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1. Easy	  scalable	  ML	  development	  (ML	  Developers)
2. User-‐friendly	  ML	  at	  scale	  (End	  Users)
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✦ Matlab	  Interface

✦ Higher-‐level	  abstrac]ons	  for	  data	  access	  /	  processing
✦ More	  extensive	  func]onality	  than	  Lapack
✦ Leverages	  Lapack	  whenever	  possible

✦ Similar	  stories	  for	  R	  and	  Python
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MLlib
Classifica.on:	  

Regression:	  

Collabora.ve	  Filtering:	  

Clustering	  /	  Explora.on:	  

Op.miza.on	  Primi.ves:	  

Interopera.lity:	  
Included	  within	  Spark	  codebase	  

✦ Unlike	  Mahout/Hadoop	  
✦ Part	  of	  Spark	  0.8	  release	  
✦ Con]nued	  support	  via	  Spark	  project	  
✦ Community	  involvement	  has	  been	  terrific:	  ALS	  with	  

implicit	  feedback	  (0.8.1),	  Naive	  Bayes	  (0.9),	  SVD	  (0.9),	  
Decision	  Trees	  (soon!)
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✦ Weak	  scaling
✦ fix	  problem	  size	  per	  processor
✦ ideally:	  constant	  wall]me	  as	  we	  grow	  cluster

✦ Strong	  scaling
✦ fix	  total	  problem	  size
✦ ideally:	  linear	  speed	  up	  as	  we	  grow	  cluster

✦ EC2	  Experiments
✦ m2.4xlarge	  instances,	  up	  to	  32	  machine	  clusters
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✦ Full	  dataset:	  200K	  images,	  160K	  dense	  features
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Fig. 8: Strong scaling for logistic regression

with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F ) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the

MLlib
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with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.
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matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u
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with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.

System Lines of Code
MLbase 32

GraphLab 383
Mahout 865

MATLAB-Mex 124
MATLAB 20

TABLE II: Lines of code for various implementations of ALS

B. Collaborative Filtering: Alternating Least Squares

Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV

T .
Commonly, U and V are estimated using the following bi-
convex objective:

min

U,V

X

(i,j)2⌦(M)

(Mij � U

T
i Vj)

2
+ �(||U ||2F + ||V ||2F ) . (2)

Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u

⇤
i 2 Rk is the optimal solution for the

i

th row vector of U , V⌦i is a sub-matrix of rows vj such that
j 2 ⌦i, and Mi⌦i is a sub-vector of observed entries in the
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with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.
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Matrix factorization is a technique used in recommender
systems to predict user-product associations. Let M 2 Rm⇥n

be some underlying matrix and suppose that only a small
subset, ⌦(M), of its entries are revealed. The goal of matrix
factorization is to find low-rank matrices U 2 Rm⇥k and
V 2 Rn⇥k, where k ⌧ n,m, such that M ⇡ UV
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Commonly, U and V are estimated using the following bi-
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Alternating least squares (ALS) is a widely used method for
matrix factorization that solves (2) by alternating between
optimizing U with V fixed, and V with U fixed. ALS is
well-suited for parallelism, as each row of U can be solved
independently with V fixed, and vice-versa. With V fixed, the
minimization problem for each row ui is solved with the closed
form solution. where u
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i 2 Rk is the optimal solution for the
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scaling results as more machines are added.
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loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
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with respect to computation. In practice, we see comparable
scaling results as more machines are added.

In MATLAB, we implement gradient descent instead of
SGD, as gradient descent requires roughly the same number
of numeric operations as SGD but does not require an inner
loop to pass over the data. It can thus be implemented in a
’vectorized’ fashion, which leads to a significantly more favor-
able runtime. Moreover, while we are not adding additional
processing units to MATLAB as we scale the dataset size, we
show MATLAB’s performance here as a reference for training
a model on a similarly sized dataset on a single multicore
machine.

Results: In our weak scaling experiments (Figures 5 and
6), we can see that our clustered system begins to outperform
MATLAB at even moderate levels of data, and while MATLAB
runs out of memory and cannot complete the experiment on
the 200K point dataset, our system finishes in less than 10
minutes. Moreover, the highly specialized VW is on average
35% faster than our system, and never twice as fast. These
times do not include time spent preparing data for input input
for VW, which was significant, but expect that they’d be a
one-time cost in a fully deployed environment.

From the perspective of strong scaling (Figures 7 and 8),
our solution actually outperforms VW in raw time to train a
model on a fixed dataset size when using 16 and 32 machines,
and exhibits stronger scaling properties, much closer to the
gold standard of linear scaling for these algorithms. We are
unsure whether this is due to our simpler (broadcast/gather)
communication paradigm, or some other property of the sys-
tem.
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✦ Dataset:	  Scaled	  version	  of	  Neklix	  data	  (9X	  in	  size)
✦ Cluster:	  9	  machines
✦ MLlib	  an	  order	  of	  magnitude	  faster	  than	  Mahout
✦ MLlib	  within	  factor	  of	  2	  of	  GraphLab

System Wall.me	  (seconds)

Matlab 15443

Mahout 4206

GraphLab 291

MLlib 481
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✦ Data	  prepara]on	  specific	  to	  each	  program
✦ Non-‐trivial	  setup	  on	  cluster
✦ No	  fault	  tolerance 

MLlib
✦ Reads	  files	  from	  HDFS
✦ Launch/compile/run	  on	  cluster	  with	  a	  few	  commands
✦ RDD’s	  provide	  fault	  tolerance	  naturally
✦ Part	  of	  Spark’s	  ‘swiss	  army	  knife’	  ecosystem

✦ Shark,	  Spark	  Streaming,	  Graph-‐X,	  BlinkDB,	  etc.
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Reducing	  Degrees	  of	  Freedom

✦ Problem:  Impossible without 
additional information
✦ mn degrees of freedom 

 
✦ Solution:  Assume small # of 

factors determine preference 
✦                 degrees of freedom
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=

training error for first user =  (   -      ) + (   -      )

ALS: alternate between updating user and movie factors

update first user by finding      that minimizes 
training error 

reduces to standard linear regression problem

can update all users in parallel!

...
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• Load	  1,000,000	  ra]ngs	  from	  MovieLens.
• Get	  YOUR	  ra]ngs.
• Split	  into	  training/valida]on.
• Fit	  a	  model.
• Validate	  and	  tune	  hyperparameters.
• Get	  YOUR	  recommenda]ons.
• Great	  example	  of	  a	  Spark	  applica]on!
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MLlib

MLI

ML Optimizer
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ML	  Op.mizer:	  a	  declara]ve	  layer	  to	  simplify	  
access	  to	  large-‐scale	  ML	  

MLI:	  experimental	  API	  	  for	  simplified	  feature	  
extrac]on	  and	  algorithm	  development	  

MLlib:	  produc]on-‐quality	  ML	  library	  in	  Spark	  

Spark:	  cluster	  compu]ng	  system	  designed	  for	  
itera]ve	  computa]on
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