

Distributed Machine Learning on

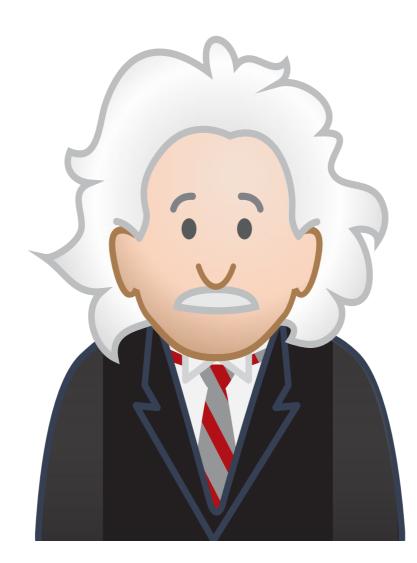
Evan Sparks

UC Berkeley January 31st, 2014

Collaborators: Ameet Talwalkar, Xiangrui Meng, Virginia Smith, Xinghao Pan, Shivaram Venkataraman, Matei Zaharia, Rean Griffith, John Duchi, Joseph Gonzalez, Michael Franklin, Michael I. Jordan, Tim Kraska

www.mlbase.org

Problem: Scalable implementations difficult for ML Developers...



Problem: Scalable implementations difficult for ML Developers...

Problem: Scalable implementations difficult for ML Developers...

VOWPAL WABBIT

Too many algorithms...

Too many knobs...

Too many algorithms...

Too many knobs...

Too many algorithms...

Difficult to debug...

Too many knobs...

Too many algorithms...

Difficult to debug...

Doesn't scale...

Too many knobs...

Too many algorithms... ML Developer

So

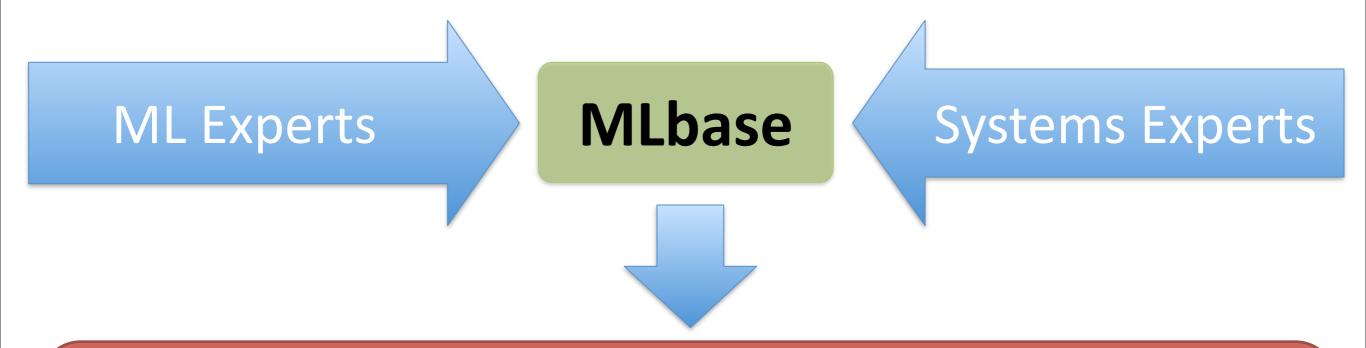
Accurate

Difficult to debug...

Reliable

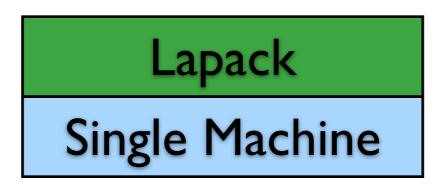
Provable

Doesn't scale...

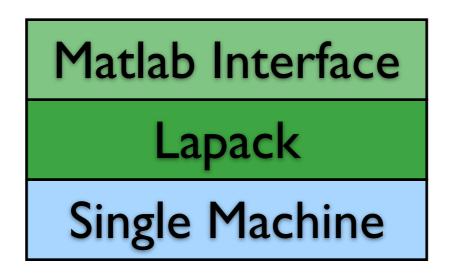


Easy scalable ML development (*ML Developers*) User-friendly ML at scale (*End Users*)

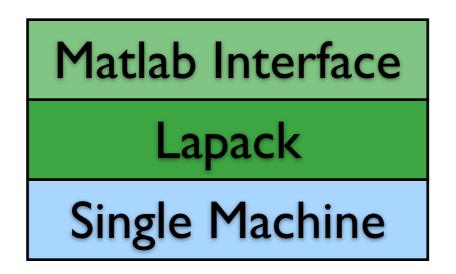
Single Machine



Lapack: low-level Fortran linear algebra library



- Lapack: low-level Fortran linear algebra library
- Matlab Interface
 - Higher-level abstractions for data access / processing
 - More extensive functionality than Lapack
 - Leverages Lapack whenever possible



- Lapack: low-level Fortran linear algebra library
- Matlab Interface
 - Higher-level abstractions for data access / processing
 - More extensive functionality than Lapack
 - Leverages Lapack whenever possible
- Similar stories for R and Python

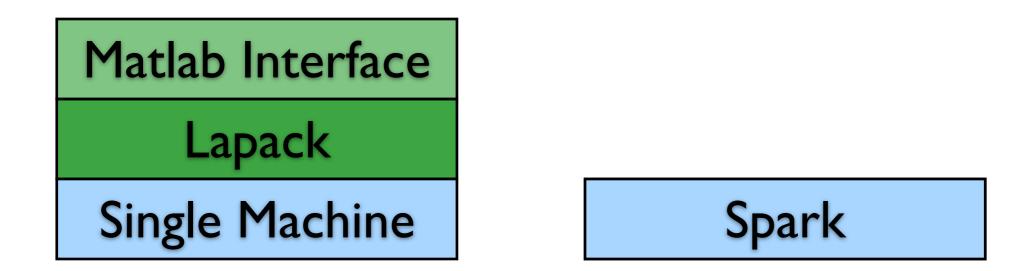
Lapack

Single Machine

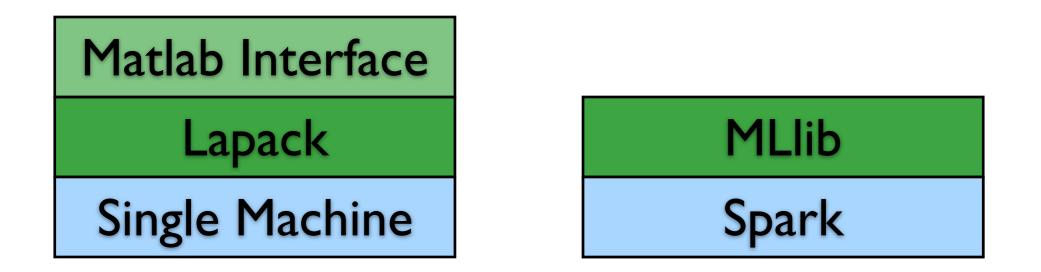
Lapack

Single Machine

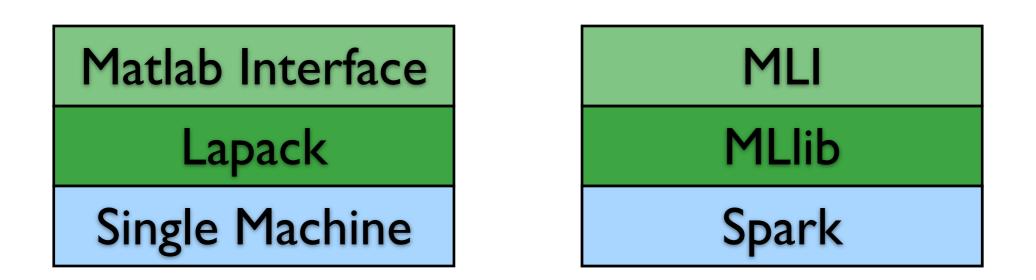
Runtime(s)



Spark: cluster computing system designed for iterative computation



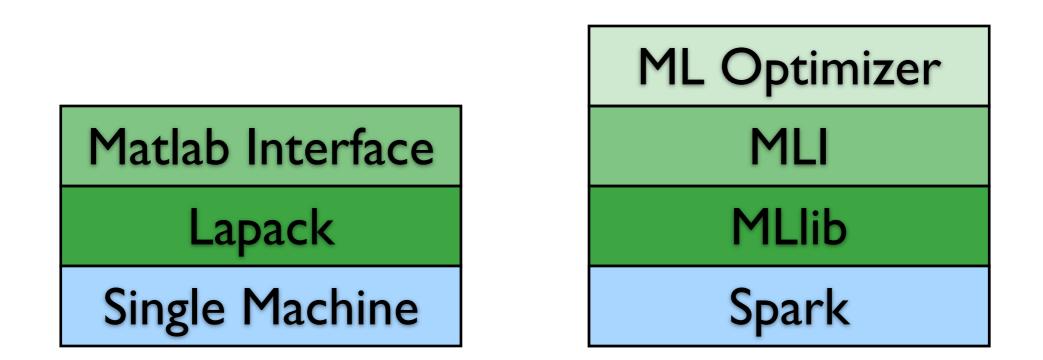
Spark: cluster computing system designed for iterative computation **MLlib**: production-quality ML library in Spark



Spark: cluster computing system designed for iterative computation

MLlib: production-quality ML library in Spark

MLI: experimental API for simplified feature extraction and algorithm development



Spark: cluster computing system designed for iterative computation

MLlib: production-quality ML library in Spark

MLI: experimental API for simplified feature extraction and algorithm development

ML Optimizer: a declarative layer to simplify access to large-scale ML

Overview MLlib Collaborative Filtering ALS Details

MLlib

Classification: Logistic Regression, Linear SVM (+L1, L2), Decision Trees, Naive Bayes

Regression: Linear Regression (+Lasso, Ridge)

Collaborative Filtering: Alternating Least Squares

Clustering / Exploration: K-Means, SVD

Optimization Primitives: SGD, Parallel Gradient

Interoperatility: Scala, Java, PySpark (0.9)

MLlib

Classification: Logistic Regression, Linear SVM (+L1, L2), Decision Trees, Naive Bayes

Regression: Linear Regression (+Lasso, Ridge)

Collaborative Filtering: Alternating Least Squares

Clustering / Exploration: K-Means, SVD

Optimization Primitives: SGD, Parallel Gradient

Interoperatility: Scala, Java, PySpark (0.9)

Included within Spark codebase

- Unlike Mahout/Hadoop
- Part of Spark 0.8 release
- Continued support via Spark project
- Community involvement has been terrific: ALS with implicit feedback (0.8.1), Naive Bayes (0.9), SVD (0.9), Decision Trees (soon!)

✦ Walltime: elapsed time to execute task

- ✦ Walltime: elapsed time to execute task
- Weak scaling
 - fix problem size per processor
 - ideally: constant walltime as we grow cluster

✦ Walltime: elapsed time to execute task

Weak scaling

- fix problem size per processor
- ideally: constant walltime as we grow cluster

Strong scaling

- fix total problem size
- ideally: linear speed up as we grow cluster

✦ Walltime: elapsed time to execute task

Weak scaling

- fix problem size per processor
- ideally: constant walltime as we grow cluster

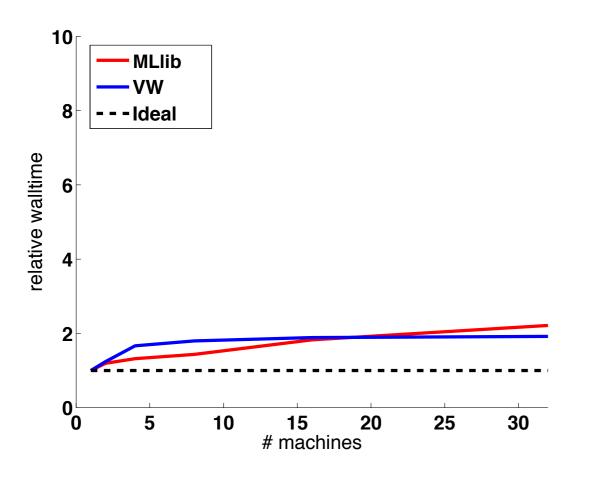
Strong scaling

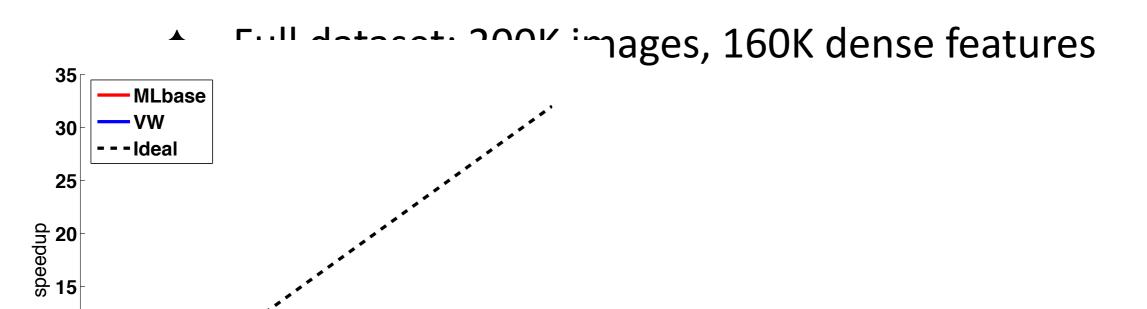
- fix total problem size
- ideally: linear speed up as we grow cluster

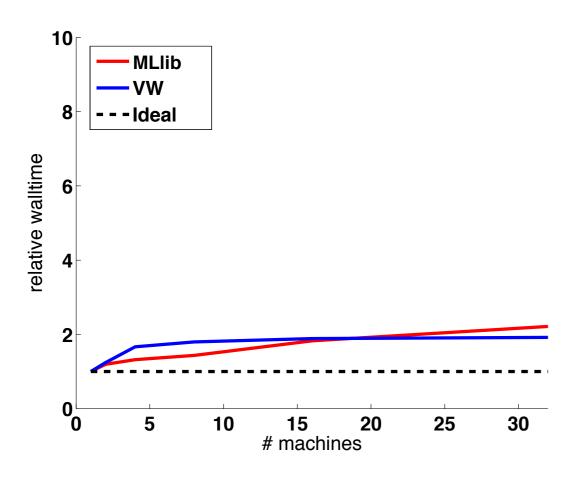
EC2 Experiments

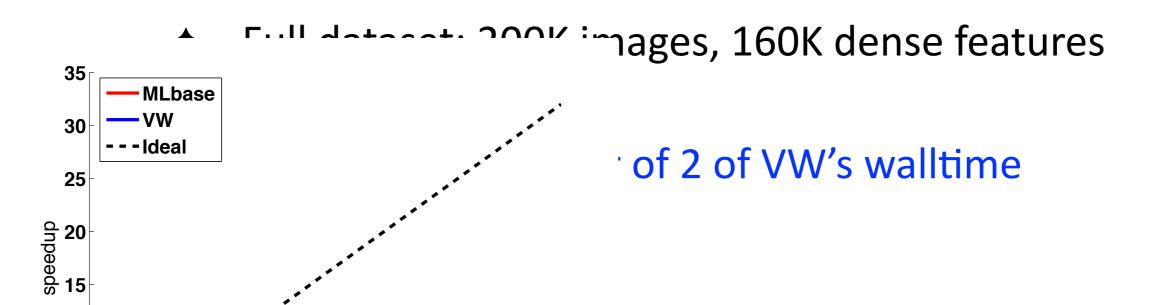
m2.4xlarge instances, up to 32 machine clusters

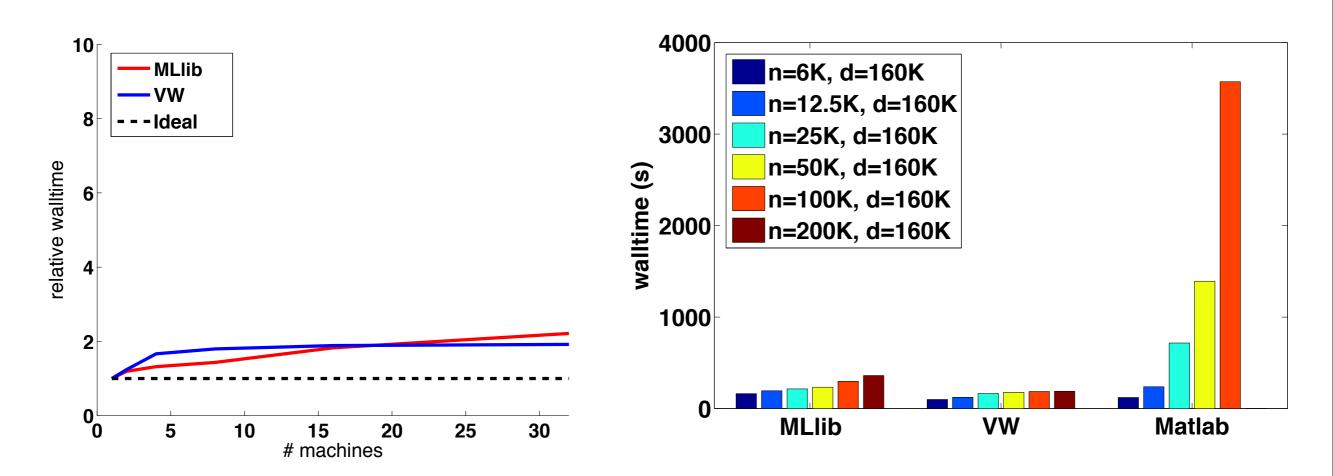
✦ Full dataset: 200K images, 160K dense features



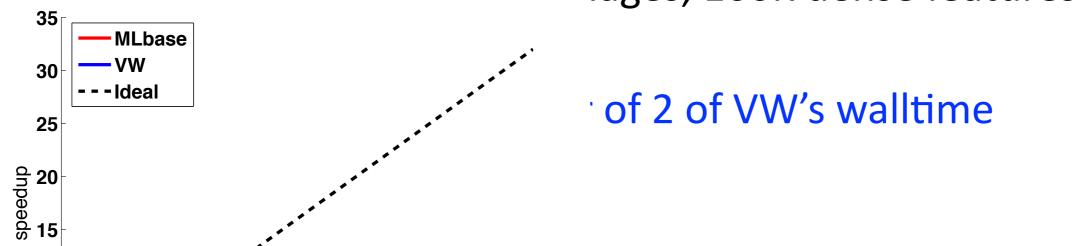








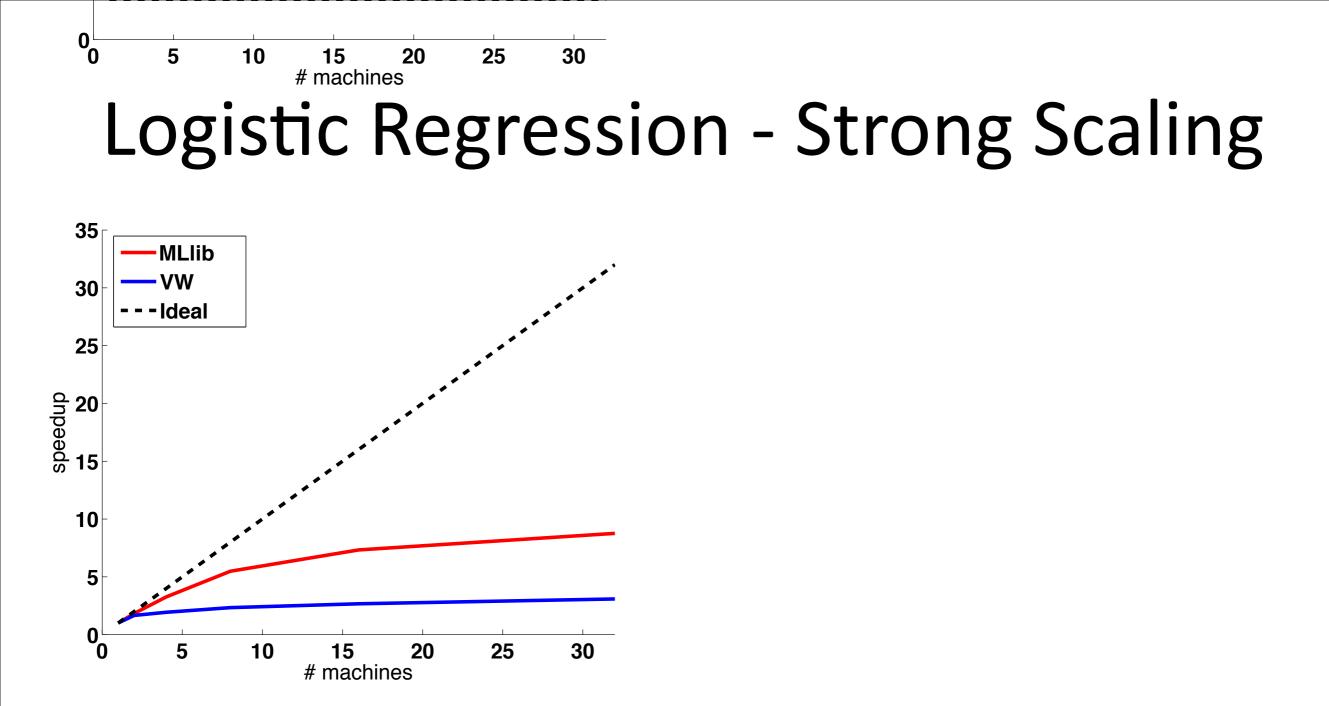
• **Full detects** 2007 images, 160K dense features



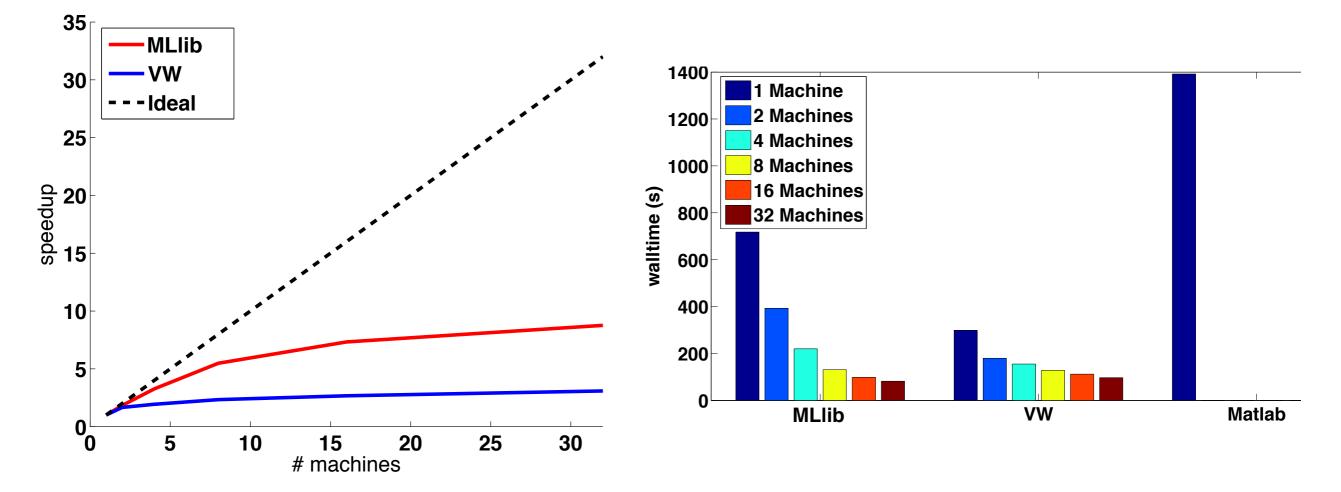
Logistic Regression - Strong Scaling

Logistic Regression - Strong Scaling

✦ Fixed Dataset: 50K images, 160K dense features



- ✦ Fixed Dataset: 50K images, 160K dense features
- MLlib exhibits better scaling properties



- ✦ Fixed Dataset: 50K images, 160K dense features
- MLlib exhibits better scaling properties
- MLlib faster than VW with 16 and 32 machines

- Dataset: Scaled version of Netflix data (9X in size)
- Cluster: 9 machines

System	Walltime (seconds)
Matlab	15443

- Dataset: Scaled version of Netflix data (9X in size)
- Cluster: 9 machines

System	Walltime (seconds)
Matlab	15443
Mahout	4206

- Dataset: Scaled version of Netflix data (9X in size)
- Cluster: 9 machines

System	Walltime (seconds)
Matlab	15443
Mahout	4206
GraphLab	291
MLlib	481

- Dataset: Scaled version of Netflix data (9X in size)
- Cluster: 9 machines
- MLlib an order of magnitude faster than Mahout

System	Walltime (seconds)
Matlab	15443
Mahout	4206
GraphLab	291
MLlib	481

- Dataset: Scaled version of Netflix data (9X in size)
- Cluster: 9 machines
- MLlib an order of magnitude faster than Mahout
- MLlib within factor of 2 of GraphLab

Vowpal Wabbit, GraphLab

- Data preparation specific to each program
- Non-trivial setup on cluster
- No fault tolerance

Vowpal Wabbit, GraphLab

- Data preparation specific to each program
- Non-trivial setup on cluster
- No fault tolerance

MLlib

- Reads files from HDFS
- Launch/compile/run on cluster with a few commands
- RDD's provide fault tolerance naturally

Vowpal Wabbit, GraphLab

- Data preparation specific to each program
- Non-trivial setup on cluster
- No fault tolerance

MLlib

- Reads files from HDFS
- Launch/compile/run on cluster with a few commands
- RDD's provide fault tolerance naturally
- Part of Spark's 'swiss army knife' ecosystem

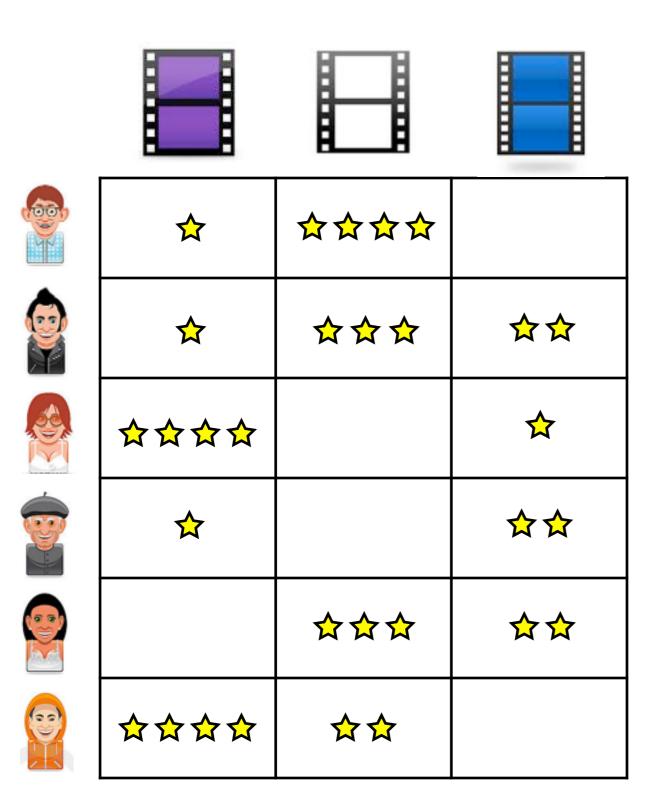
Vowpal Wabbit, GraphLab

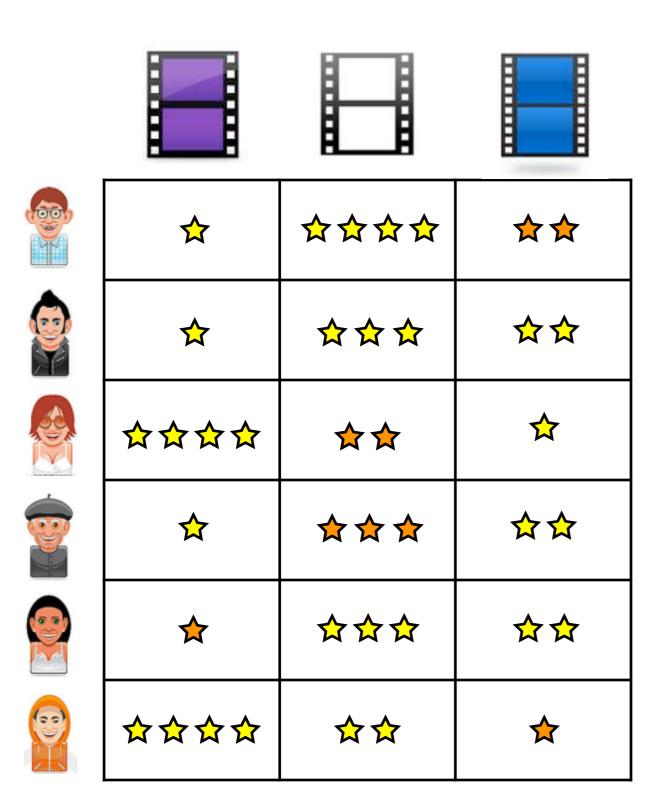
- Data preparation specific to each program
- Non-trivial setup on cluster
- No fault tolerance

MLlib

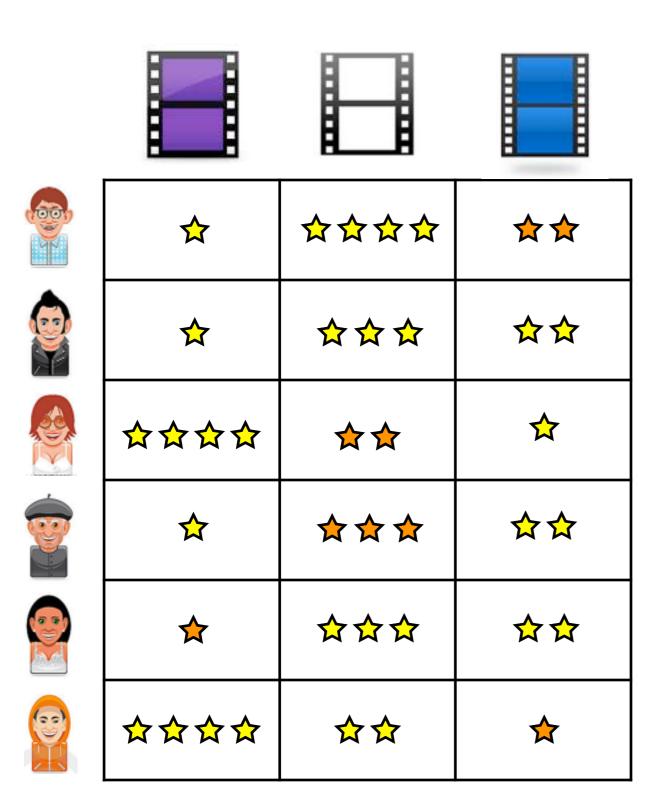
- Reads files from HDFS
- Launch/compile/run on cluster with a few commands
- RDD's provide fault tolerance naturally
- Part of Spark's 'swiss army knife' ecosystem
 - Shark, Spark Streaming, Graph-X, BlinkDB, etc.

Vision MLlib Collaborative Filtering ALS Details

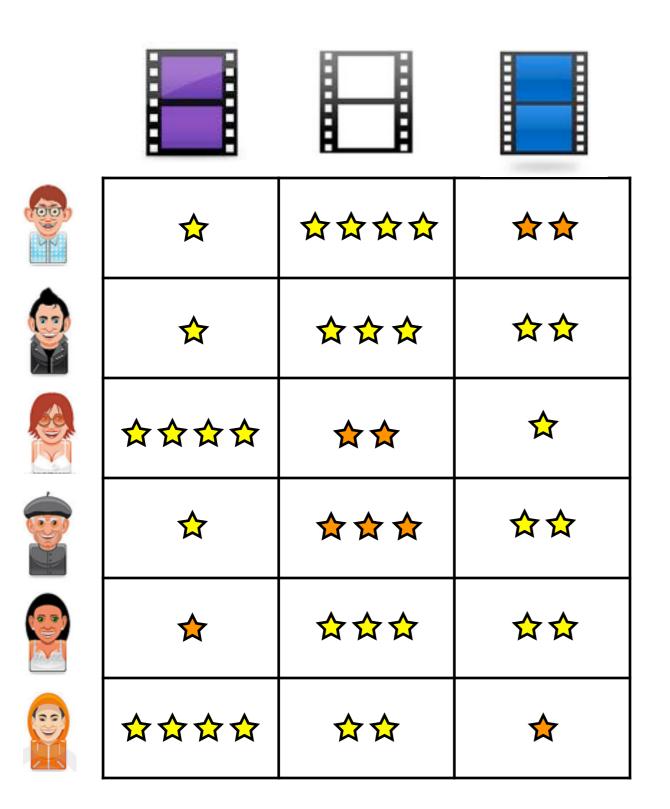




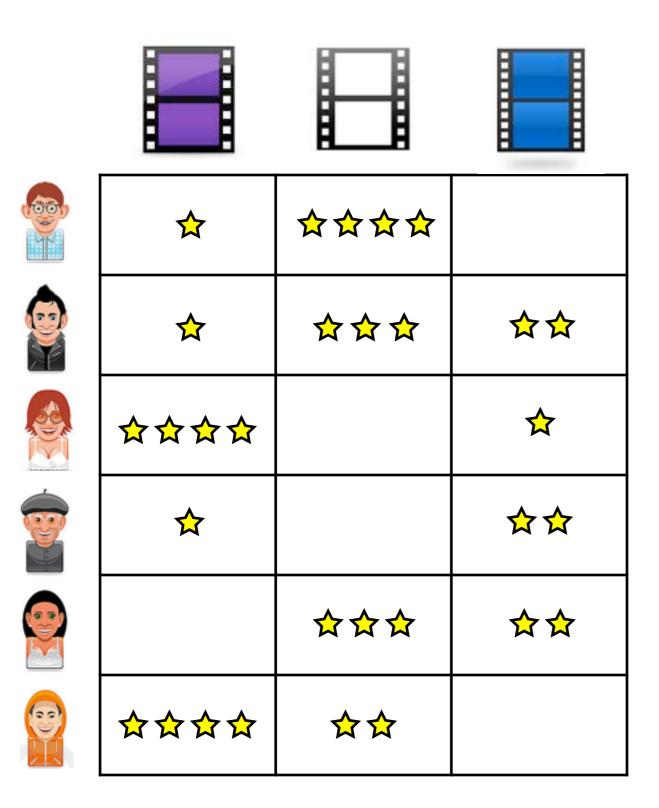
Goal: Recover a matrix from a subset of its entries

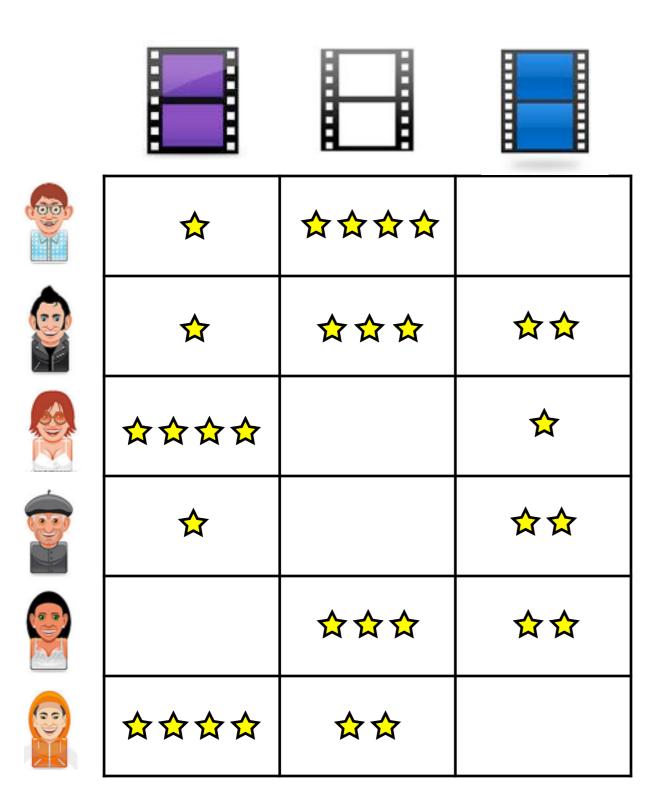


Goal: Recover a matrix from a subset of its entries



Goal: Recover a matrix from a subset of its entries

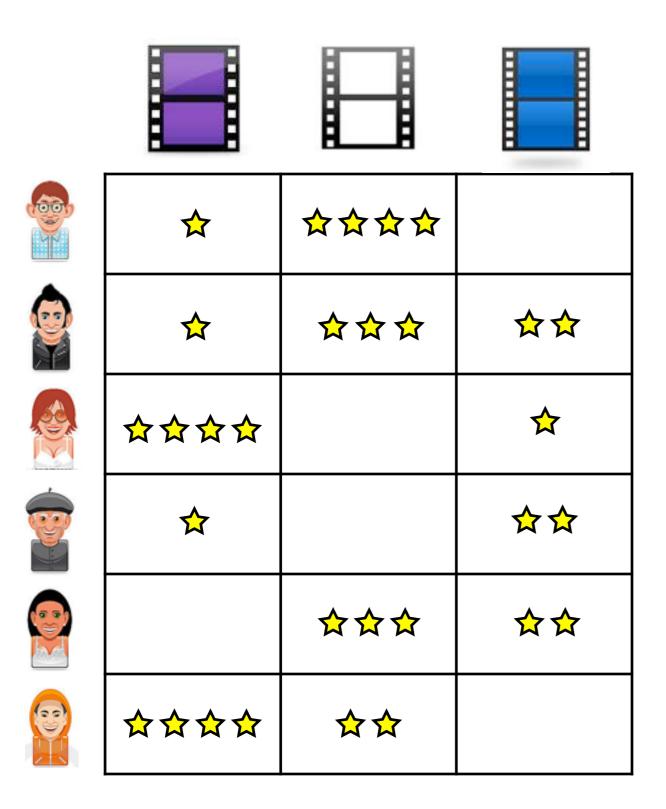




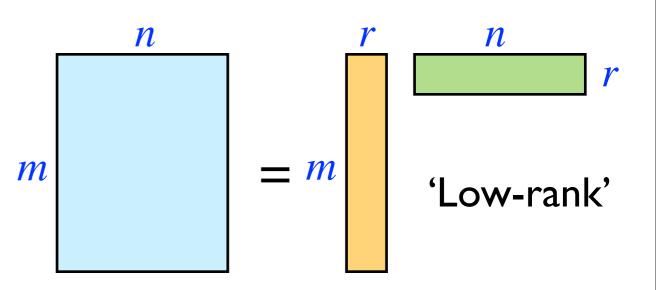
 Problem: Impossible without additional information

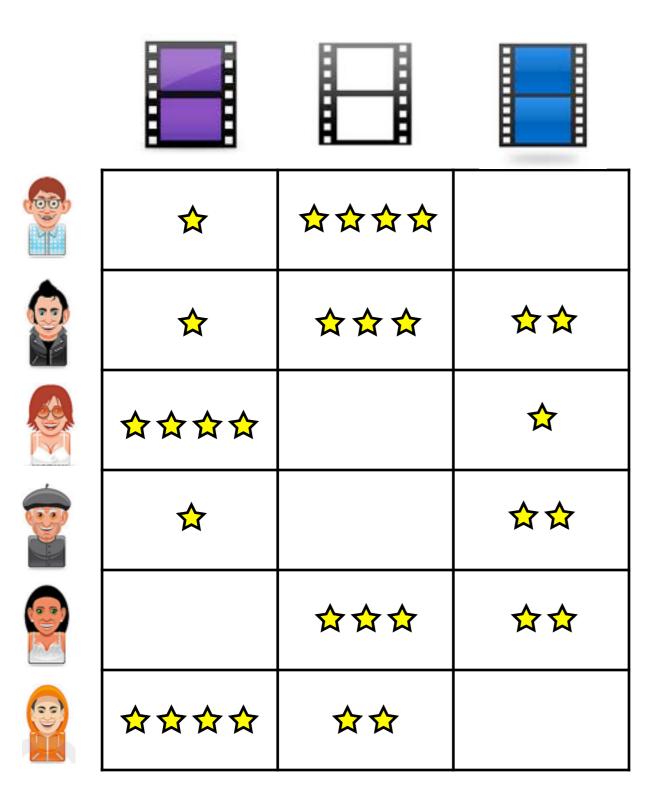
n

m

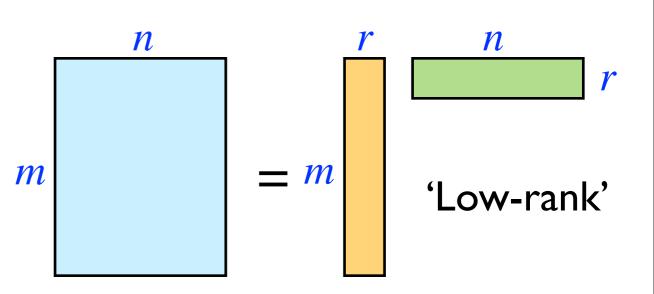


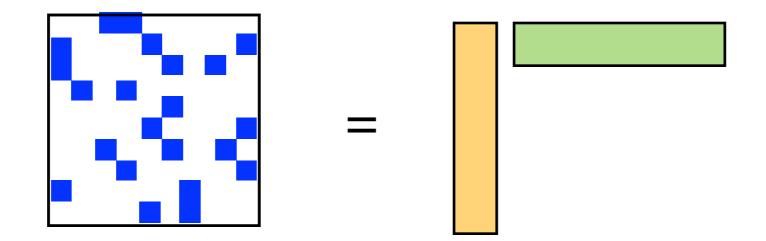
- Problem: Impossible without additional information
 - *mn* degrees of freedom

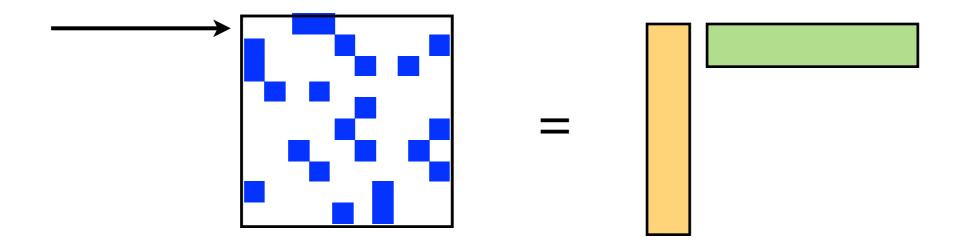


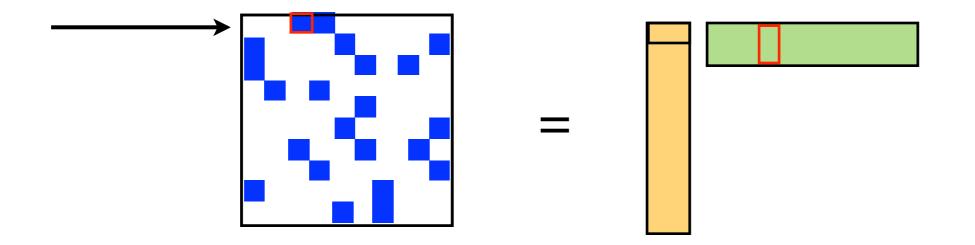


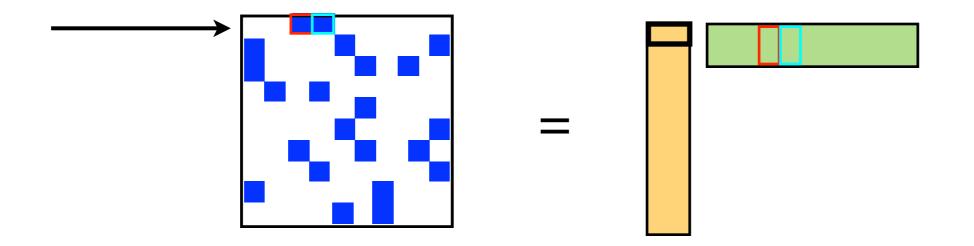
- Problem: Impossible without additional information
 - *mn* degrees of freedom
- Solution: Assume small # of factors determine preference
 - O(m+n) degrees of freedom

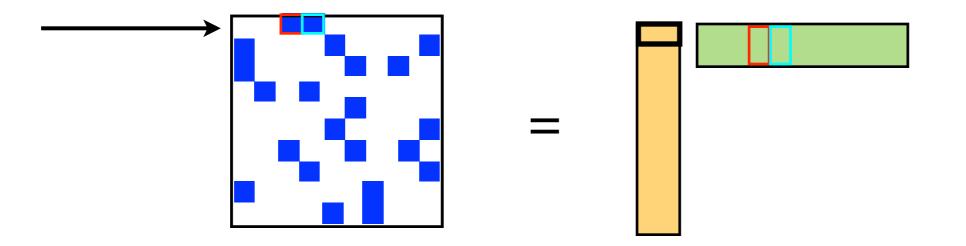




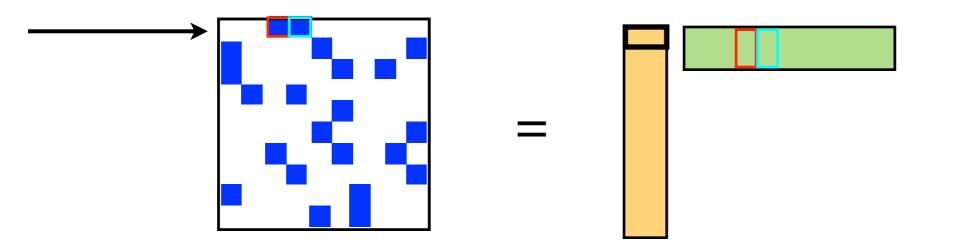






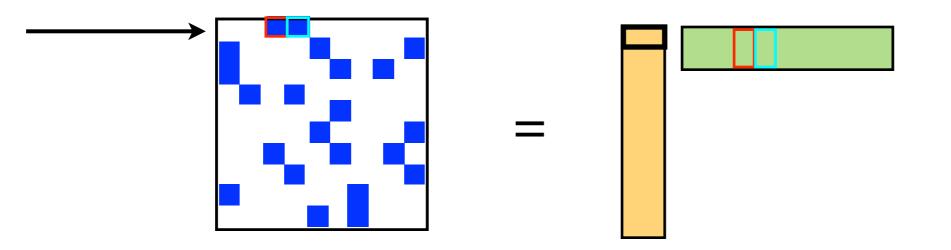


training error for first user = $(\blacksquare - \blacksquare) + (\blacksquare - \blacksquare)$



training error for first user = $(\blacksquare - \blacksquare) + (\blacksquare - \blacksquare)$

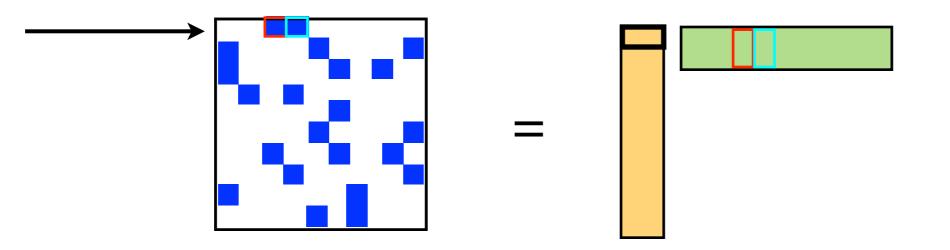
ALS: alternate between updating user and movie factors



training error for first user = $(\blacksquare - \blacksquare) + (\blacksquare - \blacksquare)$

ALS: alternate between updating user and movie factors

update first user by finding is that minimizes training error

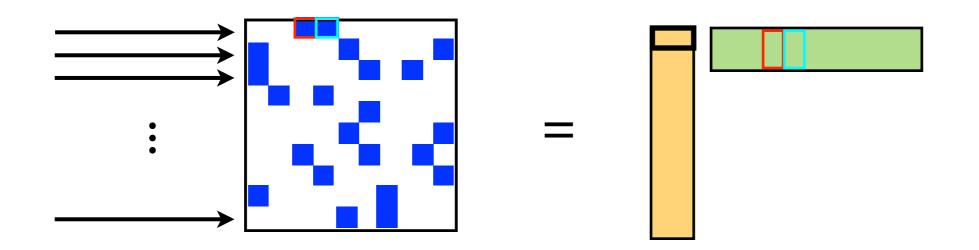


training error for first user = $(\blacksquare - \blacksquare) + (\blacksquare - \blacksquare)$

ALS: alternate between updating user and movie factors

update first user by finding is that minimizes training error

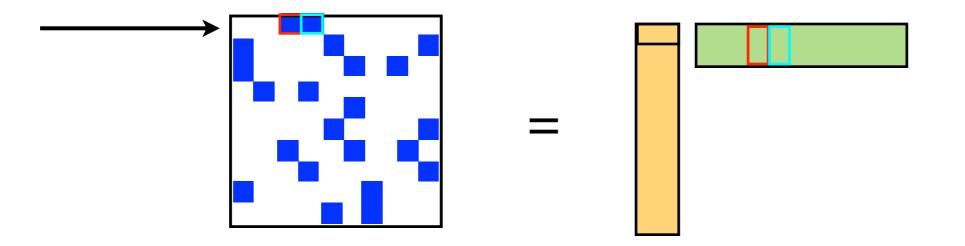
reduces to standard linear regression problem



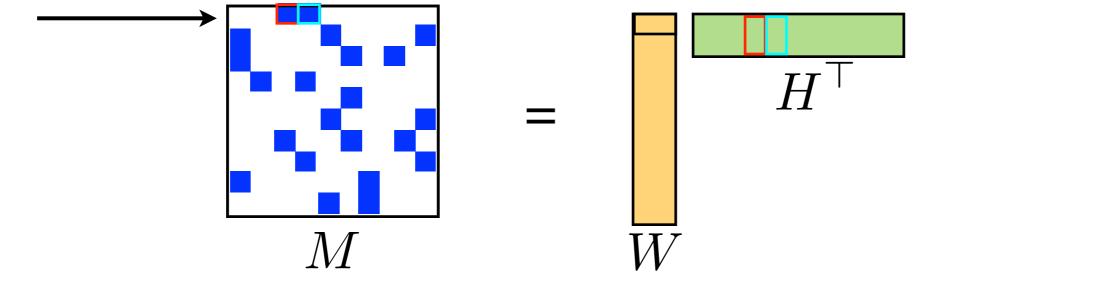
ALS: alternate between updating user and movie factors

update first user by finding is that minimizes training error

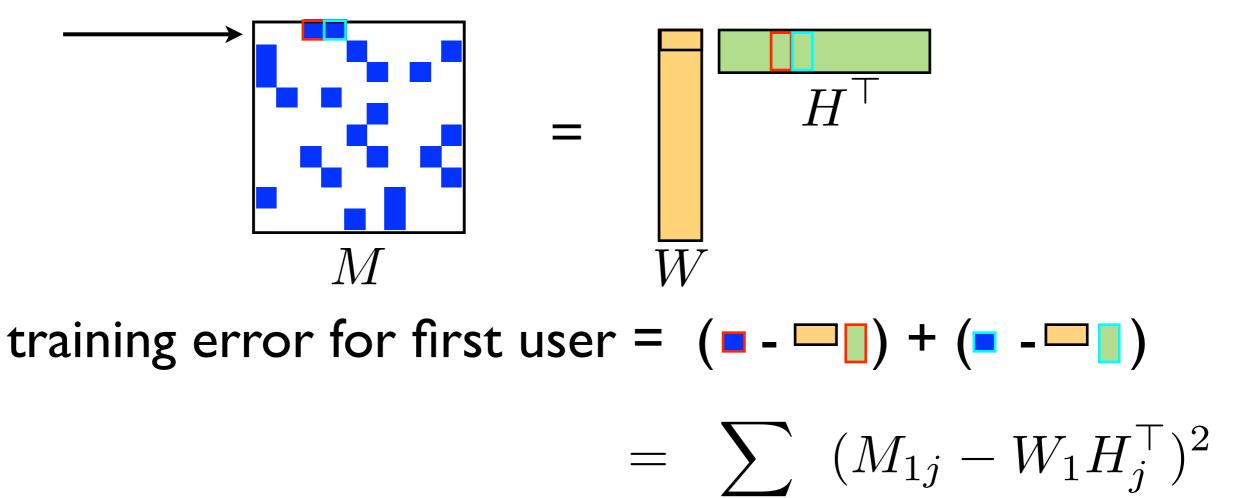
reduces to standard linear regression problem can update all users in parallel!



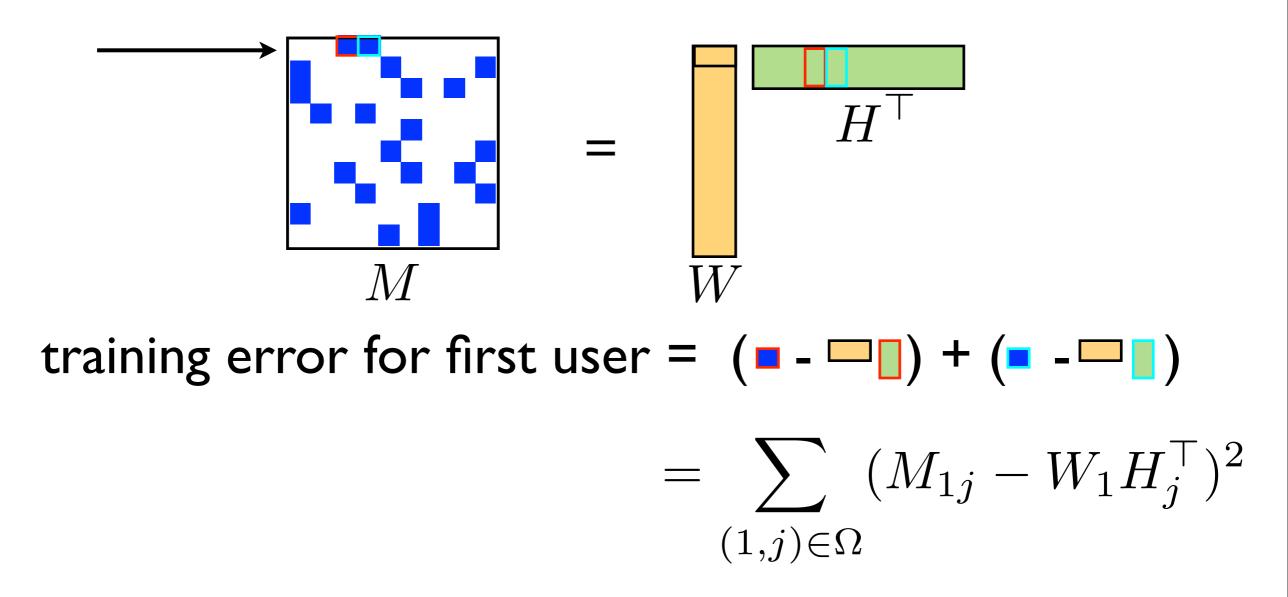
training error for first user = $(\blacksquare - \blacksquare) + (\blacksquare - \blacksquare)$



training error for first user = $(\blacksquare - \blacksquare) + (\blacksquare - \blacksquare)$



 $(1,j) \in \Omega$



$$W_1^* = (H_{\Omega_1}^{\top} H_{\Omega_1})^{-1} H_{\Omega_1}^{\top} M_{1\Omega_1}^{\top}$$

• Load 1,000,000 ratings from MovieLens.

- Load 1,000,000 ratings from MovieLens.
- Get YOUR ratings.

- Load 1,000,000 ratings from MovieLens.
- Get YOUR ratings.
- Split into training/validation.

- Load 1,000,000 ratings from MovieLens.
- Get YOUR ratings.
- Split into training/validation.
- Fit a model.

- Load 1,000,000 ratings from MovieLens.
- Get YOUR ratings.
- Split into training/validation.
- Fit a model.
- Validate and tune hyperparameters.

- Load 1,000,000 ratings from MovieLens.
- Get YOUR ratings.
- Split into training/validation.
- Fit a model.
- Validate and tune hyperparameters.
- Get **YOUR** recommendations.

- Load 1,000,000 ratings from MovieLens.
- Get YOUR ratings.
- Split into training/validation.
- Fit a model.
- Validate and tune hyperparameters.
- Get YOUR recommendations.
- Great example of a Spark application!

Vision MLlib Collaborative Filtering ALS Details

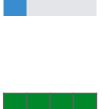
Three Kinds of ALS

- Broadcast Everything
- Data Parallel
- Fully Parallel

Three Kinds of ALS

Broadcast Everything

- Data Parallel
- Fully Parallel



Ratings

Master

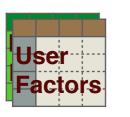
Ratings

Master

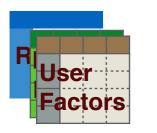
- Master loads (small) data file and initializes models.
- Master broadcasts data and initial models.
- At each iteration, updated models are broadcast again.
- Works OK for small data.
- Lots of communication overhead - doesn't scale well.
- Ships with Spark
 Examples

Workers

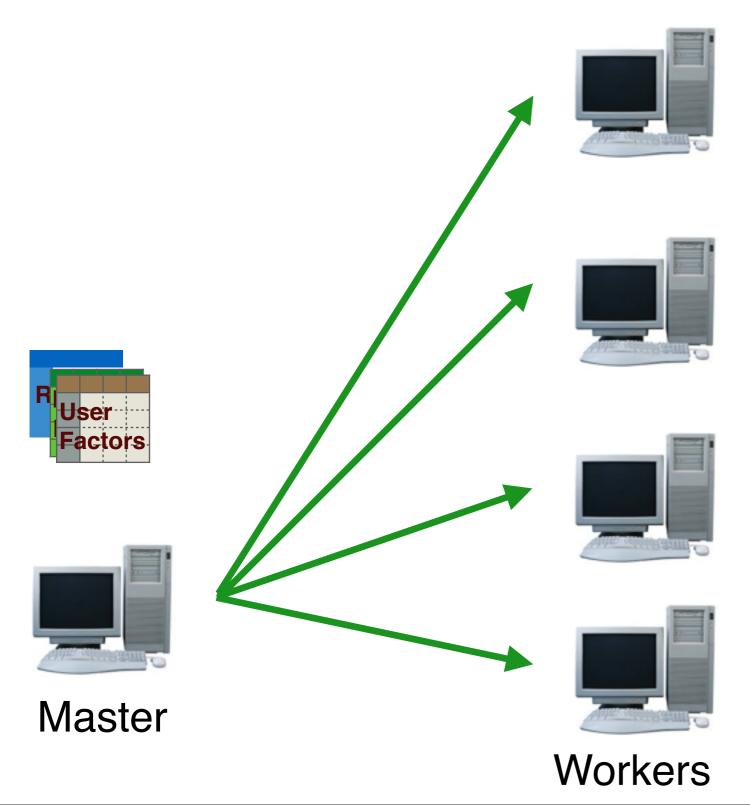
- Master loads (small) data file and initializes models.
- Master broadcasts data and initial models.
- At each iteration, updated models are broadcast again.
- Works OK for small data.
- Lots of communication overhead - doesn't scale well.
- Ships with Spark
 Examples



- Master loads (small) data file and initializes models.
- Master broadcasts data and initial models.
- At each iteration, updated models are broadcast again.
- Works OK for small data.
- Lots of communication overhead - doesn't scale well.
- Ships with Spark
 Examples

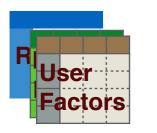


Master

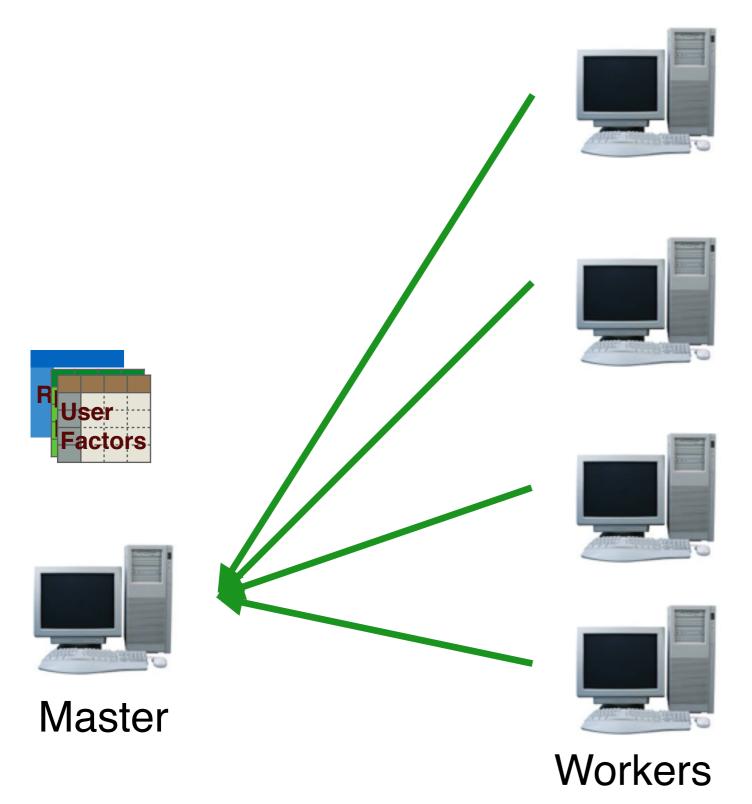


- Master loads (small) data file and initializes models.
- Master broadcasts data and initial models.
- At each iteration, updated models are broadcast again.
- Works OK for small data.
- Lots of communication overhead - doesn't scale well.
- Ships with Spark
 Examples

- Master loads (small) data file and initializes models.
- Master broadcasts data and initial models.
- At each iteration, updated models are broadcast again.
- Works OK for small data.
- Lots of communication overhead - doesn't scale well.
- Ships with Spark
 Examples



Master



- Master loads (small) data file and initializes models.
- Master broadcasts data and initial models.
- At each iteration, updated models are broadcast again.
- Works OK for small data.
- Lots of communication overhead - doesn't scale well.
- Ships with Spark
 Examples

Three Kinds of ALS

- Broadcast Everything
- Data Parallel
- Fully Parallel

Master

Workers load data

Master

- Workers load data
- Master broadcasts initial models

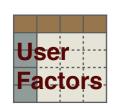
Master

- Workers load data
- Master broadcasts initial models
- At each iteration, updated models are broadcast again

Master

- Workers load data
- Master broadcasts initial models
- At each iteration, updated models are broadcast again
- Much better scaling

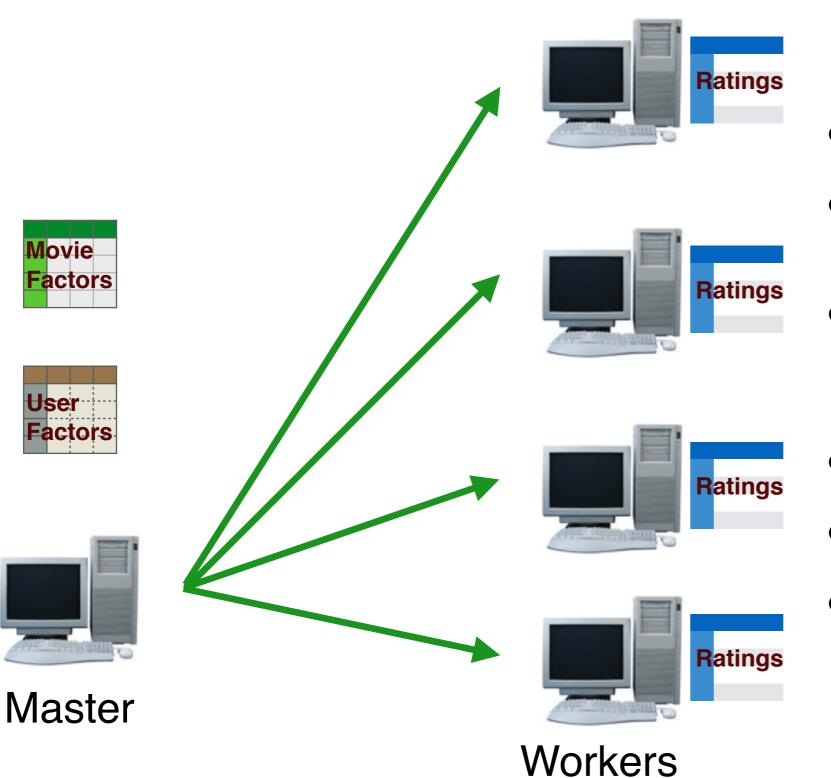
- Workers load data
- Master broadcasts initial models
- At each iteration, updated models are broadcast again
- Much better scaling
- Works on large datasets



Master

Master

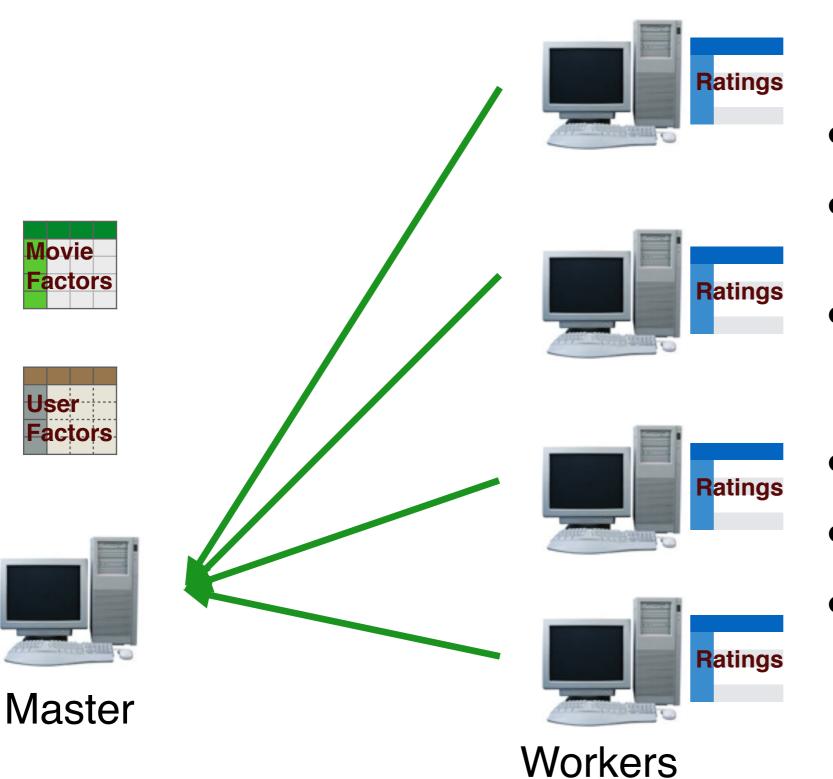
- Master broadcasts initial models
- At each iteration, updated models are broadcast again
- Much better scaling
- Works on large datasets
- Works well for smaller models. (low K)



- Workers load data
- Master broadcasts initial models
- At each iteration, updated models are broadcast again
- Much better scaling
- Works on large datasets
- Works well for smaller models. (low K)

Master

- Master broadcasts initial models
- At each iteration, updated models are broadcast again
- Much better scaling
- Works on large datasets
- Works well for smaller models. (low K)



- Workers load data
- Master broadcasts initial models
- At each iteration, updated models are broadcast again
- Much better scaling
- Works on large datasets
- Works well for smaller models. (low K)

Three Kinds of ALS

- Broadcast Everything
- Data Parallel
- Fully Parallel

Workers

Workers load data

Workers

- Workers load data
- Models are instantiated at workers.

Workers

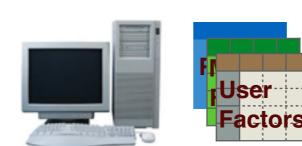
- Workers load data
- Models are instantiated at workers.
 - At each iteration, models are shared via *join* between workers.

User

Factors

Workers

- Workers load data
- Models are instantiated at workers.
- At each iteration, models are shared via *join* between workers.
- Much better scalability.

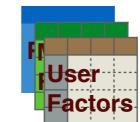


User

Factors

Workers

- Workers load data
- Models are instantiated at workers.
- At each iteration, models are shared via join between workers.
- Much better scalability.
- Works on large datasets



Workers

User

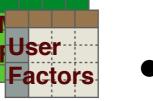
User

Factors

Factors

- Workers load data
- Models are instantiated at workers.
- At each iteration, models are shared via *join* between workers.
- Much better scalability.
- Works on large datasets
- Works on big models (higher K)

Workers



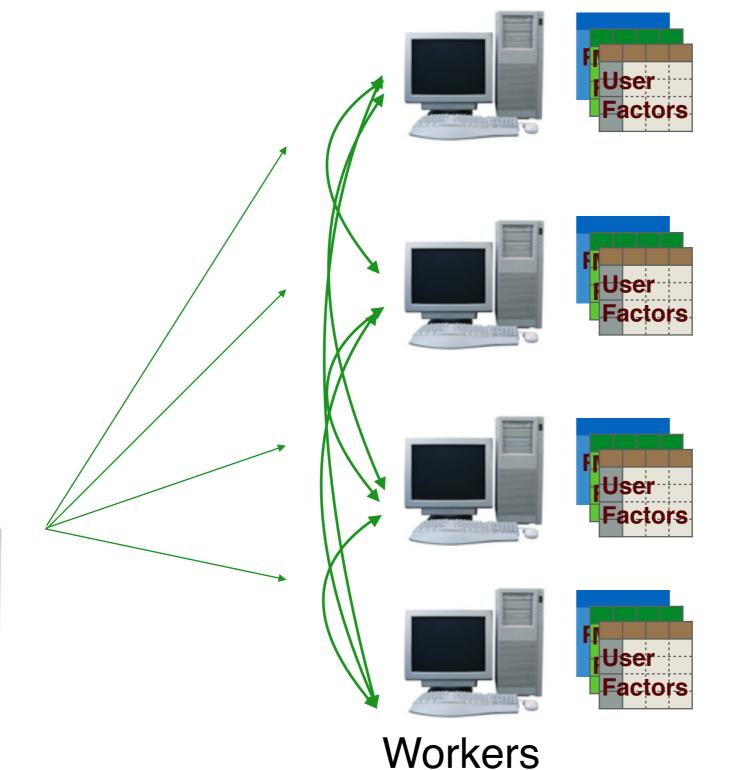
User

User

Factors

Factors

- Workers load data
- Models are instantiated at workers.
- At each iteration, models are shared via *join* between workers.
- Much better scalability.
- Works on large datasets
- Works on big models (higher K)



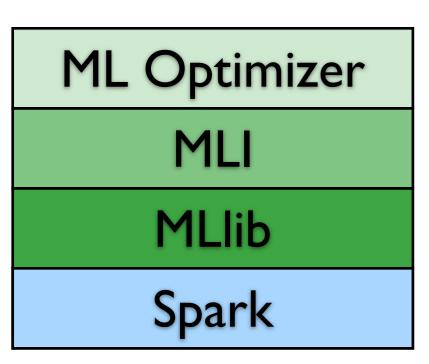
- Workers load data
- Models are instantiated at workers.
- At each iteration, models are shared via join between workers.
- Much better scalability.
- Works on large datasets
- Works on big models (higher K)

Three Kinds of ALS

- Broadcast Everything
- Data Parallel
- Fully Parallel

• Data Parallel

Fully Parallel Blocked

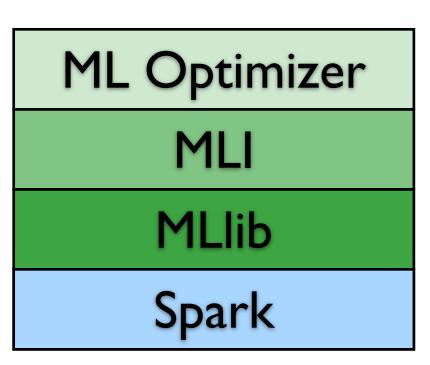


ML Optimizer: a declarative layer to simplify access to large-scale ML

MLI: experimental API for simplified feature extraction and algorithm development

MLlib: production-quality ML library in Spark

Spark: cluster computing system designed for iterative computation

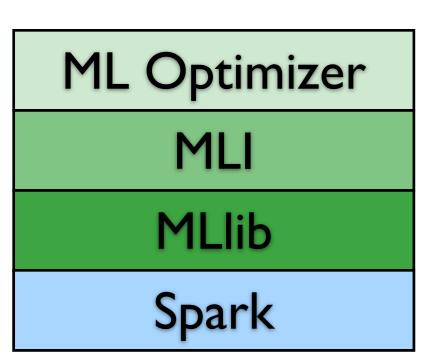


ML Optimizer: a declarative layer to simplify access to large-scale ML

MLI: experimental API for simplified feature extraction and algorithm development

MLlib: production-quality ML library in Spark

Spark: cluster computing system designed for iterative computation



ML Optimizer: a declarative layer to simplify access to large-scale ML

MLI: experimental API for simplified feature extraction and algorithm development

MLlib: production-quality ML library in Spark

Spark: cluster computing system designed for iterative computation

THANKS! QUESTIONS?

