed	
  in	
  cross-­‐validaVon	
  rouVne
✦ Use	
  different	
  feature	
  extractors	
  /	
  algorithms
✦ Write	
  new	
  ones

1 def main(args: Array[String]) {
2 val mc = new MLContext("local", "MLILR")
3

4 //Read in file from HDFS
5 val rawTextTable = mc.csvFile(args(0), Seq("class","text"))
6

7 //Run feature extraction
8 val classes = rawTextTable(??, "class")
9 val ngrams = tfIdf(nGrams(rawTextTable(??, "text"), n=2, top=30000))

10 val featureizedTable = classes.zip(ngrams)
11

12 //Classify the data using Logistic Regression.
13 val lrModel = LogisticRegression(featurizedTable, stepSize=0.1, numIter=12)
14 }

1 def main(args: Array[String]) {
2 val sc = new SparkContext("local", "SparkLR")
3

4 //Load data from HDFS
5 val data = sc.textFile(args(0)) //RDD[String]
6

7 //User is responsible for formatting/featurizing/normalizing their RDD!
8 val featurizedData: RDD[(Double,Array[Double])] = processData(data)
9

10 //Train the model using MLlib.
11 val model = new LogisticRegressionLocalRandomSGD()
12 .setStepSize(0.1)
13 .setNumIterations(50)
14 .train(featurizedData)
15 }

Fig. 15: Matrix Factorization via ALS code in MATLAB (top) and MLI (bottom).



Example:	
  ML	
  OpVmizer

var	
  X	
  =	
  load(”text_file”,	
  2	
  to	
  10)
var	
  y	
  =	
  load(”text_file”,	
  1)
var	
  (fn-­‐model,	
  summary)	
  =	
  doClassify(X,	
  y)

✦ User	
  declaraVvely	
  specifies	
  task
✦ ML	
  OpVmizer	
  searches	
  through	
  MLI



Example:	
  ML	
  OpVmizer

✦ User	
  declaraVvely	
  specifies	
  task
✦ ML	
  OpVmizer	
  searches	
  through	
  MLI

SQL Result MQL Model



Vision
MLI	
  Details
Current	
  Status
ML	
  Workflow



Lay	
  of	
  the	
  Land
Ea
se
	
  o
f	
  u

se

Performance,	
  
Scalability



Lay	
  of	
  the	
  Land
Ea
se
	
  o
f	
  u

se

Performance,	
  
Scalability

Matlab,	
  R
x 	
  +	
  	
  	
  Easy	
  (Resembles	
  math,	
  limited	
  set	
  up)

	
  +	
  	
  	
  Sufficient	
  for	
  prototyping	
  /	
  wriVng	
  papers
—	
  	
  Ad-­‐hoc,	
  non-­‐scalable	
  scripts
—	
  	
  Loss	
  of	
  translaVon	
  upon	
  re-­‐implementaVon



Lay	
  of	
  the	
  Land
Ea
se
	
  o
f	
  u

se

Performance,	
  
Scalability

Matlab,	
  R
x 	
  +	
  	
  	
  Easy	
  (Resembles	
  math,	
  limited	
  set	
  up)

	
  +	
  	
  	
  Sufficient	
  for	
  prototyping	
  /	
  wriVng	
  papers
—	
  	
  Ad-­‐hoc,	
  non-­‐scalable	
  scripts
—	
  	
  Loss	
  of	
  translaVon	
  upon	
  re-­‐implementaVon

GraphLab,	
  VW
x

Mahout
x

	
  +	
  	
  	
  Scalable	
  and	
  (someVmes)	
  fast
	
  +	
  	
  	
  ExisVng	
  open-­‐source	
  libraries
—	
  	
  Difficult	
  to	
  set	
  up,	
  extend



Examples
ML Developer

Meta-Data

Statistics

User

Declarative 
ML Task 

ML Contract + 
Code

Master Server

….

result 
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

LLP

PLP

M
aster

S
laves



Examples
ML Developer

Meta-Data

Statistics

User

Declarative 
ML Task 

ML Contract + 
Code

Master Server

….

result 
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

LLP

PLP

M
aster

S
laves

‘Distributed’	
  Divide-­‐Factor-­‐Combine	
  (DFC)
✦ IniVal	
  studies	
  in	
  MATLAB	
  (Not	
  distributed)
✦ Distributed	
  prototype	
  involving	
  compiled	
  MATLAB



Examples
ML Developer

Meta-Data

Statistics

User

Declarative 
ML Task 

ML Contract + 
Code

Master Server

….

result 
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

LLP

PLP

M
aster

S
laves

‘Distributed’	
  Divide-­‐Factor-­‐Combine	
  (DFC)
✦ IniVal	
  studies	
  in	
  MATLAB	
  (Not	
  distributed)
✦ Distributed	
  prototype	
  involving	
  compiled	
  MATLAB

Mahout	
  ALS	
  with	
  Early	
  Stopping
✦ Theory:	
  simple	
  if-­‐statement	
  (3	
  lines	
  of	
  code)



Examples
ML Developer

Meta-Data

Statistics

User

Declarative 
ML Task 

ML Contract + 
Code

Master Server

….

result 
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

LLP

PLP

M
aster

S
laves

‘Distributed’	
  Divide-­‐Factor-­‐Combine	
  (DFC)
✦ IniVal	
  studies	
  in	
  MATLAB	
  (Not	
  distributed)
✦ Distributed	
  prototype	
  involving	
  compiled	
  MATLAB

Mahout	
  ALS	
  with	
  Early	
  Stopping
✦ Theory:	
  simple	
  if-­‐statement	
  (3	
  lines	
  of	
  code)
✦ PracVce:	
  sib	
  through	
  7	
  files,	
  nearly	
  1K	
  lines	
  of	
  code



Lay	
  of	
  the	
  Land
Ea
se
	
  o
f	
  u

se

Performance,	
  
Scalability

Matlab,	
  R
x 	
  +	
  	
  	
  Easy	
  (Resembles	
  math,	
  limited	
  set	
  up)

	
  +	
  	
  	
  Sufficient	
  for	
  prototyping	
  /	
  wriVng	
  papers
—	
  	
  Ad-­‐hoc,	
  non-­‐scalable	
  scripts
—	
  	
  Loss	
  of	
  translaVon	
  upon	
  re-­‐implementaVon

GraphLab,	
  VW
x

Mahout
x

	
  +	
  	
  	
  Scalable	
  and	
  (someVmes)	
  fast
	
  +	
  	
  	
  ExisVng	
  open-­‐source	
  libraries
—	
  	
  Difficult	
  to	
  set	
  up,	
  extend



Lay	
  of	
  the	
  Land
Ea
se
	
  o
f	
  u

se

Performance,	
  
Scalability

MLlib
x

Matlab,	
  R
x 	
  +	
  	
  	
  Easy	
  (Resembles	
  math,	
  limited	
  set	
  up)

	
  +	
  	
  	
  Sufficient	
  for	
  prototyping	
  /	
  wriVng	
  papers
—	
  	
  Ad-­‐hoc,	
  non-­‐scalable	
  scripts
—	
  	
  Loss	
  of	
  translaVon	
  upon	
  re-­‐implementaVon

GraphLab,	
  VW
x

Mahout
x

	
  +	
  	
  	
  Scalable	
  and	
  (someVmes)	
  fast
	
  +	
  	
  	
  ExisVng	
  open-­‐source	
  libraries
—	
  	
  Difficult	
  to	
  set	
  up,	
  extend



Lay	
  of	
  the	
  Land
Ea
se
	
  o
f	
  u

se

Performance,	
  
Scalability

MLI
x

MLlib
x

Matlab,	
  R
x 	
  +	
  	
  	
  Easy	
  (Resembles	
  math,	
  limited	
  set	
  up)

	
  +	
  	
  	
  Sufficient	
  for	
  prototyping	
  /	
  wriVng	
  papers
—	
  	
  Ad-­‐hoc,	
  non-­‐scalable	
  scripts
—	
  	
  Loss	
  of	
  translaVon	
  upon	
  re-­‐implementaVon

GraphLab,	
  VW
x

Mahout
x

	
  +	
  	
  	
  Scalable	
  and	
  (someVmes)	
  fast
	
  +	
  	
  	
  ExisVng	
  open-­‐source	
  libraries
—	
  	
  Difficult	
  to	
  set	
  up,	
  extend



ML	
  Developer	
  API	
  (MLI)



ML	
  Developer	
  API	
  (MLI)

OLD
val	
  x:	
  RDD[Array[Double]]



ML	
  Developer	
  API	
  (MLI)

OLD
val	
  x:	
  RDD[Array[Double]]
val	
  x:	
  RDD[spark.uJl.Vector]



ML	
  Developer	
  API	
  (MLI)

OLD
val	
  x:	
  RDD[Array[Double]]
val	
  x:	
  RDD[spark.uJl.Vector]
val	
  x:	
  RDD[breeze.linalg.Vector]



ML	
  Developer	
  API	
  (MLI)

OLD
val	
  x:	
  RDD[Array[Double]]
val	
  x:	
  RDD[spark.uJl.Vector]
val	
  x:	
  RDD[breeze.linalg.Vector]
val	
  x:	
  RDD[BIDMat.SMat]



ML	
  Developer	
  API	
  (MLI)

OLD
val	
  x:	
  RDD[Array[Double]]
val	
  x:	
  RDD[spark.uJl.Vector]
val	
  x:	
  RDD[breeze.linalg.Vector]
val	
  x:	
  RDD[BIDMat.SMat]



ML	
  Developer	
  API	
  (MLI)

OLD
val	
  x:	
  RDD[Array[Double]]
val	
  x:	
  RDD[spark.uJl.Vector]
val	
  x:	
  RDD[breeze.linalg.Vector]
val	
  x:	
  RDD[BIDMat.SMat]

NEW
val	
  x:	
  MLTable



ML	
  Developer	
  API	
  (MLI)

OLD
val	
  x:	
  RDD[Array[Double]]
val	
  x:	
  RDD[spark.uJl.Vector]
val	
  x:	
  RDD[breeze.linalg.Vector]
val	
  x:	
  RDD[BIDMat.SMat]

NEW
val	
  x:	
  MLTable

✦ Abstract	
  interface	
  for	
  arbitrary	
  backend
✦ Common	
  interface	
  to	
  support	
  an	
  opVmizer



ML	
  Developer	
  API	
  (MLI)



ML	
  Developer	
  API	
  (MLI)
✦ Shield	
  ML	
  Developers	
  from	
  low-­‐details

✦ provide	
  familiar	
  mathemaVcal	
  operators	
  in	
  distributed	
  sedng



ML	
  Developer	
  API	
  (MLI)
✦ Shield	
  ML	
  Developers	
  from	
  low-­‐details

✦ provide	
  familiar	
  mathemaVcal	
  operators	
  in	
  distributed	
  sedng

✦ Table	
  ComputaVon	
  (MLTable)
✦ Flexibility	
  when	
  loading	
  data	
  (heterogenous,	
  missing)
✦ Common	
  interface	
  for	
  feature	
  extracVon	
  /	
  algorithms
✦ Supports	
  MapReduce	
  and	
  relaVonal	
  operators



ML	
  Developer	
  API	
  (MLI)
✦ Shield	
  ML	
  Developers	
  from	
  low-­‐details

✦ provide	
  familiar	
  mathemaVcal	
  operators	
  in	
  distributed	
  sedng

✦ Table	
  ComputaVon	
  (MLTable)
✦ Flexibility	
  when	
  loading	
  data	
  (heterogenous,	
  missing)
✦ Common	
  interface	
  for	
  feature	
  extracVon	
  /	
  algorithms
✦ Supports	
  MapReduce	
  and	
  relaVonal	
  operators

✦ Linear	
  Algebra	
  (MLSubMatrix)
✦ Linear	
  algebra	
  on	
  *local*	
  parVVons
✦ Sparse	
  and	
  Dense	
  matrix	
  support



ML	
  Developer	
  API	
  (MLI)
✦ Shield	
  ML	
  Developers	
  from	
  low-­‐details

✦ provide	
  familiar	
  mathemaVcal	
  operators	
  in	
  distributed	
  sedng

✦ Table	
  ComputaVon	
  (MLTable)
✦ Flexibility	
  when	
  loading	
  data	
  (heterogenous,	
  missing)
✦ Common	
  interface	
  for	
  feature	
  extracVon	
  /	
  algorithms
✦ Supports	
  MapReduce	
  and	
  relaVonal	
  operators

✦ Linear	
  Algebra	
  (MLSubMatrix)
✦ Linear	
  algebra	
  on	
  *local*	
  parVVons
✦ Sparse	
  and	
  Dense	
  matrix	
  support

✦ OpVmizaVon	
  PrimiVves	
  (MLSolve)
✦ Distributed	
  implementaVons	
  of	
  common	
  paferns



ML	
  Developer	
  API	
  (MLI)
✦ Shield	
  ML	
  Developers	
  from	
  low-­‐details

✦ provide	
  familiar	
  mathemaVcal	
  operators	
  in	
  distributed	
  sedng

✦ Table	
  ComputaVon	
  (MLTable)
✦ Flexibility	
  when	
  loading	
  data	
  (heterogenous,	
  missing)
✦ Common	
  interface	
  for	
  feature	
  extracVon	
  /	
  algorithms
✦ Supports	
  MapReduce	
  and	
  relaVonal	
  operators

✦ Linear	
  Algebra	
  (MLSubMatrix)
✦ Linear	
  algebra	
  on	
  *local*	
  parVVons
✦ Sparse	
  and	
  Dense	
  matrix	
  support

✦ OpVmizaVon	
  PrimiVves	
  (MLSolve)
✦ Distributed	
  implementaVons	
  of	
  common	
  paferns

✦ DFC:	
  ~50	
  lines	
  of	
  code
✦ ALS:	
  early	
  stopping	
  in	
  3	
  lines;	
  <	
  40	
  lines	
  total



MLI	
  Ease	
  of	
  Use



MLI	
  Ease	
  of	
  Use
LogisVc	
  Regression

AlternaVng	
  Least	
  Squares

System Lines	
  of	
  Code

Matlab 11

Vowpal	
  Wabbit 721

MLI 55

System Lines	
  of	
  Code

Matlab 20

Mahout 865

GraphLab 383

MLI 32



MLI	
  Ease	
  of	
  Use
LogisVc	
  Regression

AlternaVng	
  Least	
  Squares

System Lines	
  of	
  Code

Matlab 11

Vowpal	
  Wabbit 721

MLI 55

System Lines	
  of	
  Code

Matlab 20

Mahout 865

GraphLab 383

MLI 32



MLI	
  Ease	
  of	
  Use
LogisVc	
  Regression

AlternaVng	
  Least	
  Squares

System Lines	
  of	
  Code

Matlab 11

Vowpal	
  Wabbit 721

MLI 55

System Lines	
  of	
  Code

Matlab 20

Mahout 865

GraphLab 383

MLI 32



MLI/Spark	
  Performance



✦ Wall>me:	
  elapsed	
  Vme	
  to	
  execute	
  task

MLI/Spark	
  Performance



✦ Wall>me:	
  elapsed	
  Vme	
  to	
  execute	
  task

✦ Weak	
  scaling
✦ fix	
  problem	
  size	
  per	
  processor
✦ ideally:	
  constant	
  wallVme	
  as	
  we	
  grow	
  cluster

MLI/Spark	
  Performance



✦ Wall>me:	
  elapsed	
  Vme	
  to	
  execute	
  task

✦ Weak	
  scaling
✦ fix	
  problem	
  size	
  per	
  processor
✦ ideally:	
  constant	
  wallVme	
  as	
  we	
  grow	
  cluster

✦ Strong	
  scaling
✦ fix	
  total	
  problem	
  size
✦ ideally:	
  linear	
  speed	
  up	
  as	
  we	
  grow	
  cluster

MLI/Spark	
  Performance



✦ Wall>me:	
  elapsed	
  Vme	
  to	
  execute	
  task

✦ Weak	
  scaling
✦ fix	
  problem	
  size	
  per	
  processor
✦ ideally:	
  constant	
  wallVme	
  as	
  we	
  grow	
  cluster

✦ Strong	
  scaling
✦ fix	
  total	
  problem	
  size
✦ ideally:	
  linear	
  speed	
  up	
  as	
  we	
  grow	
  cluster

✦ EC2	
  Experiments
✦ m2.4xlarge	
  instances,	
  up	
  to	
  32	
  machine	
  clusters

MLI/Spark	
  Performance



LogisVc	
  Regression	
  -­‐	
  Weak	
  Scaling



LogisVc	
  Regression	
  -­‐	
  Weak	
  Scaling

✦ Full	
  dataset:	
  200K	
  images,	
  160K	
  dense	
  features



LogisVc	
  Regression	
  -­‐	
  Weak	
  Scaling

✦ Full	
  dataset:	
  200K	
  images,	
  160K	
  dense	
  features
✦ Similar	
  weak	
  scaling

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e 
(s

)

 

 

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e 

w
al

lti
m

e

# machines

 

 

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e 
(s

)

 

 

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

# machines

sp
ee

du
p

 

 

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F ) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib



LogisVc	
  Regression	
  -­‐	
  Weak	
  Scaling

✦ Full	
  dataset:	
  200K	
  images,	
  160K	
  dense	
  features
✦ Similar	
  weak	
  scaling
✦ MLI/Spark	
  within	
  a	
  factor	
  of	
  2	
  of	
  VW’s	
  wallJme

MLbase VW Matlab0

1000

2000

3000

4000

w
al

lti
m

e 
(s

)

 

 

n=6K, d=160K
n=12.5K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

MLI/Spark

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e 
(s

)

 

 

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e 

w
al

lti
m

e

# machines

 

 

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e 
(s

)

 

 

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

# machines

sp
ee

du
p

 

 

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F ) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib



LogisVc	
  Regression	
  -­‐	
  Strong	
  Scaling



LogisVc	
  Regression	
  -­‐	
  Strong	
  Scaling

✦ Fixed	
  Dataset:	
  50K	
  images,	
  160K	
  dense	
  features



LogisVc	
  Regression	
  -­‐	
  Strong	
  Scaling

✦ Fixed	
  Dataset:	
  50K	
  images,	
  160K	
  dense	
  features
✦ MLI/Spark	
  exhibits	
  be^er	
  scaling	
  properJes

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e 
(s

)

 

 

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e 

w
al

lti
m

e
# machines

 

 

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e 
(s

)

 

 

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

# machines

sp
ee

du
p

 

 

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F ) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib



LogisVc	
  Regression	
  -­‐	
  Strong	
  Scaling

✦ Fixed	
  Dataset:	
  50K	
  images,	
  160K	
  dense	
  features
✦ MLI/Spark	
  exhibits	
  be^er	
  scaling	
  properJes
✦ MLI/Spark	
  faster	
  than	
  VW	
  with	
  16	
  and	
  32	
  machines

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e 
(s

)

 

 

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e 

w
al

lti
m

e

# machines

 

 

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e 
(s

)

 

 

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

# machines

sp
ee

du
p

 

 

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F ) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLI/Spark

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e 
(s

)

 

 

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e 

w
al

lti
m

e
# machines

 

 

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e 
(s

)

 

 

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

# machines

sp
ee

du
p

 

 

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F ) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib



ALS	
  -­‐	
  WallVme



ALS	
  -­‐	
  WallVme

✦ Dataset:	
  Scaled	
  version	
  of	
  NePlix	
  data	
  (9X	
  in	
  size)
✦ Cluster:	
  9	
  machines



ALS	
  -­‐	
  WallVme

✦ Dataset:	
  Scaled	
  version	
  of	
  NePlix	
  data	
  (9X	
  in	
  size)
✦ Cluster:	
  9	
  machines

System Wall>me	
  (seconds)

Matlab 15443

Mahout 4206

GraphLab 291

MLI/Spark 481



ALS	
  -­‐	
  WallVme

✦ Dataset:	
  Scaled	
  version	
  of	
  NePlix	
  data	
  (9X	
  in	
  size)
✦ Cluster:	
  9	
  machines

System Wall>me	
  (seconds)

Matlab 15443

Mahout 4206

GraphLab 291

MLI/Spark 481



ALS	
  -­‐	
  WallVme

✦ Dataset:	
  Scaled	
  version	
  of	
  NePlix	
  data	
  (9X	
  in	
  size)
✦ Cluster:	
  9	
  machines
✦ MLI/Spark	
  an	
  order	
  of	
  magnitude	
  faster	
  than	
  Mahout
✦ MLI/Spark	
  within	
  factor	
  of	
  2	
  of	
  GraphLab

System Wall>me	
  (seconds)

Matlab 15443

Mahout 4206

GraphLab 291

MLI/Spark 481



Vision
MLI	
  Details
Current	
  Status
ML	
  Workflow



Linear	
  Regression	
  (+Lasso,	
  Ridge)

AlternaVng	
  Least	
  Squares,	
  DFC

K-­‐Means,	
  DP-­‐Means

LogisVc	
  Regression,	
  Linear	
  SVM	
  (+L1,	
  L2),	
  MulVnomial	
  
Regression,	
  Naive	
  Bayes,	
  Decision	
  Trees

Parallel	
  Gradient,	
  Local	
  SGD,	
  L-­‐BFGS,	
  ADMM,	
  Adagrad

Principal	
  Component	
  Analysis	
  (PCA),	
  N-­‐grams,	
  feature	
  
normalizaVon

Cross	
  ValidaVon,	
  EvaluaVon	
  Metrics

MLI	
  FuncVonality
Regression:

Collabora>ve	
  Filtering:

Clustering:

Classifica>on:

Op>miza>on	
  Primi>ves:

Feature	
  Extrac>on:

ML	
  Tools:



Linear	
  Regression	
  (+Lasso,	
  Ridge)

AlternaVng	
  Least	
  Squares,	
  DFC

K-­‐Means,	
  DP-­‐Means

LogisVc	
  Regression,	
  Linear	
  SVM	
  (+L1,	
  L2),	
  MulVnomial	
  
Regression,	
  Naive	
  Bayes,	
  Decision	
  Trees

Parallel	
  Gradient,	
  Local	
  SGD,	
  L-­‐BFGS,	
  ADMM,	
  Adagrad

Principal	
  Component	
  Analysis	
  (PCA),	
  N-­‐grams,	
  feature	
  
normalizaVon

Cross	
  ValidaVon,	
  EvaluaVon	
  Metrics

MLI	
  FuncVonality
Regression:

Collabora>ve	
  Filtering:

Clustering:

Classifica>on:

Op>miza>on	
  Primi>ves:

Feature	
  Extrac>on:

ML	
  Tools:



MLlib

MLI

ML Optimizer
End	
  User

MLbase	
  Stack	
  Status

Spark

ML Developer

Meta-Data

Statistics

User

Declarative 
ML Task 

ML Contract + 
Code

Master Server

….

result 
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

LLP

PLP

M
aster

Slaves



MLlib

MLI

ML Optimizer
End	
  User

MLbase	
  Stack	
  Status

Spark

ML Developer

Meta-Data

Statistics

User

Declarative 
ML Task 

ML Contract + 
Code

Master Server

….

result 
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

LLP

PLP

M
aster

Slaves



MLlib

MLI

ML Optimizer
End	
  User

MLbase	
  Stack	
  Status

Goal 1:
Summer Release

Spark

ML Developer

Meta-Data

Statistics

User

Declarative 
ML Task 

ML Contract + 
Code

Master Server

….

result 
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

LLP

PLP

M
aster

Slaves



MLlib

MLI

ML Optimizer
End	
  User

MLbase	
  Stack	
  Status

Goal 1:
Summer Release

Goal 2:
Winter Release

Spark

ML Developer

Meta-Data

Statistics

User

Declarative 
ML Task 

ML Contract + 
Code

Master Server

….

result 
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

DMX 
Runtime

LLP

PLP

M
aster

Slaves



Future	
  DirecVons
✦ Iden>fy	
  minimal	
  set	
  of	
  ML	
  operators

✦ Expose	
  internals	
  of	
  ML	
  algorithms	
  to	
  opVmizer

✦ Plug-­‐ins	
  to	
  Python,	
  R

✦ Visualiza>on	
  for	
  unsupervised	
  learning	
  and	
  exploraVon

✦ Advanced	
  ML	
  capabili>es
✦ Time-­‐series	
  algorithms
✦ Graphical	
  models
✦ Advanced	
  OpVmizaVon	
  (e.g.,	
  asynchronous	
  computaVon)
✦ Online	
  updates
✦ Sampling	
  for	
  efficiency	
  



Vision
MLI	
  Details
Current	
  Status
ML	
  Workflow



Typical	
  Data	
  Analysis	
  Workflow

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Typical	
  Data	
  Analysis	
  Workflow
Spark,	
  MLI Obtain	
  /	
  Load	
  Raw	
  Data

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Typical	
  Data	
  Analysis	
  Workflow
Spark,	
  MLI Obtain	
  /	
  Load	
  Raw	
  Data

Spark,	
  [MLI] Data	
  Explora>on

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Typical	
  Data	
  Analysis	
  Workflow
Spark,	
  MLI Obtain	
  /	
  Load	
  Raw	
  Data

Spark,	
  [MLI] Data	
  Explora>on

MLI Feature	
  Extrac>on

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Typical	
  Data	
  Analysis	
  Workflow
Spark,	
  MLI Obtain	
  /	
  Load	
  Raw	
  Data

Spark,	
  [MLI] Data	
  Explora>on

MLI Feature	
  Extrac>on

MLI,	
  MLlib Learning

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Typical	
  Data	
  Analysis	
  Workflow
Spark,	
  MLI Obtain	
  /	
  Load	
  Raw	
  Data

Spark,	
  [MLI] Data	
  Explora>on

MLI Feature	
  Extrac>on

MLI Evalua>on

MLI,	
  MLlib Learning

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Typical	
  Data	
  Analysis	
  Workflow
Spark,	
  MLI Obtain	
  /	
  Load	
  Raw	
  Data

Spark,	
  [MLI] Data	
  Explora>on

MLI Feature	
  Extrac>on

Scala Deployment

MLI Evalua>on

MLI,	
  MLlib Learning

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Typical	
  Data	
  Analysis	
  Workflow
Spark,	
  MLI Obtain	
  /	
  Load	
  Raw	
  Data

Spark,	
  [MLI] Data	
  Explora>on

MLI Feature	
  Extrac>on

Scala Deployment

MLI Evalua>on

MLI,	
  MLlib Learning

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Binary	
  ClassificaVon

1.2 Definitions and terminology 3

Figure 1.1 The zig-zag line on the left panel is consistent over the blue and red
training sample, but it is a complex separation surface that is not likely to generalize
well to unseen data. In contrast, the decision surface on the right panel is simpler
and might generalize better in spite of its misclassification of a few points of the
training sample.

Which concept families can actually be learned, and under what conditions? How
well can these concepts be learned computationally?

1.2 Definitions and terminology

We will use the canonical problem of spam detection as a running example to
illustrate some basic definitions and to describe the use and evaluation of machine
learning algorithms in practice. Spam detection is the problem of learning to
automatically classify email messages as either spam or non-spam.

Examples: Items or instances of data used for learning or evaluation. In our spam
problem, these examples correspond to the collection of email messages we will use
for learning and testing.

Features: The set of attributes, often represented as a vector, associated to an
example. In the case of email messages, some relevant features may include the
length of the message, the name of the sender, various characteristics of the header,
the presence of certain keywords in the body of the message, and so on.

Labels: Values or categories assigned to examples. In classification problems,
examples are assigned specific categories, for instance, the spam and non-spam
categories in our binary classification problem. In regression, items are assigned
real-valued labels.

Training sample: Examples used to train a learning algorithm. In our spam
problem, the training sample consists of a set of email examples along with their
associated labels. The training sample varies for di↵erent learning scenarios, as
described in section 1.4.

Validation sample: Examples used to tune the parameters of a learning algorithm

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Binary	
  ClassificaVon

Goal:	
  Learn	
  a	
  mapping	
  from	
  enVVes	
  to	
  discrete	
  labels

1.2 Definitions and terminology 3

Figure 1.1 The zig-zag line on the left panel is consistent over the blue and red
training sample, but it is a complex separation surface that is not likely to generalize
well to unseen data. In contrast, the decision surface on the right panel is simpler
and might generalize better in spite of its misclassification of a few points of the
training sample.

Which concept families can actually be learned, and under what conditions? How
well can these concepts be learned computationally?

1.2 Definitions and terminology

We will use the canonical problem of spam detection as a running example to
illustrate some basic definitions and to describe the use and evaluation of machine
learning algorithms in practice. Spam detection is the problem of learning to
automatically classify email messages as either spam or non-spam.

Examples: Items or instances of data used for learning or evaluation. In our spam
problem, these examples correspond to the collection of email messages we will use
for learning and testing.

Features: The set of attributes, often represented as a vector, associated to an
example. In the case of email messages, some relevant features may include the
length of the message, the name of the sender, various characteristics of the header,
the presence of certain keywords in the body of the message, and so on.

Labels: Values or categories assigned to examples. In classification problems,
examples are assigned specific categories, for instance, the spam and non-spam
categories in our binary classification problem. In regression, items are assigned
real-valued labels.

Training sample: Examples used to train a learning algorithm. In our spam
problem, the training sample consists of a set of email examples along with their
associated labels. The training sample varies for di↵erent learning scenarios, as
described in section 1.4.

Validation sample: Examples used to tune the parameters of a learning algorithm

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Binary	
  ClassificaVon

Goal:	
  Learn	
  a	
  mapping	
  from	
  enVVes	
  to	
  discrete	
  labels

Example:	
  Spam	
  ClassificaVon
✦ EnVVes	
  are	
  emails
✦ Labels	
  are	
  {spam,	
  not-­‐spam}

1.2 Definitions and terminology 3

Figure 1.1 The zig-zag line on the left panel is consistent over the blue and red
training sample, but it is a complex separation surface that is not likely to generalize
well to unseen data. In contrast, the decision surface on the right panel is simpler
and might generalize better in spite of its misclassification of a few points of the
training sample.

Which concept families can actually be learned, and under what conditions? How
well can these concepts be learned computationally?

1.2 Definitions and terminology

We will use the canonical problem of spam detection as a running example to
illustrate some basic definitions and to describe the use and evaluation of machine
learning algorithms in practice. Spam detection is the problem of learning to
automatically classify email messages as either spam or non-spam.

Examples: Items or instances of data used for learning or evaluation. In our spam
problem, these examples correspond to the collection of email messages we will use
for learning and testing.

Features: The set of attributes, often represented as a vector, associated to an
example. In the case of email messages, some relevant features may include the
length of the message, the name of the sender, various characteristics of the header,
the presence of certain keywords in the body of the message, and so on.

Labels: Values or categories assigned to examples. In classification problems,
examples are assigned specific categories, for instance, the spam and non-spam
categories in our binary classification problem. In regression, items are assigned
real-valued labels.

Training sample: Examples used to train a learning algorithm. In our spam
problem, the training sample consists of a set of email examples along with their
associated labels. The training sample varies for di↵erent learning scenarios, as
described in section 1.4.

Validation sample: Examples used to tune the parameters of a learning algorithm

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Binary	
  ClassificaVon

Goal:	
  Learn	
  a	
  mapping	
  from	
  enVVes	
  to	
  discrete	
  labels

Example:	
  Spam	
  ClassificaVon
✦ EnVVes	
  are	
  emails
✦ Labels	
  are	
  {spam,	
  not-­‐spam}
✦ Given	
  past	
  labeled	
  emails,	
  we	
  want	
  to	
  predict	
  whether	
  

a	
  new	
  email	
  is	
  spam	
  or	
  not-­‐spam

1.2 Definitions and terminology 3

Figure 1.1 The zig-zag line on the left panel is consistent over the blue and red
training sample, but it is a complex separation surface that is not likely to generalize
well to unseen data. In contrast, the decision surface on the right panel is simpler
and might generalize better in spite of its misclassification of a few points of the
training sample.

Which concept families can actually be learned, and under what conditions? How
well can these concepts be learned computationally?

1.2 Definitions and terminology

We will use the canonical problem of spam detection as a running example to
illustrate some basic definitions and to describe the use and evaluation of machine
learning algorithms in practice. Spam detection is the problem of learning to
automatically classify email messages as either spam or non-spam.

Examples: Items or instances of data used for learning or evaluation. In our spam
problem, these examples correspond to the collection of email messages we will use
for learning and testing.

Features: The set of attributes, often represented as a vector, associated to an
example. In the case of email messages, some relevant features may include the
length of the message, the name of the sender, various characteristics of the header,
the presence of certain keywords in the body of the message, and so on.

Labels: Values or categories assigned to examples. In classification problems,
examples are assigned specific categories, for instance, the spam and non-spam
categories in our binary classification problem. In regression, items are assigned
real-valued labels.

Training sample: Examples used to train a learning algorithm. In our spam
problem, the training sample consists of a set of email examples along with their
associated labels. The training sample varies for di↵erent learning scenarios, as
described in section 1.4.

Validation sample: Examples used to tune the parameters of a learning algorithm

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Binary	
  ClassificaVon

Goal:	
  Learn	
  a	
  mapping	
  from	
  enVVes	
  to	
  discrete	
  labels

Other	
  Examples:
✦ Click	
  (and	
  clickthrough	
  rate)	
  predicVon
✦ Fraud	
  detecVon
✦ Face	
  detecVon
✦ Exercise:	
  “ARTS”	
  vs	
  “LIFE”	
  on	
  Wikipedia

✦ Real	
  data	
  

1.2 Definitions and terminology 3

Figure 1.1 The zig-zag line on the left panel is consistent over the blue and red
training sample, but it is a complex separation surface that is not likely to generalize
well to unseen data. In contrast, the decision surface on the right panel is simpler
and might generalize better in spite of its misclassification of a few points of the
training sample.

Which concept families can actually be learned, and under what conditions? How
well can these concepts be learned computationally?

1.2 Definitions and terminology

We will use the canonical problem of spam detection as a running example to
illustrate some basic definitions and to describe the use and evaluation of machine
learning algorithms in practice. Spam detection is the problem of learning to
automatically classify email messages as either spam or non-spam.

Examples: Items or instances of data used for learning or evaluation. In our spam
problem, these examples correspond to the collection of email messages we will use
for learning and testing.

Features: The set of attributes, often represented as a vector, associated to an
example. In the case of email messages, some relevant features may include the
length of the message, the name of the sender, various characteristics of the header,
the presence of certain keywords in the body of the message, and so on.

Labels: Values or categories assigned to examples. In classification problems,
examples are assigned specific categories, for instance, the spam and non-spam
categories in our binary classification problem. In regression, items are assigned
real-valued labels.

Training sample: Examples used to train a learning algorithm. In our spam
problem, the training sample consists of a set of email examples along with their
associated labels. The training sample varies for di↵erent learning scenarios, as
described in section 1.4.

Validation sample: Examples used to tune the parameters of a learning algorithm

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



ClassificaVon	
  Pipeline
Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



ClassificaVon	
  Pipeline
Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

1. Randomly	
  split	
  full	
  data	
  into	
  disjoint	
  subsets

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



ClassificaVon	
  Pipeline
Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

1. Randomly	
  split	
  full	
  data	
  into	
  disjoint	
  subsets
2. Featurize	
  the	
  data

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



ClassificaVon	
  Pipeline
Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

1. Randomly	
  split	
  full	
  data	
  into	
  disjoint	
  subsets
2. Featurize	
  the	
  data
3. Use	
  training	
  set	
  to	
  learn	
  a	
  classifier

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



ClassificaVon	
  Pipeline
Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

1. Randomly	
  split	
  full	
  data	
  into	
  disjoint	
  subsets
2. Featurize	
  the	
  data
3. Use	
  training	
  set	
  to	
  learn	
  a	
  classifier
4. Evaluate	
  classifier	
  on	
  test	
  set	
  (avoid	
  overfidng)

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



ClassificaVon	
  Pipeline
Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

1. Randomly	
  split	
  full	
  data	
  into	
  disjoint	
  subsets
2. Featurize	
  the	
  data
3. Use	
  training	
  set	
  to	
  learn	
  a	
  classifier
4. Evaluate	
  classifier	
  on	
  test	
  set	
  (avoid	
  overfidng)
5. Use	
  classifier	
  to	
  predict	
  in	
  the	
  wild

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



E.g.,	
  Spam	
  ClassificaVon

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by 
giving us your money..."

From: bob@good.com

"Hi, it's been a while!  
How are you? ..."

spam

not-spam

spam

not-­‐spam

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



FeaturizaVon	
   Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



FeaturizaVon	
  

✦ Most	
  classifiers	
  require	
  numeric	
  descripJons	
  of	
  
enJJes

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



FeaturizaVon	
  

✦ Most	
  classifiers	
  require	
  numeric	
  descripJons	
  of	
  
enJJes

✦ Featuriza>on:	
  Transform	
  each	
  enJty	
  into	
  a	
  vector	
  
of	
  real	
  numbers

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



FeaturizaVon	
  

✦ Most	
  classifiers	
  require	
  numeric	
  descripJons	
  of	
  
enJJes

✦ Featuriza>on:	
  Transform	
  each	
  enJty	
  into	
  a	
  vector	
  
of	
  real	
  numbers
✦ Opportunity	
  to	
  incorporate	
  domain	
  knowledge
✦ Useful	
  even	
  when	
  original	
  data	
  is	
  already	
  numeric

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



E.g.,	
  “Bag	
  of	
  Words”	
  

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by 
giving us your money..."

From: bob@good.com

"Hi, it's been a while!  
How are you? ..."

Vocabulary
been
debt

eliminate
giving
how
it's
money
while

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



E.g.,	
  “Bag	
  of	
  Words”	
  
✦ EnVVes	
  are	
  documents

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by 
giving us your money..."

From: bob@good.com

"Hi, it's been a while!  
How are you? ..."

Vocabulary
been
debt

eliminate
giving
how
it's
money
while

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



E.g.,	
  “Bag	
  of	
  Words”	
  
✦ EnVVes	
  are	
  documents

✦ Build	
  Vocabulary

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by 
giving us your money..."

From: bob@good.com

"Hi, it's been a while!  
How are you? ..."

Vocabulary
been
debt

eliminate
giving
how
it's
money
while

Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by 
giving us your money..."

From: bob@good.com

"Hi, it's been a while!  
How are you? ..."

Vocabulary
been
debt

eliminate
giving
how
it's
money
while

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Example:(Spam(Classifica<on(

From: illegitimate@bad.com

"Eliminate your debt by 
giving us your money..."

been

debt

eliminate

giving

how

it's

money

while

0

1

1

1

0

0

1

0

E.g.,	
  “Bag	
  of	
  Words”	
  
✦ EnVVes	
  are	
  documents

✦ Build	
  Vocabulary

✦ Derive	
  feature	
  vectors	
  from	
  Vocabulary
✦ Exercise:	
  we’ll	
  use	
  bigrams

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Support	
  Vector	
  Machines	
  (SVMs)

Credit:	
  FoundaVons	
  of	
  Machine	
  Learning	
  
Mohri,	
  Rostamizadeh,	
  Talwalkar

64 Support Vector Machines

w·x+b=0

w·x+b=0

Figure 4.1 Two possible separating hyperplanes. The right-hand side figure shows
a hyperplane that maximizes the margin.

4.2 SVMs — separable case

In this section, we assume that the training sample S can be linearly separated,
that is, we assume the existence of a hyperplane that perfectly separates the
training sample into two populations of positively and negatively labeled points,
as illustrated by the left panel of figure 4.1. But there are then infinitely many
such separating hyperplanes. Which hyperplane should a learning algorithm select?
The solution returned by the SVM algorithm is the hyperplane with the maximum
margin, or distance to the closest points, and is thus known as the maximum-margin
hyperplane. The right panel of figure 4.1 illustrates that choice.

We will present later in this chapter a margin theory that provides a strong
justification for this solution. We can observe already, however, that the SVM
solution can also be viewed as the “safest” choice in the following sense: a test
point is classified correctly by a separating hyperplane with margin ⇢ even when
it falls within a distance ⇢ of the training samples sharing the same label; for the
SVM solution, ⇢ is the maximum margin and thus the “safest” value.

4.2.1 Primal optimization problem

We now derive the equations and optimization problem that define the SVM
solution. The general equation of a hyperplane in RN is

w · x + b = 0, (4.3)

where w 2 RN is a non-zero vector normal to the hyperplane and b 2 R a
scalar. Note that this definition of a hyperplane is invariant to non-zero scalar
multiplication. Hence, for a hyperplane that does not pass through any sample
point, we can scale w and b appropriately such that min(x,y)2S |w · x + b| = 1.

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction



Support	
  Vector	
  Machines	
  (SVMs)

Credit:	
  FoundaVons	
  of	
  Machine	
  Learning	
  
Mohri,	
  Rostamizadeh,	
  Talwalkar

64 Support Vector Machines

w·x+b=0

w·x+b=0

Figure 4.1 Two possible separating hyperplanes. The right-hand side figure shows
a hyperplane that maximizes the margin.

4.2 SVMs — separable case

In this section, we assume that the training sample S can be linearly separated,
that is, we assume the existence of a hyperplane that perfectly separates the
training sample into two populations of positively and negatively labeled points,
as illustrated by the left panel of figure 4.1. But there are then infinitely many
such separating hyperplanes. Which hyperplane should a learning algorithm select?
The solution returned by the SVM algorithm is the hyperplane with the maximum
margin, or distance to the closest points, and is thus known as the maximum-margin
hyperplane. The right panel of figure 4.1 illustrates that choice.

We will present later in this chapter a margin theory that provides a strong
justification for this solution. We can observe already, however, that the SVM
solution can also be viewed as the “safest” choice in the following sense: a test
point is classified correctly by a separating hyperplane with margin ⇢ even when
it falls within a distance ⇢ of the training samples sharing the same label; for the
SVM solution, ⇢ is the maximum margin and thus the “safest” value.

4.2.1 Primal optimization problem

We now derive the equations and optimization problem that define the SVM
solution. The general equation of a hyperplane in RN is

w · x + b = 0, (4.3)

where w 2 RN is a non-zero vector normal to the hyperplane and b 2 R a
scalar. Note that this definition of a hyperplane is invariant to non-zero scalar
multiplication. Hence, for a hyperplane that does not pass through any sample
point, we can scale w and b appropriately such that min(x,y)2S |w · x + b| = 1.

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction



Support	
  Vector	
  Machines	
  (SVMs)

Credit:	
  FoundaVons	
  of	
  Machine	
  Learning	
  
Mohri,	
  Rostamizadeh,	
  Talwalkar

64 Support Vector Machines

w·x+b=0

w·x+b=0

Figure 4.1 Two possible separating hyperplanes. The right-hand side figure shows
a hyperplane that maximizes the margin.

4.2 SVMs — separable case

In this section, we assume that the training sample S can be linearly separated,
that is, we assume the existence of a hyperplane that perfectly separates the
training sample into two populations of positively and negatively labeled points,
as illustrated by the left panel of figure 4.1. But there are then infinitely many
such separating hyperplanes. Which hyperplane should a learning algorithm select?
The solution returned by the SVM algorithm is the hyperplane with the maximum
margin, or distance to the closest points, and is thus known as the maximum-margin
hyperplane. The right panel of figure 4.1 illustrates that choice.

We will present later in this chapter a margin theory that provides a strong
justification for this solution. We can observe already, however, that the SVM
solution can also be viewed as the “safest” choice in the following sense: a test
point is classified correctly by a separating hyperplane with margin ⇢ even when
it falls within a distance ⇢ of the training samples sharing the same label; for the
SVM solution, ⇢ is the maximum margin and thus the “safest” value.

4.2.1 Primal optimization problem

We now derive the equations and optimization problem that define the SVM
solution. The general equation of a hyperplane in RN is

w · x + b = 0, (4.3)

where w 2 RN is a non-zero vector normal to the hyperplane and b 2 R a
scalar. Note that this definition of a hyperplane is invariant to non-zero scalar
multiplication. Hence, for a hyperplane that does not pass through any sample
point, we can scale w and b appropriately such that min(x,y)2S |w · x + b| = 1.

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction



Support	
  Vector	
  Machines	
  (SVMs)

Credit:	
  FoundaVons	
  of	
  Machine	
  Learning	
  
Mohri,	
  Rostamizadeh,	
  Talwalkar

64 Support Vector Machines

w·x+b=0

w·x+b=0

Figure 4.1 Two possible separating hyperplanes. The right-hand side figure shows
a hyperplane that maximizes the margin.

4.2 SVMs — separable case

In this section, we assume that the training sample S can be linearly separated,
that is, we assume the existence of a hyperplane that perfectly separates the
training sample into two populations of positively and negatively labeled points,
as illustrated by the left panel of figure 4.1. But there are then infinitely many
such separating hyperplanes. Which hyperplane should a learning algorithm select?
The solution returned by the SVM algorithm is the hyperplane with the maximum
margin, or distance to the closest points, and is thus known as the maximum-margin
hyperplane. The right panel of figure 4.1 illustrates that choice.

We will present later in this chapter a margin theory that provides a strong
justification for this solution. We can observe already, however, that the SVM
solution can also be viewed as the “safest” choice in the following sense: a test
point is classified correctly by a separating hyperplane with margin ⇢ even when
it falls within a distance ⇢ of the training samples sharing the same label; for the
SVM solution, ⇢ is the maximum margin and thus the “safest” value.

4.2.1 Primal optimization problem

We now derive the equations and optimization problem that define the SVM
solution. The general equation of a hyperplane in RN is

w · x + b = 0, (4.3)

where w 2 RN is a non-zero vector normal to the hyperplane and b 2 R a
scalar. Note that this definition of a hyperplane is invariant to non-zero scalar
multiplication. Hence, for a hyperplane that does not pass through any sample
point, we can scale w and b appropriately such that min(x,y)2S |w · x + b| = 1.

✦ “Max-­‐Margin”:	
  find	
  linear	
  separator	
  
with	
  the	
  largest	
  separaVon	
  between	
  
the	
  two	
  classes

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction



Support	
  Vector	
  Machines	
  (SVMs)

Credit:	
  FoundaVons	
  of	
  Machine	
  Learning	
  
Mohri,	
  Rostamizadeh,	
  Talwalkar

64 Support Vector Machines

w·x+b=0

w·x+b=0

Figure 4.1 Two possible separating hyperplanes. The right-hand side figure shows
a hyperplane that maximizes the margin.

4.2 SVMs — separable case

In this section, we assume that the training sample S can be linearly separated,
that is, we assume the existence of a hyperplane that perfectly separates the
training sample into two populations of positively and negatively labeled points,
as illustrated by the left panel of figure 4.1. But there are then infinitely many
such separating hyperplanes. Which hyperplane should a learning algorithm select?
The solution returned by the SVM algorithm is the hyperplane with the maximum
margin, or distance to the closest points, and is thus known as the maximum-margin
hyperplane. The right panel of figure 4.1 illustrates that choice.

We will present later in this chapter a margin theory that provides a strong
justification for this solution. We can observe already, however, that the SVM
solution can also be viewed as the “safest” choice in the following sense: a test
point is classified correctly by a separating hyperplane with margin ⇢ even when
it falls within a distance ⇢ of the training samples sharing the same label; for the
SVM solution, ⇢ is the maximum margin and thus the “safest” value.

4.2.1 Primal optimization problem

We now derive the equations and optimization problem that define the SVM
solution. The general equation of a hyperplane in RN is

w · x + b = 0, (4.3)

where w 2 RN is a non-zero vector normal to the hyperplane and b 2 R a
scalar. Note that this definition of a hyperplane is invariant to non-zero scalar
multiplication. Hence, for a hyperplane that does not pass through any sample
point, we can scale w and b appropriately such that min(x,y)2S |w · x + b| = 1.

✦ “Max-­‐Margin”:	
  find	
  linear	
  separator	
  
with	
  the	
  largest	
  separaVon	
  between	
  
the	
  two	
  classes

✦ Extensions:
✦ non-­‐separable	
  sedng
✦ non-­‐linear	
  classifiers	
  (kernels)

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction



Model	
  EvaluaVon Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Model	
  EvaluaVon

✦ Test	
  set	
  simulates	
  performance	
  on	
  new	
  enVty
✦ Performance	
  on	
  training	
  data	
  overly	
  opJmisJc!
✦ “Overfijng”;	
  “GeneralizaJon”

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Model	
  EvaluaVon

✦ Test	
  set	
  simulates	
  performance	
  on	
  new	
  enVty
✦ Performance	
  on	
  training	
  data	
  overly	
  opJmisJc!
✦ “Overfijng”;	
  “GeneralizaJon”

✦ Various	
  metrics	
  for	
  quality;	
  accuracy	
  is	
  most	
  common

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Model	
  EvaluaVon

✦ Test	
  set	
  simulates	
  performance	
  on	
  new	
  enVty
✦ Performance	
  on	
  training	
  data	
  overly	
  opJmisJc!
✦ “Overfijng”;	
  “GeneralizaJon”

✦ Various	
  metrics	
  for	
  quality;	
  accuracy	
  is	
  most	
  common
✦ EvaluaVon	
  process

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Model	
  EvaluaVon

✦ Test	
  set	
  simulates	
  performance	
  on	
  new	
  enVty
✦ Performance	
  on	
  training	
  data	
  overly	
  opJmisJc!
✦ “Overfijng”;	
  “GeneralizaJon”

✦ Various	
  metrics	
  for	
  quality;	
  accuracy	
  is	
  most	
  common
✦ EvaluaVon	
  process

✦ Train	
  on	
  training	
  set	
  (don’t	
  expose	
  test	
  set	
  to	
  classifier)

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Model	
  EvaluaVon

✦ Test	
  set	
  simulates	
  performance	
  on	
  new	
  enVty
✦ Performance	
  on	
  training	
  data	
  overly	
  opJmisJc!
✦ “Overfijng”;	
  “GeneralizaJon”

✦ Various	
  metrics	
  for	
  quality;	
  accuracy	
  is	
  most	
  common
✦ EvaluaVon	
  process

✦ Train	
  on	
  training	
  set	
  (don’t	
  expose	
  test	
  set	
  to	
  classifier)
✦ Make	
  predicJons	
  using	
  test	
  set	
  (ignoring	
  test	
  labels)

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Model	
  EvaluaVon

✦ Test	
  set	
  simulates	
  performance	
  on	
  new	
  enVty
✦ Performance	
  on	
  training	
  data	
  overly	
  opJmisJc!
✦ “Overfijng”;	
  “GeneralizaJon”

✦ Various	
  metrics	
  for	
  quality;	
  accuracy	
  is	
  most	
  common
✦ EvaluaVon	
  process

✦ Train	
  on	
  training	
  set	
  (don’t	
  expose	
  test	
  set	
  to	
  classifier)
✦ Make	
  predicJons	
  using	
  test	
  set	
  (ignoring	
  test	
  labels)
✦ Compute	
  fracJon	
  of	
  correct	
  predicJons	
  on	
  test	
  set

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Model	
  EvaluaVon

✦ Test	
  set	
  simulates	
  performance	
  on	
  new	
  enVty
✦ Performance	
  on	
  training	
  data	
  overly	
  opJmisJc!
✦ “Overfijng”;	
  “GeneralizaJon”

✦ Various	
  metrics	
  for	
  quality;	
  accuracy	
  is	
  most	
  common
✦ EvaluaVon	
  process

✦ Train	
  on	
  training	
  set	
  (don’t	
  expose	
  test	
  set	
  to	
  classifier)
✦ Make	
  predicJons	
  using	
  test	
  set	
  (ignoring	
  test	
  labels)
✦ Compute	
  fracJon	
  of	
  correct	
  predicJons	
  on	
  test	
  set

✦ Other	
  more	
  sophisVcated	
  evaluaVon	
  methods,	
  e.g.,	
  
cross-­‐validaVon

Classifica<on(

full
dataset

training
set

test set

classifier

accuracy

new entity

prediction

Adapted	
  from	
  slides	
  by	
  Ariel	
  Kleiner



Contribu>ons	
  
encouraged!

www.mlbase.org

baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML basebiglearn.org

http://www.mlbase.org
http://www.mlbase.org

