
baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML base

Collaborators:	
 Ameet	
 Talwalkar,	
 Xiangrui	
 Meng,	
 Virginia	
 Smith,	
 Xinghao	
 Pan,	
 	

Shivaram	
 Venkataraman,	
 Matei	
 Zaharia,	
 Rean	
 Griffith,	
 John	
 Duchi,	
 Joseph	
 Gonzalez,	
 	

Michael	
 Franklin,	
 Michael	
 I.	
 Jordan,	
 Tim	
 Kraska	
  

www.mlbase.org
UC Berkeley

Evan	
 Sparks	

UC	
 Berkeley	

January	
 31st,	
 2014

MLlib &

Distributed Machine Learning on

http://www.mlbase.org

Problem:	
 Scalable	
 implementa.ons	

difficult	
 for	
 ML	
 Developers…

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX
Runtime

DMX
Runtime

DMX
Runtime

DMX
Runtime

LLP

PLP

M
aster

S
laves

Problem:	
 Scalable	
 implementa.ons	

difficult	
 for	
 ML	
 Developers…

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX
Runtime

DMX
Runtime

DMX
Runtime

DMX
Runtime

LLP

PLP

M
aster

S
laves

Problem:	
 Scalable	
 implementa.ons	

difficult	
 for	
 ML	
 Developers…

ML Developer

Meta-Data

Statistics

User

Declarative
ML Task

ML Contract +
Code

Master Server

….

result
(e.g., fn-model & summary)

Optimizer

Parser

Executor/Monitoring

ML Library

DMX
Runtime

DMX
Runtime

DMX
Runtime

DMX
Runtime

LLP

PLP

M
aster

S
laves

Too	
 many	

algorithms…

Problem:	
 ML	
 is	
 difficult 
for	
 End	
 Users…

Too	
 many	

algorithms…

Too	
 many	

knobs…

Problem:	
 ML	
 is	
 difficult 
for	
 End	
 Users…

Too	
 many	

algorithms…

Too	
 many	

knobs…

Problem:	
 ML	
 is	
 difficult 
for	
 End	
 Users…

Difficult	
 to	

debug…

Too	
 many	

algorithms…

Too	
 many	

knobs…

Problem:	
 ML	
 is	
 difficult 
for	
 End	
 Users…

Difficult	
 to	

debug…

Doesn’t	
 scale…

Too	
 many	

algorithms…

Too	
 many	

knobs…

Problem:	
 ML	
 is	
 difficult 
for	
 End	
 Users…

Difficult	
 to	

debug…

Reliable

Fa
st

Accurate

Pr
ov
ab
le

Doesn’t	
 scale…

ML	
 Experts Systems	
 ExpertsMLbase

1. Easy	
 scalable	
 ML	
 development	
 (ML	
 Developers)
2. User-­‐friendly	
 ML	
 at	
 scale	
 (End	
 Users)

ML	
 Experts Systems	
 ExpertsMLbase

Matlab	
 Stack

Matlab	
 Stack

Single Machine

Lapack

Matlab	
 Stack

Single Machine

✦ Lapack:	
 low-­‐level	
 Fortran	
 linear	
 algebra	
 library

Lapack

Matlab Interface

Matlab	
 Stack

Single Machine

✦ Lapack:	
 low-­‐level	
 Fortran	
 linear	
 algebra	
 library
✦ Matlab	
 Interface

✦ Higher-­‐level	
 abstrac]ons	
 for	
 data	
 access	
 /	
 processing
✦ More	
 extensive	
 func]onality	
 than	
 Lapack
✦ Leverages	
 Lapack	
 whenever	
 possible

Lapack

Matlab Interface

Matlab	
 Stack

Single Machine

✦ Lapack:	
 low-­‐level	
 Fortran	
 linear	
 algebra	
 library
✦ Matlab	
 Interface

✦ Higher-­‐level	
 abstrac]ons	
 for	
 data	
 access	
 /	
 processing
✦ More	
 extensive	
 func]onality	
 than	
 Lapack
✦ Leverages	
 Lapack	
 whenever	
 possible

✦ Similar	
 stories	
 for	
 R	
 and	
 Python

MLbase	
 Stack

Lapack

Matlab Interface

Single Machine

MLbase	
 Stack

Runtime(s)

Lapack

Matlab Interface

Single Machine

MLbase	
 Stack

Runtime(s)Spark

Spark:	
 cluster	
 compu]ng	
 system	
 designed	
 for	
 itera]ve	
 computa]on

Lapack

Matlab Interface

Single Machine

MLbase	
 Stack

Runtime(s)

MLlib

Spark

Spark:	
 cluster	
 compu]ng	
 system	
 designed	
 for	
 itera]ve	
 computa]on

MLlib:	
 produc]on-­‐quality	
 ML	
 library	
 in	
 Spark

Lapack

Matlab Interface

Single Machine

MLbase	
 Stack

Runtime(s)

MLlib

MLI

Spark

Spark:	
 cluster	
 compu]ng	
 system	
 designed	
 for	
 itera]ve	
 computa]on

MLlib:	
 produc]on-­‐quality	
 ML	
 library	
 in	
 Spark

MLI:	
 experimental	
 API	
 	
 for	
 simplified	
 feature	
 extrac]on	
 and	
 algorithm	

development

Lapack

Matlab Interface

Single Machine

MLbase	
 Stack

Runtime(s)

MLlib

MLI

ML Optimizer

Spark

Spark:	
 cluster	
 compu]ng	
 system	
 designed	
 for	
 itera]ve	
 computa]on

MLlib:	
 produc]on-­‐quality	
 ML	
 library	
 in	
 Spark

MLI:	
 experimental	
 API	
 	
 for	
 simplified	
 feature	
 extrac]on	
 and	
 algorithm	

development

ML	
 Op.mizer:	
 a	
 declara]ve	
 layer	
 to	
 simplify	
 access	
 to	
 large-­‐scale	
 ML

Lapack

Matlab Interface

Single Machine

Overview	

MLlib	

Collabora.ve	
 Filtering	

ALS	
 Details

Logis]c	
 Regression,	
 Linear	
 SVM	
 (+L1,	
 L2),	
 Decision	

Trees,	
 Naive	
 Bayes	

Linear	
 Regression	
 (+Lasso,	
 Ridge)	

Alterna]ng	
 Least	
 Squares	

K-­‐Means,	
 SVD	

SGD,	
 Parallel	
 Gradient	

Scala,	
 Java,	
 PySpark	
 (0.9)

MLlib
Classifica.on:	

Regression:	

Collabora.ve	
 Filtering:	

Clustering	
 /	
 Explora.on:	

Op.miza.on	
 Primi.ves:	

Interopera.lity:	

Logis]c	
 Regression,	
 Linear	
 SVM	
 (+L1,	
 L2),	
 Decision	

Trees,	
 Naive	
 Bayes	

Linear	
 Regression	
 (+Lasso,	
 Ridge)	

Alterna]ng	
 Least	
 Squares	

K-­‐Means,	
 SVD	

SGD,	
 Parallel	
 Gradient	

Scala,	
 Java,	
 PySpark	
 (0.9)

MLlib
Classifica.on:	

Regression:	

Collabora.ve	
 Filtering:	

Clustering	
 /	
 Explora.on:	

Op.miza.on	
 Primi.ves:	

Interopera.lity:	

Included	
 within	
 Spark	
 codebase	

✦ Unlike	
 Mahout/Hadoop	

✦ Part	
 of	
 Spark	
 0.8	
 release	

✦ Con]nued	
 support	
 via	
 Spark	
 project	

✦ Community	
 involvement	
 has	
 been	
 terrific:	
 ALS	
 with	

implicit	
 feedback	
 (0.8.1),	
 Naive	
 Bayes	
 (0.9),	
 SVD	
 (0.9),	

Decision	
 Trees	
 (soon!)

MLlib	
 Performance

✦ Wall.me:	
 elapsed	
]me	
 to	
 execute	
 task

MLlib	
 Performance

✦ Wall.me:	
 elapsed	
]me	
 to	
 execute	
 task

✦ Weak	
 scaling
✦ fix	
 problem	
 size	
 per	
 processor
✦ ideally:	
 constant	
 wall]me	
 as	
 we	
 grow	
 cluster

MLlib	
 Performance

✦ Wall.me:	
 elapsed	
]me	
 to	
 execute	
 task

✦ Weak	
 scaling
✦ fix	
 problem	
 size	
 per	
 processor
✦ ideally:	
 constant	
 wall]me	
 as	
 we	
 grow	
 cluster

✦ Strong	
 scaling
✦ fix	
 total	
 problem	
 size
✦ ideally:	
 linear	
 speed	
 up	
 as	
 we	
 grow	
 cluster

MLlib	
 Performance

✦ Wall.me:	
 elapsed	
]me	
 to	
 execute	
 task

✦ Weak	
 scaling
✦ fix	
 problem	
 size	
 per	
 processor
✦ ideally:	
 constant	
 wall]me	
 as	
 we	
 grow	
 cluster

✦ Strong	
 scaling
✦ fix	
 total	
 problem	
 size
✦ ideally:	
 linear	
 speed	
 up	
 as	
 we	
 grow	
 cluster

✦ EC2	
 Experiments
✦ m2.4xlarge	
 instances,	
 up	
 to	
 32	
 machine	
 clusters

MLlib	
 Performance

Logis]c	
 Regression	
 -­‐	
 Weak	
 Scaling

Logis]c	
 Regression	
 -­‐	
 Weak	
 Scaling

✦ Full	
 dataset:	
 200K	
 images,	
 160K	
 dense	
 features

Logis]c	
 Regression	
 -­‐	
 Weak	
 Scaling

✦ Full	
 dataset:	
 200K	
 images,	
 160K	
 dense	
 features
✦ Similar	
 weak	
 scaling

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e
(s

)

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e

w
al

lti
m

e

machines

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e
(s

)

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

machines

sp
ee

du
p

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib

Logis]c	
 Regression	
 -­‐	
 Weak	
 Scaling

✦ Full	
 dataset:	
 200K	
 images,	
 160K	
 dense	
 features
✦ Similar	
 weak	
 scaling
✦ MLlib	
 within	
 a	
 factor	
 of	
 2	
 of	
 VW’s	
 wall]me

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e
(s

)

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e

w
al

lti
m

e

machines

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e
(s

)

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

machines

sp
ee

du
p

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib

Logis]c	
 Regression	
 -­‐	
 Weak	
 Scaling

✦ Full	
 dataset:	
 200K	
 images,	
 160K	
 dense	
 features
✦ Similar	
 weak	
 scaling
✦ MLlib	
 within	
 a	
 factor	
 of	
 2	
 of	
 VW’s	
 wall]me

MLbase VW Matlab0

1000

2000

3000

4000

w
al

lti
m

e
(s

)

n=6K, d=160K
n=12.5K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

MLlib

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e
(s

)

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e

w
al

lti
m

e

machines

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e
(s

)

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

machines

sp
ee

du
p

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib

Logis]c	
 Regression	
 -­‐	
 Strong	
 Scaling

Logis]c	
 Regression	
 -­‐	
 Strong	
 Scaling

✦ Fixed	
 Dataset:	
 50K	
 images,	
 160K	
 dense	
 features

Logis]c	
 Regression	
 -­‐	
 Strong	
 Scaling

✦ Fixed	
 Dataset:	
 50K	
 images,	
 160K	
 dense	
 features
✦ MLlib	
 exhibits	
 bejer	
 scaling	
 proper]es

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e
(s

)

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e

w
al

lti
m

e
machines

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e
(s

)

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

machines

sp
ee

du
p

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib

Logis]c	
 Regression	
 -­‐	
 Strong	
 Scaling

✦ Fixed	
 Dataset:	
 50K	
 images,	
 160K	
 dense	
 features
✦ MLlib	
 exhibits	
 bejer	
 scaling	
 proper]es
✦ MLlib	
 faster	
 than	
 VW	
 with	
 16	
 and	
 32	
 machines

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e
(s

)

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e

w
al

lti
m

e

machines

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e
(s

)

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

machines

sp
ee

du
p

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib

MLbase VW Matlab
0

1000

2000

3000

4000

w
al

lti
m

e
(s

)

n=12K, d=160K
n=25K, d=160K
n=50K, d=160K
n=100K, d=160K
n=200K, d=160K

Fig. 5: Walltime for weak scaling for logistic regression.

0 5 10 15 20 25 30
0

2

4

6

8

10

re
la

tiv
e

w
al

lti
m

e
machines

MLbase
VW
Ideal

Fig. 6: Weak scaling for logistic regression

MLbase VW Matlab
0

200

400

600

800

1000

1200

1400

w
al

lti
m

e
(s

)

1 Machine
2 Machines
4 Machines
8 Machines
16 Machines
32 Machines

Fig. 7: Walltime for strong scaling for logistic regression.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

machines

sp
ee

du
p

MLbase
VW
Ideal

Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib

ALS	
 -­‐	
 Wall]me

ALS	
 -­‐	
 Wall]me

✦ Dataset:	
 Scaled	
 version	
 of	
 Neklix	
 data	
 (9X	
 in	
 size)
✦ Cluster:	
 9	
 machines

ALS	
 -­‐	
 Wall]me

✦ Dataset:	
 Scaled	
 version	
 of	
 Neklix	
 data	
 (9X	
 in	
 size)
✦ Cluster:	
 9	
 machines

System Wall.me	
 (seconds)

Matlab 15443

ALS	
 -­‐	
 Wall]me

✦ Dataset:	
 Scaled	
 version	
 of	
 Neklix	
 data	
 (9X	
 in	
 size)
✦ Cluster:	
 9	
 machines

System Wall.me	
 (seconds)

Matlab 15443

Mahout 4206

ALS	
 -­‐	
 Wall]me

✦ Dataset:	
 Scaled	
 version	
 of	
 Neklix	
 data	
 (9X	
 in	
 size)
✦ Cluster:	
 9	
 machines
✦ MLlib	
 an	
 order	
 of	
 magnitude	
 faster	
 than	
 Mahout

System Wall.me	
 (seconds)

Matlab 15443

Mahout 4206

GraphLab 291

MLlib 481

ALS	
 -­‐	
 Wall]me

✦ Dataset:	
 Scaled	
 version	
 of	
 Neklix	
 data	
 (9X	
 in	
 size)
✦ Cluster:	
 9	
 machines
✦ MLlib	
 an	
 order	
 of	
 magnitude	
 faster	
 than	
 Mahout
✦ MLlib	
 within	
 factor	
 of	
 2	
 of	
 GraphLab

System Wall.me	
 (seconds)

Matlab 15443

Mahout 4206

GraphLab 291

MLlib 481

Deployment	
 Considera]ons

Deployment	
 Considera]ons

Vowpal	
 Wabbit,	
 GraphLab
✦ Data	
 prepara]on	
 specific	
 to	
 each	
 program
✦ Non-­‐trivial	
 setup	
 on	
 cluster
✦ No	
 fault	
 tolerance 

Deployment	
 Considera]ons

Vowpal	
 Wabbit,	
 GraphLab
✦ Data	
 prepara]on	
 specific	
 to	
 each	
 program
✦ Non-­‐trivial	
 setup	
 on	
 cluster
✦ No	
 fault	
 tolerance 

MLlib
✦ Reads	
 files	
 from	
 HDFS
✦ Launch/compile/run	
 on	
 cluster	
 with	
 a	
 few	
 commands
✦ RDD’s	
 provide	
 fault	
 tolerance	
 naturally

Deployment	
 Considera]ons

Vowpal	
 Wabbit,	
 GraphLab
✦ Data	
 prepara]on	
 specific	
 to	
 each	
 program
✦ Non-­‐trivial	
 setup	
 on	
 cluster
✦ No	
 fault	
 tolerance 

MLlib
✦ Reads	
 files	
 from	
 HDFS
✦ Launch/compile/run	
 on	
 cluster	
 with	
 a	
 few	
 commands
✦ RDD’s	
 provide	
 fault	
 tolerance	
 naturally
✦ Part	
 of	
 Spark’s	
 ‘swiss	
 army	
 knife’	
 ecosystem

Deployment	
 Considera]ons

Vowpal	
 Wabbit,	
 GraphLab
✦ Data	
 prepara]on	
 specific	
 to	
 each	
 program
✦ Non-­‐trivial	
 setup	
 on	
 cluster
✦ No	
 fault	
 tolerance 

MLlib
✦ Reads	
 files	
 from	
 HDFS
✦ Launch/compile/run	
 on	
 cluster	
 with	
 a	
 few	
 commands
✦ RDD’s	
 provide	
 fault	
 tolerance	
 naturally
✦ Part	
 of	
 Spark’s	
 ‘swiss	
 army	
 knife’	
 ecosystem

✦ Shark,	
 Spark	
 Streaming,	
 Graph-­‐X,	
 BlinkDB,	
 etc.

Vision	

MLlib	

Collabora.ve	
 Filtering	

ALS	
 Details

Matrix	
 Comple]on

Matrix	
 Comple]on

Goal:	
 Recover	
 a	
 matrix	
 from	
 a	

subset	
 of	
 its	
 entries	

Matrix	
 Comple]on

Goal:	
 Recover	
 a	
 matrix	
 from	
 a	

subset	
 of	
 its	
 entries	

Matrix	
 Comple]on

Goal:	
 Recover	
 a	
 matrix	
 from	
 a	

subset	
 of	
 its	
 entries	

Reducing	
 Degrees	
 of	
 Freedom

Reducing	
 Degrees	
 of	
 Freedom

✦ Problem: Impossible without
additional information

m

n

Reducing	
 Degrees	
 of	
 Freedom

✦ Problem: Impossible without
additional information
✦ mn degrees of freedom 

m

n

= m

r n
r

‘Low-rank’

Reducing	
 Degrees	
 of	
 Freedom

✦ Problem: Impossible without
additional information
✦ mn degrees of freedom 

✦ Solution: Assume small # of

factors determine preference
✦ degrees of freedom

m

n

= m

r n
r

‘Low-rank’

O(m+ n)

Alterna]ng	
 Least	
 Squares

=

Alterna]ng	
 Least	
 Squares

=

Alterna]ng	
 Least	
 Squares

=

Alterna]ng	
 Least	
 Squares

=

Alterna]ng	
 Least	
 Squares

=

training error for first user = (-) + (-)

Alterna]ng	
 Least	
 Squares

=

training error for first user = (-) + (-)

ALS: alternate between updating user and movie factors

Alterna]ng	
 Least	
 Squares

=

training error for first user = (-) + (-)

ALS: alternate between updating user and movie factors

update first user by finding that minimizes
training error

Alterna]ng	
 Least	
 Squares

=

training error for first user = (-) + (-)

ALS: alternate between updating user and movie factors

update first user by finding that minimizes
training error

reduces to standard linear regression problem

Alterna]ng	
 Least	
 Squares

=

training error for first user = (-) + (-)

ALS: alternate between updating user and movie factors

update first user by finding that minimizes
training error

reduces to standard linear regression problem

can update all users in parallel!

...

Alterna]ng	
 Least	
 Squares

=

training error for first user = (-) + (-)

Alterna]ng	
 Least	
 Squares

=

training error for first user = (-) + (-)
M W

H>

Alterna]ng	
 Least	
 Squares

=

training error for first user = (-) + (-)
M W

H>

=
X

(1,j)2⌦

(M1j �W1H
>
j)2

Alterna]ng	
 Least	
 Squares

=

training error for first user = (-) + (-)
M W

H>

=
X

(1,j)2⌦

(M1j �W1H
>
j)2

W ⇤
1 = (H>

⌦1
H⌦1)

�1H>
⌦1

M>
1⌦1

Exercise	
 Today

�19

Exercise	
 Today

• Load	
 1,000,000	
 ra]ngs	
 from	
 MovieLens.

�19

Exercise	
 Today

• Load	
 1,000,000	
 ra]ngs	
 from	
 MovieLens.
• Get	
 YOUR	
 ra]ngs.

�19

Exercise	
 Today

• Load	
 1,000,000	
 ra]ngs	
 from	
 MovieLens.
• Get	
 YOUR	
 ra]ngs.
• Split	
 into	
 training/valida]on.

�19

Exercise	
 Today

• Load	
 1,000,000	
 ra]ngs	
 from	
 MovieLens.
• Get	
 YOUR	
 ra]ngs.
• Split	
 into	
 training/valida]on.
• Fit	
 a	
 model.

�19

Exercise	
 Today

• Load	
 1,000,000	
 ra]ngs	
 from	
 MovieLens.
• Get	
 YOUR	
 ra]ngs.
• Split	
 into	
 training/valida]on.
• Fit	
 a	
 model.
• Validate	
 and	
 tune	
 hyperparameters.

�19

Exercise	
 Today

• Load	
 1,000,000	
 ra]ngs	
 from	
 MovieLens.
• Get	
 YOUR	
 ra]ngs.
• Split	
 into	
 training/valida]on.
• Fit	
 a	
 model.
• Validate	
 and	
 tune	
 hyperparameters.
• Get	
 YOUR	
 recommenda]ons.

�19

Exercise	
 Today

• Load	
 1,000,000	
 ra]ngs	
 from	
 MovieLens.
• Get	
 YOUR	
 ra]ngs.
• Split	
 into	
 training/valida]on.
• Fit	
 a	
 model.
• Validate	
 and	
 tune	
 hyperparameters.
• Get	
 YOUR	
 recommenda]ons.
• Great	
 example	
 of	
 a	
 Spark	
 applica]on!

�19

Vision	

MLlib	

Collabora.ve	
 Filtering	

ALS	
 Details

Three	
 Kinds	
 of	
 ALS

• Broadcast	
 Everything	

• Data	
 Parallel	

• Fully	
 Parallel

Three	
 Kinds	
 of	
 ALS

• Broadcast	
 Everything	

• Data	
 Parallel	

• Fully	
 Parallel

Broadcast	
 Everything

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Broadcast	
 Everything
• Master	
 loads	
 (small)	

data	
 file	
 and	
 ini]alizes	

models.	

• Master	
 broadcasts	
 data	

and	
 ini]al	
 models.	

• At	
 each	
 itera]on,	

updated	
 models	
 are	

broadcast	
 again.	

• Works	
 OK	
 for	
 small	
 data.	

• Lots	
 of	
 communica]on	

overhead	
 -­‐	
 doesn’t	
 scale	

well.	

• Ships	
 with	
 Spark	

ExamplesMaster

Workers

Ratings

Movie!
Factors

User!
Factors

Broadcast	
 Everything
• Master	
 loads	
 (small)	

data	
 file	
 and	
 ini]alizes	

models.	

• Master	
 broadcasts	
 data	

and	
 ini]al	
 models.	

• At	
 each	
 itera]on,	

updated	
 models	
 are	

broadcast	
 again.	

• Works	
 OK	
 for	
 small	
 data.	

• Lots	
 of	
 communica]on	

overhead	
 -­‐	
 doesn’t	
 scale	

well.	

• Ships	
 with	
 Spark	

ExamplesMaster

Workers

Ratings

Movie!
FactorsUser!
Factors

Broadcast	
 Everything
• Master	
 loads	
 (small)	

data	
 file	
 and	
 ini]alizes	

models.	

• Master	
 broadcasts	
 data	

and	
 ini]al	
 models.	

• At	
 each	
 itera]on,	

updated	
 models	
 are	

broadcast	
 again.	

• Works	
 OK	
 for	
 small	
 data.	

• Lots	
 of	
 communica]on	

overhead	
 -­‐	
 doesn’t	
 scale	

well.	

• Ships	
 with	
 Spark	

ExamplesMaster

Workers

RatingsMovie!
FactorsUser!
Factors

Broadcast	
 Everything
• Master	
 loads	
 (small)	

data	
 file	
 and	
 ini]alizes	

models.	

• Master	
 broadcasts	
 data	

and	
 ini]al	
 models.	

• At	
 each	
 itera]on,	

updated	
 models	
 are	

broadcast	
 again.	

• Works	
 OK	
 for	
 small	
 data.	

• Lots	
 of	
 communica]on	

overhead	
 -­‐	
 doesn’t	
 scale	

well.	

• Ships	
 with	
 Spark	

ExamplesMaster

Workers

RatingsMovie!
FactorsUser!
Factors

Broadcast	
 Everything
• Master	
 loads	
 (small)	

data	
 file	
 and	
 ini]alizes	

models.	

• Master	
 broadcasts	
 data	

and	
 ini]al	
 models.	

• At	
 each	
 itera]on,	

updated	
 models	
 are	

broadcast	
 again.	

• Works	
 OK	
 for	
 small	
 data.	

• Lots	
 of	
 communica]on	

overhead	
 -­‐	
 doesn’t	
 scale	

well.	

• Ships	
 with	
 Spark	

ExamplesMaster

Workers

RatingsMovie!
FactorsUser!
Factors

Broadcast	
 Everything
• Master	
 loads	
 (small)	

data	
 file	
 and	
 ini]alizes	

models.	

• Master	
 broadcasts	
 data	

and	
 ini]al	
 models.	

• At	
 each	
 itera]on,	

updated	
 models	
 are	

broadcast	
 again.	

• Works	
 OK	
 for	
 small	
 data.	

• Lots	
 of	
 communica]on	

overhead	
 -­‐	
 doesn’t	
 scale	

well.	

• Ships	
 with	
 Spark	

ExamplesMaster

Workers

RatingsMovie!
FactorsUser!
Factors

Three	
 Kinds	
 of	
 ALS

• Broadcast	
 Everything	

• Data	
 Parallel	

• Fully	
 Parallel

Data	
 Parallel

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	
 Parallel

• Workers	
 load	
 data

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	
 Parallel

• Workers	
 load	
 data

• Master	
 broadcasts	
 ini]al	

models

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	
 Parallel

• Workers	
 load	
 data

• Master	
 broadcasts	
 ini]al	

models

• At	
 each	
 itera]on,	

updated	
 models	
 are	

broadcast	
 again

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	
 Parallel

• Workers	
 load	
 data

• Master	
 broadcasts	
 ini]al	

models

• At	
 each	
 itera]on,	

updated	
 models	
 are	

broadcast	
 again

• Much	
 bejer	
 scaling

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	
 Parallel

• Workers	
 load	
 data

• Master	
 broadcasts	
 ini]al	

models

• At	
 each	
 itera]on,	

updated	
 models	
 are	

broadcast	
 again

• Much	
 bejer	
 scaling

• Works	
 on	
 large	
 datasets

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	
 Parallel

• Workers	
 load	
 data

• Master	
 broadcasts	
 ini]al	

models

• At	
 each	
 itera]on,	

updated	
 models	
 are	

broadcast	
 again

• Much	
 bejer	
 scaling

• Works	
 on	
 large	
 datasets

• Works	
 well	
 for	
 smaller	

models.	
 (low	
 K)

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	
 Parallel

• Workers	
 load	
 data

• Master	
 broadcasts	
 ini]al	

models

• At	
 each	
 itera]on,	

updated	
 models	
 are	

broadcast	
 again

• Much	
 bejer	
 scaling

• Works	
 on	
 large	
 datasets

• Works	
 well	
 for	
 smaller	

models.	
 (low	
 K)

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	
 Parallel

• Workers	
 load	
 data

• Master	
 broadcasts	
 ini]al	

models

• At	
 each	
 itera]on,	

updated	
 models	
 are	

broadcast	
 again

• Much	
 bejer	
 scaling

• Works	
 on	
 large	
 datasets

• Works	
 well	
 for	
 smaller	

models.	
 (low	
 K)

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Data	
 Parallel

• Workers	
 load	
 data

• Master	
 broadcasts	
 ini]al	

models

• At	
 each	
 itera]on,	

updated	
 models	
 are	

broadcast	
 again

• Much	
 bejer	
 scaling

• Works	
 on	
 large	
 datasets

• Works	
 well	
 for	
 smaller	

models.	
 (low	
 K)

Master
Workers

Ratings

Movie!
Factors

User!
Factors

Ratings

Ratings

Ratings

Three	
 Kinds	
 of	
 ALS

• Broadcast	
 Everything	

• Data	
 Parallel	

• Fully	
 Parallel

Fully	
 Parallel

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	
 Parallel
• Workers	
 load	
 data

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	
 Parallel
• Workers	
 load	
 data

• Models	
 are	
 instan]ated	

at	
 workers.

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	
 Parallel
• Workers	
 load	
 data

• Models	
 are	
 instan]ated	

at	
 workers.

• At	
 each	
 itera]on,	

models	
 are	
 shared	
 via	

join	
 between	
 workers.

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	
 Parallel
• Workers	
 load	
 data

• Models	
 are	
 instan]ated	

at	
 workers.

• At	
 each	
 itera]on,	

models	
 are	
 shared	
 via	

join	
 between	
 workers.

• Much	
 bejer	
 scalability.

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	
 Parallel
• Workers	
 load	
 data

• Models	
 are	
 instan]ated	

at	
 workers.

• At	
 each	
 itera]on,	

models	
 are	
 shared	
 via	

join	
 between	
 workers.

• Much	
 bejer	
 scalability.

• Works	
 on	
 large	
 datasets

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	
 Parallel
• Workers	
 load	
 data

• Models	
 are	
 instan]ated	

at	
 workers.

• At	
 each	
 itera]on,	

models	
 are	
 shared	
 via	

join	
 between	
 workers.

• Much	
 bejer	
 scalability.

• Works	
 on	
 large	
 datasets

• Works	
 on	
 big	
 models	

(higher	
 K)

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	
 Parallel
• Workers	
 load	
 data

• Models	
 are	
 instan]ated	

at	
 workers.

• At	
 each	
 itera]on,	

models	
 are	
 shared	
 via	

join	
 between	
 workers.

• Much	
 bejer	
 scalability.

• Works	
 on	
 large	
 datasets

• Works	
 on	
 big	
 models	

(higher	
 K)

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Fully	
 Parallel
• Workers	
 load	
 data

• Models	
 are	
 instan]ated	

at	
 workers.

• At	
 each	
 itera]on,	

models	
 are	
 shared	
 via	

join	
 between	
 workers.

• Much	
 bejer	
 scalability.

• Works	
 on	
 large	
 datasets

• Works	
 on	
 big	
 models	

(higher	
 K)

Master
Workers

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

RatingsMovie!
FactorsUser!
Factors

Three	
 Kinds	
 of	
 ALS

• Broadcast	
 Everything	

• Data	
 Parallel	

• Fully	
 Parallel

Three	
 Kinds	
 of	
 ALS

• Broadcast	
 Everything	

• Data	
 Parallel	

• Fully	
 Parallel

Blocked

Four

Runtime(s)

MLlib

MLI

ML Optimizer

Spark

ML	
 Op.mizer:	
 a	
 declara]ve	
 layer	
 to	
 simplify	

access	
 to	
 large-­‐scale	
 ML	

MLI:	
 experimental	
 API	
 	
 for	
 simplified	
 feature	

extrac]on	
 and	
 algorithm	
 development	

MLlib:	
 produc]on-­‐quality	
 ML	
 library	
 in	
 Spark	

Spark:	
 cluster	
 compu]ng	
 system	
 designed	
 for	

itera]ve	
 computa]on

Runtime(s)

MLlib

MLI

ML Optimizer

Spark

ML	
 Op.mizer:	
 a	
 declara]ve	
 layer	
 to	
 simplify	

access	
 to	
 large-­‐scale	
 ML	

MLI:	
 experimental	
 API	
 	
 for	
 simplified	
 feature	

extrac]on	
 and	
 algorithm	
 development	

MLlib:	
 produc]on-­‐quality	
 ML	
 library	
 in	
 Spark	

Spark:	
 cluster	
 compu]ng	
 system	
 designed	
 for	

itera]ve	
 computa]on

baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML base

www.mlbase.org

http://www.mlbase.org

Runtime(s)

MLlib

MLI

ML Optimizer

Spark

ML	
 Op.mizer:	
 a	
 declara]ve	
 layer	
 to	
 simplify	

access	
 to	
 large-­‐scale	
 ML	

MLI:	
 experimental	
 API	
 	
 for	
 simplified	
 feature	

extrac]on	
 and	
 algorithm	
 development	

MLlib:	
 produc]on-­‐quality	
 ML	
 library	
 in	
 Spark	

Spark:	
 cluster	
 compu]ng	
 system	
 designed	
 for	

itera]ve	
 computa]on

THANKS!
QUESTIONS?

baseML

baseML

baseML

baseML

ML base

ML base

ML base

ML base

ML base

www.mlbase.org

http://www.mlbase.org

