N2
'f‘fﬂ'

B KR AT T

ES

B ZEM SR FEAR S TR R
Facebook 4545 2 & 4t [41 P\

FRIBEIR
RZ AR ILKF

R (A

FKERIEKFE P (Emory University)

PR ST

X HIBk %

Broad Challenges of Big Data Analytics

d Existing DB technology is not prepared for the huge volume
* Needs new system infrastructure for structured and non-structured data

* Must be hardware independent, HP, HT, scalable, and fault-tolerant

1 Truly multidisciplinary collaborations across all the disciplines

* Although data volumes in all fields are high, the formats of data and
natures of analytics are very different.

1 Big data analytics must be cost effective to the society
* Conventional database model is not affordable

* Low cost clusters and open source software are foundations

d Open many new research challenges

* In algorithms, systems design/implementations, and in many applications

Computing Paradigm Shift for Big Data Analytics

1 Conventional parallel processing model is “scale-up” based
* BSP model, CACM, 1990: optimizations in both hardware and software
* Hardware: low ratio of comp/comm, fast locks, large cache and memory

* Software: overlapping comp/comm, exploiting locality, co-scheduling ...

U Big data processing model is “scale-out” based
* DOT model, SOCC’11: hardware independent software design

* Scalability: maintain a sustained throughput growth by continuously
adding low cost computing and storage nodes in distributed systems

¢ Constraints in computing patterns: communication- and data-sharing-free

Superstep i

BSP is a Scale-Up Model for HPC

Barrier

d A parallel architecture model

* Key parameters: p, node speed, message
speed, synch latency

* Low ratio of computing/message is key

d A programming model

* Reducing message/synch latency is key:
— Overlapping computing and communication
— Exploiting locality
— Load balance to minimize synch latency

J A cost model

* Combining both hardware/software
parameters, we can predict execution time

[BSP does not support
* Data-intensive applications, big data
* hardware independent performance
* sustained scalability and high throughput

4

Major Hurdles of Parallel Processing in Big Data Analytics

 Scale-out = sustained throughput growth as # nodes grows
* MR processed 1 PB data in 6h 2m on 4000 nodes in 11/2008

* MR processed 10 PB in 6 h 27 m on 8000 nodes 9/2011
* Big data with simple analytics

1 Data processing must be highly parallel with several constraints
* No specific communication hardware support
* Lacking runtime and global coordination in clusters
* Lacking software tools to optimize and standardize analytics programs

* Data sets are hardly or even not movable after they are stored

d MapReduce (Hadoop) is the basic big data processing engine
* High scalability (minimum dependency)
* High fault tolerance (simple and independent operations in each node)

* We must overcome hurdles to process big data with complex analytics

MR(Hadoop) Job Execution Patterns

Map Tasks MR program (job) The execution of

@ Reduce Tasks a MR job involves

gos‘%téi% éevel work, e.g.
job scheduling and task
assighment

Data is stored in a I 1: Job submission
Distributed File System
(e.g. Hadoop Distributed

File System

7

Master node

Worker nodes

o* ‘e
g u“l 2: Assign TaskshT

Do data processing
work specified by Map
or Reduce Function

MR(Hadoop) Job Execution Patterns

Map Tasks MR program The execution of
@ Rcduce Tasks a MR job involves
6 steps

I 1: Job submission I

v

Map output
\ Master node
Worker nod. Worker nodes

Map output will be shuffled to
different reduce tasks based on
Partition Keys (PKs) (usually
Map output keys)

3: Map phase

I 4: Shuffle phase I
Concurrent tasks

MR(Hadoop) Job Execution Patterns

Map Tasks MR program The execution of
@ Rcduce Tasks a MR job involves
- — 6 steps
. I 1: Job submission I
\4

6: Output will be stored back
Master node to Distributed File System
' ~ . Worker nodes

Worker nod

Reduce output

3: Map phase

I 4: Shuffle phase I 5: Reduce phase
Concurrent tasks

Concurrent tasks

MR(Hadoop) Job Execution Patterns

O Map Tasks MR program The execution of

@ Rcduce Tasks d a MR job involves
6 steps

E I 1: Job submission I

v

: 6: Output will be stored back
Master node to Distributed File System

Worker nod. P . Worker nodes

MapReduce model is synchronous, net/disk demanding:

1: Input data scan in the Map phase => local or remote I/Os
2: Store intermediate results of Map output => local I/Os

3: Transfer data across in the Shuffle phase => network costs
4: Store final results of this MR job => local I/Os + network
costs (replicate data)

Sources of Bottlenecks

 Storage latency: unnecessary data transfers between local hard
disks and nodes.

d Network latency: unnecessary data communication among nodes

J Recovery time for fault tolerance: the latency to resume processing
after node(s) are crashed

d Processing engine modification: the application scope of a
customized and application dependent Hadoop is very limited

d “One size fits all” methodology: enhancing functionalities under
one software framework

d Processing engine structure unawareness: software tools that are
not designed in a target way may not be efficient

Outline

d SideWalk: a messaging facility for big data analytics
* A communication facility for critically necessary message exchange
* A light-weight message sharing facility without affecting scalability

e A user communication vehicle with restrictions

d YSmart: a highly efficient query-to-MapReduce translator
* Correlations-aware is the key
* Fundamental Rules in the translation process
* A part of production systems and a MapReduce teaching tool

d Data Placement: related optimization and analysis
* Formal and problem definitions
* Placement analysis under a unified evaluation framework
* Why RCFile 1s the most balanced structure and widely used?

(] Conclusion

A Typical Dataflow in MapReduce

Communications for data transfers?
Communications are strictly defined by the framework

Demands beyond the Dataflow

We want to optimize this execution with 7
statistics collected and summarized from B
previous executions

Demands beyond Dataflow

We want to gather ad hoc information from ,
the inside of dataflow to know if the
execution runs normally

Demands beyond Dataflow

We want to use data statistics generated in l‘,
Map to guide the execution of Join O

Demands beyond Dataflow

We want to use data statistics generated in I"
Map to guide the execution of Join O

If Map and Join are executed in different
applications or systems?

Demands beyond Dataflow

--......
L J
L J
L/
L 4

Those communications are out-of-band of communications for
data transfers

Those communications are carrying light-weight information
Existing systems, such as Hadoop, are not designed to support
out-of-band communications

A Straight Forward Way

Fit out-of-band communications into defined data transfers

* High overhead
* Low programming productivity
* Hard to make this method general-purpose

Where 1s SideWalk in the Big Data Ecosystem?

d An General-purpose Out-of-band Communication
Facility in Large-scale Data Processing

Principles and Functions of SideWalk

d Out-of-band communications are carried by Auxiliary Datum
 Auxiliary Datum is generated by a transformation function

1 Users only focus on defining transformation functions
* Built-in functions can be deployed with SideWalk

J A small set of standardized APIs are designed to make
SideWalk support different applications and systems

1 Abusing the capability of SideWalk is not allowed
* SideWalk does not handle regular data processing tasks

* SideWalk is not a relay for arbitrary communications

Options of Making Out-of-Bound Communications

Out-of-band communications require special treatment

Specific
software
(App-based)

Ad hoc solution

(User-based)

Programming

productivity Low High High
- . Maximal
Applicability o (General-

(Not general-purpose)

purpose)

Side-effects Potentially high Minimal

Outline

d YSmart: a highly efficient query-to-MapReduce translator
* Correlations-aware is the key
* Fundamental Rules in the translation process
* A part of production systems and MapReduce teaching tool

N
[\

MR programming is not that “simp el

public static class Reduce extends Reducer<IntWritable, Text, Writable, Text> {
private Text result = new Text();

public void reduce(IntWritable key, Iterable<Text> values,
package tpch; Context context
import java.io.IOException;) throws IOException, InterruptedException {
import java.util.ArrayList;
import org.apache.hadoop.conf.Configuration; double sumQuantity 0.0;
import org.apache.hadoop.conf.Configured; IntWritable newKey = new IntWritable();

This complex code is for a simple MR job

import org.apache.hadoop.util.GenericOptionsParser;

import org.apache.hadoop.util.Tool;

Low Productivity!

if (inputFile.compareTo ("lineitem.tbl"™)

isLineitem = true;

We all want to simply write:

“SELECT * FROM Book WHERE price > 100.00”?

= vora ma o ary ATscmm i
int res = ToolRunner.run(new Configuration(), new Q18Jobl(), args);
System.exit (res);

High Quality MapReduce in Automation

Write MR
programs (jobs)

Workets

Hadoop Distributed File System (HDEFES)

.......

IS
v,

A job description in SQL-like declarative language

A interface between users
and MR programs (jobs)

| MR programs (jobs)

24

High Quality MapReduce in Automation

A job description in SQL-like declarative language

A interface between users

: SQL-to-MapReduce
Write MR Q p and MR programs (jobs)

programs (jobs) Translator

A data warehousing | A high-level programming
1 system (Facebook) ' environment (Yahoo!)

Improve productivity from hand-coding MapReduce programs
* 95%+ Hadoop jobs in Facebook are generated by Hive *

* 75%+ Hadoop jobs in Yahoo! are invoked by Pig"™ "

Translating SQL-like Queries to MapReduce Jobs: Existing Approach

1 “Sentence by sentence” translation

* [C. Olston et al. SIGMOD 2008], [A. Gates et al., VLLDB 2009] and [A.
Thusoo et al., ICDE2010]

* Implementation: Hive and Pig

 Three steps
* Identify major sentences with operations that shuffle the data
— Such as: Join, Group by and Order by

* For every operation in the major sentence that shuffles the data, a
corresponding MR job is generated

— e.g. a join op. => a join MR job
* Add other operations, such as selection and projection, into
corresponding MR jobs

Existing SQL-to-MapReduce translators give unacceptable

performance.

An Example: TPC-H Q21

d One of the most complex and time-consuming queries in the

TPC-H benchmark for data warehousing performance

JOptimized MR Jobs vs. Hive in a Facebook production cluster
® Optimized MR Jobs ® Hive

160
140
120 3.7x
100

=N
()

=
o

Execution time (min)
Qo
S

What’s wrong?

The Execution Plan of TPC-H Q21

The only difference: SORT
Hive handle this sub-tree in a
different way with the
optimized MR jobs

It’s the dominat\d part on time
(~90% of executibn time)

. | I

L_eft-outer-

e Join3

supplier nation

=y N\ = A\ A\
1 lineitem orders lineitem lineitem |

O AJOIN MR Job

However, inter-job correlations exist.
Let’s look at the Partition Key A An AGG MR Job

Key: 1 _orderkey

A Table

A Composite MR Job
~

Key: 1_orderkey ~

~

Key: 1 orderkey

Key: 1_orderkey Key: 1 orderkey

lineitem orders lineitem lineitem orders

1 to J5 all use the same partition key ‘l_orderkey’

What’s wrong with existing SQL-to-MR translators?

Existing translators are correlation-unaware
1. Ignore common data input
2. Ignore common data transition

Performance

Approaches of Big Data Analytics in MR:

The landscape
Hand-coding Correlation-
MR jobs aware SQL-to-

Pro: MR translator

Easy programming, high productivity
Pro: Con:
high performance MR poogeniosmance on complex queries
Con: (complex queries are usual in daily

1: lots of coding evendpemsimnp)e job
2: Redundant coding is inevitab
3: Hard to debug

[J. Tan et al., ICDCS 2010]

Existing
SQL-to-MR
Translators

Productivity .

Our Approaches and Critical Challenges

Correlation-aware

SQL-tO-MR translator MR Jobs for best

performance

SQL-like queries

/

1: Correlation possibilities
and detection

Primitive Identify |
MR Jobs Correlations :)

A

3: Implement high-performance

2: Rules for automatically and low-overhead MR jobs
exploiting correlations

Click-stream Analysis

A typical query in production clickstream analysis: “what is the
average number of pages a user visits between a page in category
‘X’ and a page in category Y '?”

(AGG4) In YSmart JOIN1, AGG1, AGG2, JOIN2 and
AGGS3 are executed in a single MR job

(as6 3> 800

@ ~ 700
k=
£ 600 -
@662) [dlicks 2 500
% 400
AGG 1) 2 300
5
S 200
JOIN1) ;
K 100
O _

Clicks Clicks

32

YSmart Hive

YSmart is Open Source Software Being Used World Wide

http:/ /ysmart.cse.ohio-state.edu

OHIO
STATE

UNIVERSITY

Overview
News
Download
Online Version
Get Started
Performance
Publications

Team

323 Visitors

-~
-

O

T
=

An SQL-to-MapReduce Translator

Overview

YSmart is a correlation aware SQL-to-MapReduce translator, which is built on top of the widely used Hadoop platform. Given an SQL query and table schemas, YSmart can automatically translate the
query into a series of Hadoop MapReduce programs written in Java. Compared to other SQL-to-MapReduce translators, YSmart has the following advantages:

+ High Performance. The MapReduce programs generated by YSmart have a very good performance. YSmart can automatically detect and utilize intra-query correlations when translating a query.

YSmart.

« High Extensibility. YSmart is easy to modify and extend. It is designed with the goal of extensibility. The major part of YSmart is implemented in Python which makes the codes much easier to
understand. Due to its modularity and script nature, users can easily modify the current functionalities or add new functionalities to YSmart.

High Flexibility. YSmart can run in two different modes: translation-mode and execution-mode. In the translation-mode, YSmart only translates the query into Java codes while in the execution-
mode YSmart will also compile and execute the generated codes. Because of this flexibility, users can easily read, modify and customize the generated codes.

News

¢ Jan, 1, 2012 YSmart Release 12.01 available

Download

NCmart in unng s ko pnetall and finvrn Van son inckall Hha VCmneb iF vnn bhous o Liniy + swibh SO Db, and 1nun 1 £ imcballad

http://ysmart.cse.ohio-state.edu/
http://ysmart.cse.ohio-state.edu/
http://ysmart.cse.ohio-state.edu/

YSmart in the Hadoop Ecosystem

(in the final stage of merging into Hive)

See patch
HIVE-2206 at
apache.org

<~

N\

E
Y

Hadoop Distributed File System (HDES)

34

Summary of YSmary

JYSmart is a correlation-aware SQL-to-MapReduce
translator

[Its efficient software structure is MapReduce based
JYSmart can outperform Hive by 4.8x, and Pig by 8.4x

dYSmart is in the final stage to be integrated into Hive

d'The independent version of YSmart was released in
January 2012

* http://ysmart.cse.ohio-state.edu/

http://ysmart.cse.ohio-state.edu/
http://ysmart.cse.ohio-state.edu/
http://ysmart.cse.ohio-state.edu/

Outline

d Data Placement: related optimization and analysis
* Formal and problem definitions
* Placement analysis under a unified evaluation framework
* Why RCFile is the most balanced structure and widely used?

36

Initial Stores of Big Data in Distributed Environment

HDFS Blocks NameNode

(A part of the
Master node)

Store Block 1

Store Block 2 @
Store Block 3 %\
DataNode 1 DataNode 2 DataNode 3

d HDFS (Hadoop Distributed File System) blocks are distributed

1 Users have a limited ability to specify customized data placement policy

* e.g to specify which blocks should be co-located

d Minimizing I/O costs in local disks and intra network communication

~

o)

Four Requirements of Data Placement

4 Data loading (L)
* the overhead of writing data to distributed files system and local disks

d Query processing (P)
* local storage bandwidths of query processing

* the amount of network transfers

1 Storage space utilization (S)
* Data compression ratio

* The convenience of applying efficient compression algorithms

d Adaptive to dynamic workload patterns (W)

* Additional overhead on certain queries

» Objective: to design and implement a data placement structure

meeting these requirements in MapReduce-based data warehouses

RCPFile in Facebook

The interface to 1) (g Web Servers
billion+ users < < <

BT Sl ih i 8 70TB compressed
log data data per day

g Data Loaders

Capacity:

RCFile Data 21PB in May, 2010
30PB+ today
@ Warehouse

Picture source: Visualizing Friendships, http://www.facebook.com/notes/facebook- englneerlng/wsuallzmg frlendsh|ps/469716398919

Other Impact of RCFile

 RCFile is the default data placement structure in Facebook’s production
data warehouse cluster, the largest Hadoop cluster in the world.

1 RCFile has been adopted in Apache Hive (since v0.4) supporting many
major organizations: Taobao, Netflix and others

1 RCFile has been adopted in Apache Pig (since v0.7) supporting many
major organizations: Twitter, Yahoo!, Linkedin, AOL and others

1 RCFile is a standard data storage structure in Hadoop software
environment supported by HCatelog project.

 RCFile is a part of Elephant Bird Library developed by Twitter

A Unified Framework to Evaluate Data Placement Structures

 Several R&D projects on data placements after RCFile

* CFile [SIGMOD 2011]
* CIF [VLDB 2011]
* SLC-Store [Cluster 2012]

* Trevni in Apache Avro [open source, 2012]
* Trojan data layouts [SOCC 2011]

a relation table

Placement Structures

RCFile

Basic Operations:

(1) Row-column
partitioning

(2)Placing
partitions to file
blocks

A unified
representation for
all schemes

A HDFS block stores a
column of a row group

[1 1]
a relation table

a relation table

A HDFS block stores
one or multiple row
groups. In a row group,
values are stored
column by column

>

A HDFS block stores
one row group. In a row
group, values are
stored column by
column

a relation table

A HDFS block stores
one row group. In a row
group, values are
stored column-group by
column-group

a relation table

A HDFS block stores a
column of a row group

[1 1]
a relation table

Evaluations of Table Placement Schemes in Different Formats

a relation table

1 1 1 _

] T 1 Comprehensive analyses
 Performance

== = = Execution time

T T T « Fault-tolerance

« Recovery time
 Implications of design
choices

Final conclusion:
Rcfile plays the most
balanced role

48

Where are YSmart and RCFile
in the Big Data Ecosystem?

i1

Translate SQL-like queries to
MapReduce jobs

A Hadoop-powered
Data Warehousing
System (Hive)

RCPFile Data

Fcaok ’ ‘ ‘
Web servers for 1 billion
g facebook users

49

Conclusion

d The original MapReduce model serving as an big data processing
engine can only provide simple analytics

1 Several hurtles blocking highly parallel processing are addressed
by our R&D efforts:

Unnecessary network and disk latencies (SideWalk, Ysmart, RCFile)
Fault tolerance overhead (RCFile)

Processing engine modification (SideWalk, Ysmart, RCFile)

“One size fits all” methodology (SideWalk)

Processing engine structure unawareness (Ysmart)

J RCFile and YSmart are in the critical path of big data ecosystem.

J SideWalk provides a communication facility for critically necessary

messages in big data ecosystems

s & * 5 & & 5 2

