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with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F ) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib
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with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
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unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.
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with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.
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TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F ) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the
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with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.
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MATLAB-Mex 124
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Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:
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+ �(||U ||2F + ||V ||2F ) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the
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th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the
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with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
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model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
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communication paradigm, or some other property of the sys-
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...



Alterna]ng	
  Least	
  Squares

=

training error for first user =  (   -      ) + (   -      )



Alterna]ng	
  Least	
  Squares

=

training error for first user =  (   -      ) + (   -      )
M W

H>



Alterna]ng	
  Least	
  Squares

=

training error for first user =  (   -      ) + (   -      )
M W

H>

=
X

(1,j)2⌦

(M1j �W1H
>
j )2



Alterna]ng	
  Least	
  Squares

=

training error for first user =  (   -      ) + (   -      )
M W

H>

=
X

(1,j)2⌦

(M1j �W1H
>
j )2

W ⇤
1 = (H>

⌦1
H⌦1)

�1H>
⌦1

M>
1⌦1



Exercise	
  Today

�19



Exercise	
  Today

• Load	
  1,000,000	
  ra]ngs	
  from	
  MovieLens.

�19



Exercise	
  Today

• Load	
  1,000,000	
  ra]ngs	
  from	
  MovieLens.
• Get	
  YOUR	
  ra]ngs.

�19



Exercise	
  Today

• Load	
  1,000,000	
  ra]ngs	
  from	
  MovieLens.
• Get	
  YOUR	
  ra]ngs.
• Split	
  into	
  training/valida]on.

�19



Exercise	
  Today

• Load	
  1,000,000	
  ra]ngs	
  from	
  MovieLens.
• Get	
  YOUR	
  ra]ngs.
• Split	
  into	
  training/valida]on.
• Fit	
  a	
  model.

�19



Exercise	
  Today

• Load	
  1,000,000	
  ra]ngs	
  from	
  MovieLens.
• Get	
  YOUR	
  ra]ngs.
• Split	
  into	
  training/valida]on.
• Fit	
  a	
  model.
• Validate	
  and	
  tune	
  hyperparameters.

�19



Exercise	
  Today

• Load	
  1,000,000	
  ra]ngs	
  from	
  MovieLens.
• Get	
  YOUR	
  ra]ngs.
• Split	
  into	
  training/valida]on.
• Fit	
  a	
  model.
• Validate	
  and	
  tune	
  hyperparameters.
• Get	
  YOUR	
  recommenda]ons.

�19



Exercise	
  Today

• Load	
  1,000,000	
  ra]ngs	
  from	
  MovieLens.
• Get	
  YOUR	
  ra]ngs.
• Split	
  into	
  training/valida]on.
• Fit	
  a	
  model.
• Validate	
  and	
  tune	
  hyperparameters.
• Get	
  YOUR	
  recommenda]ons.
• Great	
  example	
  of	
  a	
  Spark	
  applica]on!

�19



Vision	
  
MLlib	
  
Collabora.ve	
  Filtering	
  
ALS	
  Details



Three	
  Kinds	
  of	
  ALS

• Broadcast	
  Everything	
  

• Data	
  Parallel	
  

• Fully	
  Parallel



Three	
  Kinds	
  of	
  ALS

• Broadcast	
  Everything	
  

• Data	
  Parallel	
  

• Fully	
  Parallel



Broadcast	
  Everything

Master
Workers

Ratings

Movie!
Factors

User!
Factors



Broadcast	
  Everything
• Master	
  loads	
  (small)	
  

data	
  file	
  and	
  ini]alizes	
  
models.	
  

• Master	
  broadcasts	
  data	
  
and	
  ini]al	
  models.	
  

• At	
  each	
  itera]on,	
  
updated	
  models	
  are	
  
broadcast	
  again.	
  

• Works	
  OK	
  for	
  small	
  data.	
  

• Lots	
  of	
  communica]on	
  
overhead	
  -­‐	
  doesn’t	
  scale	
  
well.	
  

• Ships	
  with	
  Spark	
  
ExamplesMaster

Workers

Ratings

Movie!
Factors

User!
Factors



Broadcast	
  Everything
• Master	
  loads	
  (small)	
  

data	
  file	
  and	
  ini]alizes	
  
models.	
  

• Master	
  broadcasts	
  data	
  
and	
  ini]al	
  models.	
  

• At	
  each	
  itera]on,	
  
updated	
  models	
  are	
  
broadcast	
  again.	
  

• Works	
  OK	
  for	
  small	
  data.	
  

• Lots	
  of	
  communica]on	
  
overhead	
  -­‐	
  doesn’t	
  scale	
  
well.	
  

• Ships	
  with	
  Spark	
  
ExamplesMaster

Workers

Ratings

Movie!
FactorsUser!
Factors



Broadcast	
  Everything
• Master	
  loads	
  (small)	
  

data	
  file	
  and	
  ini]alizes	
  
models.	
  

• Master	
  broadcasts	
  data	
  
and	
  ini]al	
  models.	
  

• At	
  each	
  itera]on,	
  
updated	
  models	
  are	
  
broadcast	
  again.	
  

• Works	
  OK	
  for	
  small	
  data.	
  

• Lots	
  of	
  communica]on	
  
overhead	
  -­‐	
  doesn’t	
  scale	
  
well.	
  

• Ships	
  with	
  Spark	
  
ExamplesMaster

Workers

RatingsMovie!
FactorsUser!
Factors



Broadcast	
  Everything
• Master	
  loads	
  (small)	
  

data	
  file	
  and	
  ini]alizes	
  
models.	
  

• Master	
  broadcasts	
  data	
  
and	
  ini]al	
  models.	
  

• At	
  each	
  itera]on,	
  
updated	
  models	
  are	
  
broadcast	
  again.	
  

• Works	
  OK	
  for	
  small	
  data.	
  

• Lots	
  of	
  communica]on	
  
overhead	
  -­‐	
  doesn’t	
  scale	
  
well.	
  

• Ships	
  with	
  Spark	
  
ExamplesMaster

Workers

RatingsMovie!
FactorsUser!
Factors



Broadcast	
  Everything
• Master	
  loads	
  (small)	
  

data	
  file	
  and	
  ini]alizes	
  
models.	
  

• Master	
  broadcasts	
  data	
  
and	
  ini]al	
  models.	
  

• At	
  each	
  itera]on,	
  
updated	
  models	
  are	
  
broadcast	
  again.	
  

• Works	
  OK	
  for	
  small	
  data.	
  

• Lots	
  of	
  communica]on	
  
overhead	
  -­‐	
  doesn’t	
  scale	
  
well.	
  

• Ships	
  with	
  Spark	
  
ExamplesMaster

Workers

RatingsMovie!
FactorsUser!
Factors



Broadcast	
  Everything
• Master	
  loads	
  (small)	
  

data	
  file	
  and	
  ini]alizes	
  
models.	
  

• Master	
  broadcasts	
  data	
  
and	
  ini]al	
  models.	
  

• At	
  each	
  itera]on,	
  
updated	
  models	
  are	
  
broadcast	
  again.	
  

• Works	
  OK	
  for	
  small	
  data.	
  

• Lots	
  of	
  communica]on	
  
overhead	
  -­‐	
  doesn’t	
  scale	
  
well.	
  

• Ships	
  with	
  Spark	
  
ExamplesMaster

Workers

RatingsMovie!
FactorsUser!
Factors



Three	
  Kinds	
  of	
  ALS

• Broadcast	
  Everything	
  

• Data	
  Parallel	
  

• Fully	
  Parallel



Data	
  Parallel

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings



Data	
  Parallel

• Workers	
  load	
  data

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings



Data	
  Parallel

• Workers	
  load	
  data

• Master	
  broadcasts	
  ini]al	
  
models

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings



Data	
  Parallel

• Workers	
  load	
  data

• Master	
  broadcasts	
  ini]al	
  
models

• At	
  each	
  itera]on,	
  
updated	
  models	
  are	
  
broadcast	
  again

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings



Data	
  Parallel

• Workers	
  load	
  data

• Master	
  broadcasts	
  ini]al	
  
models

• At	
  each	
  itera]on,	
  
updated	
  models	
  are	
  
broadcast	
  again

• Much	
  bejer	
  scaling

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings



Data	
  Parallel

• Workers	
  load	
  data

• Master	
  broadcasts	
  ini]al	
  
models

• At	
  each	
  itera]on,	
  
updated	
  models	
  are	
  
broadcast	
  again

• Much	
  bejer	
  scaling

• Works	
  on	
  large	
  datasets

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings



Data	
  Parallel

• Workers	
  load	
  data

• Master	
  broadcasts	
  ini]al	
  
models

• At	
  each	
  itera]on,	
  
updated	
  models	
  are	
  
broadcast	
  again

• Much	
  bejer	
  scaling

• Works	
  on	
  large	
  datasets

• Works	
  well	
  for	
  smaller	
  
models.	
  (low	
  K)

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings



Data	
  Parallel

• Workers	
  load	
  data

• Master	
  broadcasts	
  ini]al	
  
models

• At	
  each	
  itera]on,	
  
updated	
  models	
  are	
  
broadcast	
  again

• Much	
  bejer	
  scaling

• Works	
  on	
  large	
  datasets

• Works	
  well	
  for	
  smaller	
  
models.	
  (low	
  K)

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings



Data	
  Parallel

• Workers	
  load	
  data

• Master	
  broadcasts	
  ini]al	
  
models

• At	
  each	
  itera]on,	
  
updated	
  models	
  are	
  
broadcast	
  again

• Much	
  bejer	
  scaling

• Works	
  on	
  large	
  datasets

• Works	
  well	
  for	
  smaller	
  
models.	
  (low	
  K)

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings



Data	
  Parallel

• Workers	
  load	
  data

• Master	
  broadcasts	
  ini]al	
  
models

• At	
  each	
  itera]on,	
  
updated	
  models	
  are	
  
broadcast	
  again

• Much	
  bejer	
  scaling

• Works	
  on	
  large	
  datasets

• Works	
  well	
  for	
  smaller	
  
models.	
  (low	
  K)

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings



Three	
  Kinds	
  of	
  ALS

• Broadcast	
  Everything	
  

• Data	
  Parallel	
  

• Fully	
  Parallel



Fully	
  Parallel

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors



Fully	
  Parallel
• Workers	
  load	
  data

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors



Fully	
  Parallel
• Workers	
  load	
  data

• Models	
  are	
  instan]ated	
  
at	
  workers.

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors



Fully	
  Parallel
• Workers	
  load	
  data

• Models	
  are	
  instan]ated	
  
at	
  workers.

• At	
  each	
  itera]on,	
  
models	
  are	
  shared	
  via	
  
join	
  between	
  workers.

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors



Fully	
  Parallel
• Workers	
  load	
  data

• Models	
  are	
  instan]ated	
  
at	
  workers.

• At	
  each	
  itera]on,	
  
models	
  are	
  shared	
  via	
  
join	
  between	
  workers.

• Much	
  bejer	
  scalability.

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors



Fully	
  Parallel
• Workers	
  load	
  data

• Models	
  are	
  instan]ated	
  
at	
  workers.

• At	
  each	
  itera]on,	
  
models	
  are	
  shared	
  via	
  
join	
  between	
  workers.

• Much	
  bejer	
  scalability.

• Works	
  on	
  large	
  datasets

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors



Fully	
  Parallel
• Workers	
  load	
  data

• Models	
  are	
  instan]ated	
  
at	
  workers.

• At	
  each	
  itera]on,	
  
models	
  are	
  shared	
  via	
  
join	
  between	
  workers.

• Much	
  bejer	
  scalability.

• Works	
  on	
  large	
  datasets

• Works	
  on	
  big	
  models	
  
(higher	
  K)

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors



Fully	
  Parallel
• Workers	
  load	
  data

• Models	
  are	
  instan]ated	
  
at	
  workers.

• At	
  each	
  itera]on,	
  
models	
  are	
  shared	
  via	
  
join	
  between	
  workers.

• Much	
  bejer	
  scalability.

• Works	
  on	
  large	
  datasets

• Works	
  on	
  big	
  models	
  
(higher	
  K)

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors



Fully	
  Parallel
• Workers	
  load	
  data

• Models	
  are	
  instan]ated	
  
at	
  workers.

• At	
  each	
  itera]on,	
  
models	
  are	
  shared	
  via	
  
join	
  between	
  workers.

• Much	
  bejer	
  scalability.

• Works	
  on	
  large	
  datasets

• Works	
  on	
  big	
  models	
  
(higher	
  K)

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors



Three	
  Kinds	
  of	
  ALS

• Broadcast	
  Everything	
  

• Data	
  Parallel	
  

• Fully	
  Parallel



Three	
  Kinds	
  of	
  ALS

• Broadcast	
  Everything	
  

• Data	
  Parallel	
  

• Fully	
  Parallel

Blocked

Four



Runtime(s)

MLlib

MLI

ML Optimizer

Spark

ML	
  Op.mizer:	
  a	
  declara]ve	
  layer	
  to	
  simplify	
  
access	
  to	
  large-­‐scale	
  ML	
  

MLI:	
  experimental	
  API	
  	
  for	
  simplified	
  feature	
  
extrac]on	
  and	
  algorithm	
  development	
  

MLlib:	
  produc]on-­‐quality	
  ML	
  library	
  in	
  Spark	
  

Spark:	
  cluster	
  compu]ng	
  system	
  designed	
  for	
  
itera]ve	
  computa]on



Runtime(s)

MLlib

MLI

ML Optimizer

Spark

ML	
  Op.mizer:	
  a	
  declara]ve	
  layer	
  to	
  simplify	
  
access	
  to	
  large-­‐scale	
  ML	
  

MLI:	
  experimental	
  API	
  	
  for	
  simplified	
  feature	
  
extrac]on	
  and	
  algorithm	
  development	
  

MLlib:	
  produc]on-­‐quality	
  ML	
  library	
  in	
  Spark	
  

Spark:	
  cluster	
  compu]ng	
  system	
  designed	
  for	
  
itera]ve	
  computa]on

baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML base

www.mlbase.org

http://www.mlbase.org


Runtime(s)

MLlib

MLI

ML Optimizer

Spark

ML	
  Op.mizer:	
  a	
  declara]ve	
  layer	
  to	
  simplify	
  
access	
  to	
  large-­‐scale	
  ML	
  

MLI:	
  experimental	
  API	
  	
  for	
  simplified	
  feature	
  
extrac]on	
  and	
  algorithm	
  development	
  

MLlib:	
  produc]on-­‐quality	
  ML	
  library	
  in	
  Spark	
  

Spark:	
  cluster	
  compu]ng	
  system	
  designed	
  for	
  
itera]ve	
  computa]on

THANKS! 
QUESTIONS?

baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML base

www.mlbase.org

http://www.mlbase.org

