
baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML base

Collaborators:	 Ameet	 Talwalkar,	 Xiangrui	 Meng,	 Virginia	 Smith,	 Xinghao	 Pan,	 	
Shivaram	 Venkataraman,	 Matei	 Zaharia,	 Rean	 Griffith,	 John	 Duchi,	 Joseph	 Gonzalez,	 	

Michael	 Franklin,	 Michael	 I.	 Jordan,	 Tim	 Kraska	  

www.mlbase.org
UC Berkeley

Evan	 Sparks	
UC	 Berkeley	

January	 31st,	 2014

MLlib &

Distributed Machine Learning on

http://www.mlbase.org

Problem:	 Scalable	 implementa.ons	
difficult	 for	 ML	 Developers…

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX
Runtime

DMX
Runtime

DMX
Runtime

DMX
Runtime

LLP

PLP

M
aster

S
laves

Problem:	 Scalable	 implementa.ons	
difficult	 for	 ML	 Developers…

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX
Runtime

DMX
Runtime

DMX
Runtime

DMX
Runtime

LLP

PLP

M
aster

S
laves

Problem:	 Scalable	 implementa.ons	
difficult	 for	 ML	 Developers…

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX
Runtime

DMX
Runtime

DMX
Runtime

DMX
Runtime

LLP

PLP

M
aster

S
laves

Too	 many	
algorithms…

Problem:	 ML	 is	 difficult 
for	 End	 Users…

Too	 many	
algorithms…

Too	 many	
knobs…

Problem:	 ML	 is	 difficult 
for	 End	 Users…

Too	 many	
algorithms…

Too	 many	
knobs…

Problem:	 ML	 is	 difficult 
for	 End	 Users…

Difficult	 to	
debug…

Too	 many	
algorithms…

Too	 many	
knobs…

Problem:	 ML	 is	 difficult 
for	 End	 Users…

Difficult	 to	
debug…

Doesn’t	 scale…

Too	 many	
algorithms…

Too	 many	
knobs…

Problem:	 ML	 is	 difficult 
for	 End	 Users…

Difficult	 to	
debug…

Reliable

Fa
st

Accurate

Pr
ov
ab
le

Doesn’t	 scale…

ML	 Experts Systems	 ExpertsMLbase

1. Easy	 scalable	 ML	 development	 (ML	 Developers)
2. User-‐friendly	 ML	 at	 scale	 (End	 Users)

ML	 Experts Systems	 ExpertsMLbase

Matlab	 Stack

Matlab	 Stack

Single Machine

Lapack

Matlab	 Stack

Single Machine

✦ Lapack:	 low-‐level	 Fortran	 linear	 algebra	 library

Lapack

Matlab Interface

Matlab	 Stack

Single Machine

✦ Lapack:	 low-‐level	 Fortran	 linear	 algebra	 library
✦ Matlab	 Interface

✦ Higher-‐level	 abstrac]ons	 for	 data	 access	 /	 processing
✦ More	 extensive	 func]onality	 than	 Lapack
✦ Leverages	 Lapack	 whenever	 possible

Lapack

Matlab Interface

Matlab	 Stack

Single Machine

✦ Lapack:	 low-‐level	 Fortran	 linear	 algebra	 library
✦ Matlab	 Interface

✦ Higher-‐level	 abstrac]ons	 for	 data	 access	 /	 processing
✦ More	 extensive	 func]onality	 than	 Lapack
✦ Leverages	 Lapack	 whenever	 possible

✦ Similar	 stories	 for	 R	 and	 Python

MLbase	 Stack

Lapack

Matlab Interface

Single Machine

MLbase	 Stack

Runtime(s)

Lapack

Matlab Interface

Single Machine

MLbase	 Stack

Runtime(s)Spark

Spark:	 cluster	 compu]ng	 system	 designed	 for	 itera]ve	 computa]on

Lapack

Matlab Interface

Single Machine

MLbase	 Stack

Runtime(s)

MLlib

Spark

Spark:	 cluster	 compu]ng	 system	 designed	 for	 itera]ve	 computa]on

MLlib:	 produc]on-‐quality	 ML	 library	 in	 Spark

Lapack

Matlab Interface

Single Machine

MLbase	 Stack

Runtime(s)

MLlib

MLI

Spark

Spark:	 cluster	 compu]ng	 system	 designed	 for	 itera]ve	 computa]on

MLlib:	 produc]on-‐quality	 ML	 library	 in	 Spark

MLI:	 experimental	 API	 	 for	 simplified	 feature	 extrac]on	 and	 algorithm	
development

Lapack

Matlab Interface

Single Machine

MLbase	 Stack

Runtime(s)

MLlib

MLI

ML Optimizer

Spark

Spark:	 cluster	 compu]ng	 system	 designed	 for	 itera]ve	 computa]on

MLlib:	 produc]on-‐quality	 ML	 library	 in	 Spark

MLI:	 experimental	 API	 	 for	 simplified	 feature	 extrac]on	 and	 algorithm	
development

ML	 Op.mizer:	 a	 declara]ve	 layer	 to	 simplify	 access	 to	 large-‐scale	 ML

Lapack

Matlab Interface

Single Machine

Overview	
MLlib	
Collabora.ve	 Filtering	
ALS	 Details

Logis]c	 Regression,	 Linear	 SVM	 (+L1,	 L2),	 Decision	
Trees,	 Naive	 Bayes	

Linear	 Regression	 (+Lasso,	 Ridge)	

Alterna]ng	 Least	 Squares	

K-‐Means,	 SVD	

SGD,	 Parallel	 Gradient	

Scala,	 Java,	 PySpark	 (0.9)

MLlib
Classifica.on:	

Regression:	

Collabora.ve	 Filtering:	

Clustering	 /	 Explora.on:	

Op.miza.on	 Primi.ves:	

Interopera.lity:	

Logis]c	 Regression,	 Linear	 SVM	 (+L1,	 L2),	 Decision	
Trees,	 Naive	 Bayes	

Linear	 Regression	 (+Lasso,	 Ridge)	

Alterna]ng	 Least	 Squares	

K-‐Means,	 SVD	

SGD,	 Parallel	 Gradient	

Scala,	 Java,	 PySpark	 (0.9)

MLlib
Classifica.on:	

Regression:	

Collabora.ve	 Filtering:	

Clustering	 /	 Explora.on:	

Op.miza.on	 Primi.ves:	

Interopera.lity:	
Included	 within	 Spark	 codebase	

✦ Unlike	 Mahout/Hadoop	
✦ Part	 of	 Spark	 0.8	 release	
✦ Con]nued	 support	 via	 Spark	 project	
✦ Community	 involvement	 has	 been	 terrific:	 ALS	 with	

implicit	 feedback	 (0.8.1),	 Naive	 Bayes	 (0.9),	 SVD	 (0.9),	
Decision	 Trees	 (soon!)

MLlib	 Performance

✦ Wall.me:	 elapsed]me	 to	 execute	 task

MLlib	 Performance

✦ Wall.me:	 elapsed]me	 to	 execute	 task

✦ Weak	 scaling
✦ fix	 problem	 size	 per	 processor
✦ ideally:	 constant	 wall]me	 as	 we	 grow	 cluster

MLlib	 Performance

✦ Wall.me:	 elapsed]me	 to	 execute	 task

✦ Weak	 scaling
✦ fix	 problem	 size	 per	 processor
✦ ideally:	 constant	 wall]me	 as	 we	 grow	 cluster

✦ Strong	 scaling
✦ fix	 total	 problem	 size
✦ ideally:	 linear	 speed	 up	 as	 we	 grow	 cluster

MLlib	 Performance

✦ Wall.me:	 elapsed]me	 to	 execute	 task

✦ Weak	 scaling
✦ fix	 problem	 size	 per	 processor
✦ ideally:	 constant	 wall]me	 as	 we	 grow	 cluster

✦ Strong	 scaling
✦ fix	 total	 problem	 size
✦ ideally:	 linear	 speed	 up	 as	 we	 grow	 cluster

✦ EC2	 Experiments
✦ m2.4xlarge	 instances,	 up	 to	 32	 machine	 clusters

MLlib	 Performance

Logis]c	 Regression	 -‐	 Weak	 Scaling

Logis]c	 Regression	 -‐	 Weak	 Scaling

✦ Full	 dataset:	 200K	 images,	 160K	 dense	 features

Logis]c	 Regression	 -‐	 Weak	 Scaling

✦ Full	 dataset:	 200K	 images,	 160K	 dense	 features
✦ Similar	 weak	 scaling

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e
(s

)

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e

w
al

lti
m

e

machines

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e
(s

)

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

machines

sp
ee

du
p

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib

Logis]c	 Regression	 -‐	 Weak	 Scaling

✦ Full	 dataset:	 200K	 images,	 160K	 dense	 features
✦ Similar	 weak	 scaling
✦ MLlib	 within	 a	 factor	 of	 2	 of	 VW’s	 wall]me

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e
(s

)

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e

w
al

lti
m

e

machines

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e
(s

)

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

machines

sp
ee

du
p

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib

Logis]c	 Regression	 -‐	 Weak	 Scaling

✦ Full	 dataset:	 200K	 images,	 160K	 dense	 features
✦ Similar	 weak	 scaling
✦ MLlib	 within	 a	 factor	 of	 2	 of	 VW’s	 wall]me

MLbase VW Matlab0

1000

2000

3000

4000

w
al

lti
m

e
(s

)

n=6K, d=160K
n=12.5K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

MLlib

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e
(s

)

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e

w
al

lti
m

e

machines

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e
(s

)

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

machines

sp
ee

du
p

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib

Logis]c	 Regression	 -‐	 Strong	 Scaling

Logis]c	 Regression	 -‐	 Strong	 Scaling

✦ Fixed	 Dataset:	 50K	 images,	 160K	 dense	 features

Logis]c	 Regression	 -‐	 Strong	 Scaling

✦ Fixed	 Dataset:	 50K	 images,	 160K	 dense	 features
✦ MLlib	 exhibits	 bejer	 scaling	 proper]es

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e
(s

)

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e

w
al

lti
m

e
machines

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e
(s

)

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

machines

sp
ee

du
p

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib

Logis]c	 Regression	 -‐	 Strong	 Scaling

✦ Fixed	 Dataset:	 50K	 images,	 160K	 dense	 features
✦ MLlib	 exhibits	 bejer	 scaling	 proper]es
✦ MLlib	 faster	 than	 VW	 with	 16	 and	 32	 machines

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e
(s

)

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e

w
al

lti
m

e

machines

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e
(s

)

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

machines

sp
ee

du
p

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e
(s

)

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e

w
al

lti
m

e
machines

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e
(s

)

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

machines

sp
ee

du
p

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib

ALS	 -‐	 Wall]me

ALS	 -‐	 Wall]me

✦ Dataset:	 Scaled	 version	 of	 Neklix	 data	 (9X	 in	 size)
✦ Cluster:	 9	 machines

ALS	 -‐	 Wall]me

✦ Dataset:	 Scaled	 version	 of	 Neklix	 data	 (9X	 in	 size)
✦ Cluster:	 9	 machines

System Wall.me	 (seconds)

Matlab 15443

ALS	 -‐	 Wall]me

✦ Dataset:	 Scaled	 version	 of	 Neklix	 data	 (9X	 in	 size)
✦ Cluster:	 9	 machines

System Wall.me	 (seconds)

Matlab 15443

Mahout 4206

ALS	 -‐	 Wall]me

✦ Dataset:	 Scaled	 version	 of	 Neklix	 data	 (9X	 in	 size)
✦ Cluster:	 9	 machines
✦ MLlib	 an	 order	 of	 magnitude	 faster	 than	 Mahout

System Wall.me	 (seconds)

Matlab 15443

Mahout 4206

GraphLab 291

MLlib 481

ALS	 -‐	 Wall]me

✦ Dataset:	 Scaled	 version	 of	 Neklix	 data	 (9X	 in	 size)
✦ Cluster:	 9	 machines
✦ MLlib	 an	 order	 of	 magnitude	 faster	 than	 Mahout
✦ MLlib	 within	 factor	 of	 2	 of	 GraphLab

System Wall.me	 (seconds)

Matlab 15443

Mahout 4206

GraphLab 291

MLlib 481

Deployment	 Considera]ons

Deployment	 Considera]ons

Vowpal	 Wabbit,	 GraphLab
✦ Data	 prepara]on	 specific	 to	 each	 program
✦ Non-‐trivial	 setup	 on	 cluster
✦ No	 fault	 tolerance 

Deployment	 Considera]ons

Vowpal	 Wabbit,	 GraphLab
✦ Data	 prepara]on	 specific	 to	 each	 program
✦ Non-‐trivial	 setup	 on	 cluster
✦ No	 fault	 tolerance 

MLlib
✦ Reads	 files	 from	 HDFS
✦ Launch/compile/run	 on	 cluster	 with	 a	 few	 commands
✦ RDD’s	 provide	 fault	 tolerance	 naturally

Deployment	 Considera]ons

Vowpal	 Wabbit,	 GraphLab
✦ Data	 prepara]on	 specific	 to	 each	 program
✦ Non-‐trivial	 setup	 on	 cluster
✦ No	 fault	 tolerance 

MLlib
✦ Reads	 files	 from	 HDFS
✦ Launch/compile/run	 on	 cluster	 with	 a	 few	 commands
✦ RDD’s	 provide	 fault	 tolerance	 naturally
✦ Part	 of	 Spark’s	 ‘swiss	 army	 knife’	 ecosystem

Deployment	 Considera]ons

Vowpal	 Wabbit,	 GraphLab
✦ Data	 prepara]on	 specific	 to	 each	 program
✦ Non-‐trivial	 setup	 on	 cluster
✦ No	 fault	 tolerance 

MLlib
✦ Reads	 files	 from	 HDFS
✦ Launch/compile/run	 on	 cluster	 with	 a	 few	 commands
✦ RDD’s	 provide	 fault	 tolerance	 naturally
✦ Part	 of	 Spark’s	 ‘swiss	 army	 knife’	 ecosystem

✦ Shark,	 Spark	 Streaming,	 Graph-‐X,	 BlinkDB,	 etc.

Vision	
MLlib	
Collabora.ve	 Filtering	
ALS	 Details

Matrix	 Comple]on

Matrix	 Comple]on

Goal:	 Recover	 a	 matrix	 from	 a	
subset	 of	 its	 entries	

Matrix	 Comple]on

Goal:	 Recover	 a	 matrix	 from	 a	
subset	 of	 its	 entries	

Matrix	 Comple]on

Goal:	 Recover	 a	 matrix	 from	 a	
subset	 of	 its	 entries	

Reducing	 Degrees	 of	 Freedom

Reducing	 Degrees	 of	 Freedom

✦ Problem: Impossible without
additional information

m

n

Reducing	 Degrees	 of	 Freedom

✦ Problem: Impossible without
additional information
✦ mn degrees of freedom 

m

n

= m

r n
r

‘Low-rank’

Reducing	 Degrees	 of	 Freedom

✦ Problem: Impossible without
additional information
✦ mn degrees of freedom 

✦ Solution: Assume small # of

factors determine preference
✦ degrees of freedom

m

n

= m

r n
r

‘Low-rank’

O(m+ n)

Alterna]ng	 Least	 Squares

=

Alterna]ng	 Least	 Squares

=

Alterna]ng	 Least	 Squares

=

Alterna]ng	 Least	 Squares

=

Alterna]ng	 Least	 Squares

=

training error for first user = (-) + (-)

Alterna]ng	 Least	 Squares

=

training error for first user = (-) + (-)

ALS: alternate between updating user and movie factors

Alterna]ng	 Least	 Squares

=

training error for first user = (-) + (-)

ALS: alternate between updating user and movie factors

update first user by finding that minimizes
training error

Alterna]ng	 Least	 Squares

=

training error for first user = (-) + (-)

ALS: alternate between updating user and movie factors

update first user by finding that minimizes
training error

reduces to standard linear regression problem

Alterna]ng	 Least	 Squares

=

training error for first user = (-) + (-)

ALS: alternate between updating user and movie factors

update first user by finding that minimizes
training error

reduces to standard linear regression problem

can update all users in parallel!

...

Alterna]ng	 Least	 Squares

=

training error for first user = (-) + (-)

Alterna]ng	 Least	 Squares

=

training error for first user = (-) + (-)
M W

H>

Alterna]ng	 Least	 Squares

=

training error for first user = (-) + (-)
M W

H>

=
X

(1,j)2⌦

(M1j �W1H
>
j)2

Alterna]ng	 Least	 Squares

=

training error for first user = (-) + (-)
M W

H>

=
X

(1,j)2⌦

(M1j �W1H
>
j)2

W ⇤
1 = (H>

⌦1
H⌦1)

�1H>
⌦1

M>
1⌦1

Exercise	 Today

�19

Exercise	 Today

• Load	 1,000,000	 ra]ngs	 from	 MovieLens.

�19

Exercise	 Today

• Load	 1,000,000	 ra]ngs	 from	 MovieLens.
• Get	 YOUR	 ra]ngs.

�19

Exercise	 Today

• Load	 1,000,000	 ra]ngs	 from	 MovieLens.
• Get	 YOUR	 ra]ngs.
• Split	 into	 training/valida]on.

�19

Exercise	 Today

• Load	 1,000,000	 ra]ngs	 from	 MovieLens.
• Get	 YOUR	 ra]ngs.
• Split	 into	 training/valida]on.
• Fit	 a	 model.

�19

Exercise	 Today

• Load	 1,000,000	 ra]ngs	 from	 MovieLens.
• Get	 YOUR	 ra]ngs.
• Split	 into	 training/valida]on.
• Fit	 a	 model.
• Validate	 and	 tune	 hyperparameters.

�19

Exercise	 Today

• Load	 1,000,000	 ra]ngs	 from	 MovieLens.
• Get	 YOUR	 ra]ngs.
• Split	 into	 training/valida]on.
• Fit	 a	 model.
• Validate	 and	 tune	 hyperparameters.
• Get	 YOUR	 recommenda]ons.

�19

Exercise	 Today

• Load	 1,000,000	 ra]ngs	 from	 MovieLens.
• Get	 YOUR	 ra]ngs.
• Split	 into	 training/valida]on.
• Fit	 a	 model.
• Validate	 and	 tune	 hyperparameters.
• Get	 YOUR	 recommenda]ons.
• Great	 example	 of	 a	 Spark	 applica]on!

�19

Vision	
MLlib	
Collabora.ve	 Filtering	
ALS	 Details

Three	 Kinds	 of	 ALS

• Broadcast	 Everything	

• Data	 Parallel	

• Fully	 Parallel

Three	 Kinds	 of	 ALS

• Broadcast	 Everything	

• Data	 Parallel	

• Fully	 Parallel

Broadcast	 Everything

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Broadcast	 Everything
• Master	 loads	 (small)	

data	 file	 and	 ini]alizes	
models.	

• Master	 broadcasts	 data	
and	 ini]al	 models.	

• At	 each	 itera]on,	
updated	 models	 are	
broadcast	 again.	

• Works	 OK	 for	 small	 data.	

• Lots	 of	 communica]on	
overhead	 -‐	 doesn’t	 scale	
well.	

• Ships	 with	 Spark	
ExamplesMaster

Workers

Ratings

Movie!
Factors

User!
Factors

Broadcast	 Everything
• Master	 loads	 (small)	

data	 file	 and	 ini]alizes	
models.	

• Master	 broadcasts	 data	
and	 ini]al	 models.	

• At	 each	 itera]on,	
updated	 models	 are	
broadcast	 again.	

• Works	 OK	 for	 small	 data.	

• Lots	 of	 communica]on	
overhead	 -‐	 doesn’t	 scale	
well.	

• Ships	 with	 Spark	
ExamplesMaster

Workers

Ratings

Movie!
FactorsUser!
Factors

Broadcast	 Everything
• Master	 loads	 (small)	

data	 file	 and	 ini]alizes	
models.	

• Master	 broadcasts	 data	
and	 ini]al	 models.	

• At	 each	 itera]on,	
updated	 models	 are	
broadcast	 again.	

• Works	 OK	 for	 small	 data.	

• Lots	 of	 communica]on	
overhead	 -‐	 doesn’t	 scale	
well.	

• Ships	 with	 Spark	
ExamplesMaster

Workers

RatingsMovie!
FactorsUser!
Factors

Broadcast	 Everything
• Master	 loads	 (small)	

data	 file	 and	 ini]alizes	
models.	

• Master	 broadcasts	 data	
and	 ini]al	 models.	

• At	 each	 itera]on,	
updated	 models	 are	
broadcast	 again.	

• Works	 OK	 for	 small	 data.	

• Lots	 of	 communica]on	
overhead	 -‐	 doesn’t	 scale	
well.	

• Ships	 with	 Spark	
ExamplesMaster

Workers

RatingsMovie!
FactorsUser!
Factors

Broadcast	 Everything
• Master	 loads	 (small)	

data	 file	 and	 ini]alizes	
models.	

• Master	 broadcasts	 data	
and	 ini]al	 models.	

• At	 each	 itera]on,	
updated	 models	 are	
broadcast	 again.	

• Works	 OK	 for	 small	 data.	

• Lots	 of	 communica]on	
overhead	 -‐	 doesn’t	 scale	
well.	

• Ships	 with	 Spark	
ExamplesMaster

Workers

RatingsMovie!
FactorsUser!
Factors

Broadcast	 Everything
• Master	 loads	 (small)	

data	 file	 and	 ini]alizes	
models.	

• Master	 broadcasts	 data	
and	 ini]al	 models.	

• At	 each	 itera]on,	
updated	 models	 are	
broadcast	 again.	

• Works	 OK	 for	 small	 data.	

• Lots	 of	 communica]on	
overhead	 -‐	 doesn’t	 scale	
well.	

• Ships	 with	 Spark	
ExamplesMaster

Workers

RatingsMovie!
FactorsUser!
Factors

Three	 Kinds	 of	 ALS

• Broadcast	 Everything	

• Data	 Parallel	

• Fully	 Parallel

Data	 Parallel

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	 Parallel

• Workers	 load	 data

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	 Parallel

• Workers	 load	 data

• Master	 broadcasts	 ini]al	
models

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	 Parallel

• Workers	 load	 data

• Master	 broadcasts	 ini]al	
models

• At	 each	 itera]on,	
updated	 models	 are	
broadcast	 again

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	 Parallel

• Workers	 load	 data

• Master	 broadcasts	 ini]al	
models

• At	 each	 itera]on,	
updated	 models	 are	
broadcast	 again

• Much	 bejer	 scaling

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	 Parallel

• Workers	 load	 data

• Master	 broadcasts	 ini]al	
models

• At	 each	 itera]on,	
updated	 models	 are	
broadcast	 again

• Much	 bejer	 scaling

• Works	 on	 large	 datasets

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	 Parallel

• Workers	 load	 data

• Master	 broadcasts	 ini]al	
models

• At	 each	 itera]on,	
updated	 models	 are	
broadcast	 again

• Much	 bejer	 scaling

• Works	 on	 large	 datasets

• Works	 well	 for	 smaller	
models.	 (low	 K)

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	 Parallel

• Workers	 load	 data

• Master	 broadcasts	 ini]al	
models

• At	 each	 itera]on,	
updated	 models	 are	
broadcast	 again

• Much	 bejer	 scaling

• Works	 on	 large	 datasets

• Works	 well	 for	 smaller	
models.	 (low	 K)

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	 Parallel

• Workers	 load	 data

• Master	 broadcasts	 ini]al	
models

• At	 each	 itera]on,	
updated	 models	 are	
broadcast	 again

• Much	 bejer	 scaling

• Works	 on	 large	 datasets

• Works	 well	 for	 smaller	
models.	 (low	 K)

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	 Parallel

• Workers	 load	 data

• Master	 broadcasts	 ini]al	
models

• At	 each	 itera]on,	
updated	 models	 are	
broadcast	 again

• Much	 bejer	 scaling

• Works	 on	 large	 datasets

• Works	 well	 for	 smaller	
models.	 (low	 K)

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Three	 Kinds	 of	 ALS

• Broadcast	 Everything	

• Data	 Parallel	

• Fully	 Parallel

Fully	 Parallel

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	 Parallel
• Workers	 load	 data

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	 Parallel
• Workers	 load	 data

• Models	 are	 instan]ated	
at	 workers.

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	 Parallel
• Workers	 load	 data

• Models	 are	 instan]ated	
at	 workers.

• At	 each	 itera]on,	
models	 are	 shared	 via	
join	 between	 workers.

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	 Parallel
• Workers	 load	 data

• Models	 are	 instan]ated	
at	 workers.

• At	 each	 itera]on,	
models	 are	 shared	 via	
join	 between	 workers.

• Much	 bejer	 scalability.

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	 Parallel
• Workers	 load	 data

• Models	 are	 instan]ated	
at	 workers.

• At	 each	 itera]on,	
models	 are	 shared	 via	
join	 between	 workers.

• Much	 bejer	 scalability.

• Works	 on	 large	 datasets

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	 Parallel
• Workers	 load	 data

• Models	 are	 instan]ated	
at	 workers.

• At	 each	 itera]on,	
models	 are	 shared	 via	
join	 between	 workers.

• Much	 bejer	 scalability.

• Works	 on	 large	 datasets

• Works	 on	 big	 models	
(higher	 K)

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	 Parallel
• Workers	 load	 data

• Models	 are	 instan]ated	
at	 workers.

• At	 each	 itera]on,	
models	 are	 shared	 via	
join	 between	 workers.

• Much	 bejer	 scalability.

• Works	 on	 large	 datasets

• Works	 on	 big	 models	
(higher	 K)

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	 Parallel
• Workers	 load	 data

• Models	 are	 instan]ated	
at	 workers.

• At	 each	 itera]on,	
models	 are	 shared	 via	
join	 between	 workers.

• Much	 bejer	 scalability.

• Works	 on	 large	 datasets

• Works	 on	 big	 models	
(higher	 K)

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Three	 Kinds	 of	 ALS

• Broadcast	 Everything	

• Data	 Parallel	

• Fully	 Parallel

Three	 Kinds	 of	 ALS

• Broadcast	 Everything	

• Data	 Parallel	

• Fully	 Parallel

Blocked

Four

Runtime(s)

MLlib

MLI

ML Optimizer

Spark

ML	 Op.mizer:	 a	 declara]ve	 layer	 to	 simplify	
access	 to	 large-‐scale	 ML	

MLI:	 experimental	 API	 	 for	 simplified	 feature	
extrac]on	 and	 algorithm	 development	

MLlib:	 produc]on-‐quality	 ML	 library	 in	 Spark	

Spark:	 cluster	 compu]ng	 system	 designed	 for	
itera]ve	 computa]on

Runtime(s)

MLlib

MLI

ML Optimizer

Spark

ML	 Op.mizer:	 a	 declara]ve	 layer	 to	 simplify	
access	 to	 large-‐scale	 ML	

MLI:	 experimental	 API	 	 for	 simplified	 feature	
extrac]on	 and	 algorithm	 development	

MLlib:	 produc]on-‐quality	 ML	 library	 in	 Spark	

Spark:	 cluster	 compu]ng	 system	 designed	 for	
itera]ve	 computa]on

baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML base

www.mlbase.org

http://www.mlbase.org

Runtime(s)

MLlib

MLI

ML Optimizer

Spark

ML	 Op.mizer:	 a	 declara]ve	 layer	 to	 simplify	
access	 to	 large-‐scale	 ML	

MLI:	 experimental	 API	 	 for	 simplified	 feature	
extrac]on	 and	 algorithm	 development	

MLlib:	 produc]on-‐quality	 ML	 library	 in	 Spark	

Spark:	 cluster	 compu]ng	 system	 designed	 for	
itera]ve	 computa]on

THANKS!
QUESTIONS?

baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML base

www.mlbase.org

http://www.mlbase.org

