
并行处理在大数据分析中所面对的挑战 

张晓东 

美国俄亥俄州立大学 

合作单位 

 美国俄亥俄州立大学计算机科学与工程系 

Facebook 数据管理系统团队 

美国埃默里大学医学院 （Emory University） 

中科院计算所 



Broad Challenges of  Big Data Analytics  

 Existing DB technology is not prepared for the huge volume 

• Needs new system infrastructure for structured and non-structured data  

• Must be hardware independent, HP, HT, scalable, and fault-tolerant  

 Truly multidisciplinary collaborations across all the disciplines  

• Although data volumes in all fields are high, the formats of  data and 

natures of  analytics are very different.   

 Big data analytics must be cost effective to the society  

• Conventional database model is not affordable  

• Low cost clusters and open source software are foundations  

  Open many new research challenges 

• In algorithms, systems design/implementations, and in many applications     

2 



Computing Paradigm Shift for Big Data Analytics 

 Conventional parallel processing model is “scale-up” based  

• BSP model, CACM, 1990: optimizations in both hardware and software  

• Hardware: low ratio of  comp/comm, fast locks,  large cache and memory  

• Software: overlapping comp/comm, exploiting locality, co-scheduling …  

 

 Big data processing model is “scale-out” based  

• DOT model, SOCC’11: hardware independent software design  

• Scalability: maintain a sustained throughput growth by continuously 

adding low cost computing and storage nodes in distributed systems 

• Constraints in computing patterns: communication- and data-sharing-free   

 

 

 

 

 

 

 

 

 

3 



BSP is a Scale-Up Model for HPC  

 A parallel architecture model 

• Key parameters: p, node speed, message 
speed, synch latency  

• Low ratio of  computing/message is key  

 A programming model 

• Reducing message/synch latency is key:  
– Overlapping computing and communication 

– Exploiting locality 

– Load balance to minimize synch latency 

 A cost model  

• Combining both hardware/software 
parameters, we can predict execution time 

 BSP does not support 

• Data-intensive applications, big data  

• hardware independent performance 

• sustained scalability and high throughput   

4 

… 

… 

Barrier 

P0 P1 P2 Pn 

S
u

p
e
rs

te
p

 i
 

… 



Major Hurdles of  Parallel Processing in Big Data Analytics 

  Scale-out = sustained throughput growth as # nodes grows 

• MR processed 1 PB data in 6h 2m on 4000 nodes in 11/2008 

• MR processed 10 PB in 6 h 27 m on 8000 nodes 9/2011 

• Big data with simple analytics  

Data processing must be highly parallel with several constraints   

• No specific communication hardware support   

• Lacking runtime and global coordination in clusters 

• Lacking software tools to optimize and standardize analytics programs  

• Data sets are hardly or even not movable after they are stored 

MapReduce (Hadoop) is the basic big data processing engine 

• High scalability (minimum dependency) 

• High fault tolerance (simple and independent operations in each node) 

• We must overcome hurdles to process big data with complex analytics    
5 



6 

MR(Hadoop) Job Execution Patterns 
MR program (job) 

Master node 

1: Job submission 

Worker nodes Worker nodes 

2: Assign Tasks 

Map Tasks 

Reduce Tasks 

Data is stored in a 

Distributed File System 

(e.g. Hadoop Distributed 

File System) 

Control level work, e.g. 

job scheduling and task 

assignment 

Do data processing 

work specified by Map 

or Reduce Function 

The execution of  

a MR job involves 

6 steps 



7 

MR(Hadoop) Job Execution Patterns 
MR program 

Master node 

1: Job submission 

Worker nodes Worker nodes 

3: Map phase 

Concurrent tasks 

Map Tasks 

Reduce Tasks 

4: Shuffle phase 

Map output 

Map output will be shuffled to 

different reduce tasks based on 

Partition Keys (PKs) (usually 

Map output keys) 

The execution of  

a MR job involves 

6 steps 



8 

MR(Hadoop) Job Execution Patterns 
MR program 

Master node 

1: Job submission 

Worker nodes Worker nodes 

Map Tasks 

Reduce Tasks 

5: Reduce phase 

Concurrent tasks 

6: Output will be stored back 

to Distributed File System 

Reduce output 

3: Map phase 

Concurrent tasks 
4: Shuffle phase 

The execution of  

a MR job involves 

6 steps 



9 

MR(Hadoop) Job Execution Patterns 
MR program 

Master node 

1: Job submission 

Worker nodes Worker nodes 

Map Tasks 

Reduce Tasks 

5: Reduce phase 

Concurrent tasks 

6: Output will be stored back 

to Distributed File System 

Reduce output 

3: Map phase 

Concurrent tasks 
4: Shuffle phase 

The execution of  

a MR job involves 

6 steps 

MapReduce model is synchronous, net/disk demanding: 
1: Input data scan in the Map phase => local or remote I/Os 

2: Store intermediate results of  Map output => local I/Os 

3: Transfer data across in the Shuffle phase => network costs 

4: Store final results of  this MR job => local I/Os + network 

costs (replicate data) 



Sources of  Bottlenecks  

 Storage latency: unnecessary data transfers between local hard 

disks and nodes.  

Network latency: unnecessary data communication among nodes  

 Recovery time for fault tolerance: the latency to resume processing 

after node(s) are crashed 

 Processing engine modification:  the application scope of  a 

customized and application dependent Hadoop is very limited 

 “One size fits all” methodology: enhancing functionalities under 

one software framework  

 Processing engine structure unawareness: software tools that are 

not designed in a target way may not be efficient 

 
10 



Outline  

 SideWalk: a messaging facility for big data analytics 
• A communication facility for critically necessary message exchange 

• A light-weight message sharing facility without affecting scalability  

• A user communication vehicle with restrictions   

 YSmart: a highly efficient query-to-MapReduce translator 
• Correlations-aware  is the key 

• Fundamental Rules in the translation process 

• A part of  production systems and a MapReduce teaching tool 

 Data Placement: related optimization and analysis  
• Formal and problem definitions  

• Placement analysis under a unified evaluation framework 

• Why RCFile is the most balanced structure and widely used?  

 Conclusion 

11 



A Typical Dataflow in MapReduce 

Communications for data transfers?  

Communications are strictly defined by the framework 

Map 

Map 

Join 

Map 

Join Sort 



Demands beyond the Dataflow 

Map 

Map 

Join 

Map 

Join Sort 

? 
We want to optimize this execution with 

statistics collected and summarized from 

previous executions 

Statistics 



Demands beyond Dataflow 

Map 

Map 

Join 

Map 

Join Sort 

We want to gather ad hoc information from 

the inside of  dataflow to know if  the 

execution runs normally 
? 



Demands beyond Dataflow 

Map 

Map 

Join 

Map 

Join Sort 

We want to use data statistics generated in 

Map to guide the execution of  Join ? 



Demands beyond Dataflow 

Map 

Map 

Join 

Map 

Join Sort 

We want to use data statistics generated in 

Map to guide the execution of  Join ? 
If  Map and Join are executed in different 

applications or systems? 

in Pig in Hive 



Demands beyond Dataflow 

Map 

Map 

Join 

Map 

Join Sort 

• Those communications are out-of-band of  communications for 

data transfers 

• Those communications are carrying light-weight information 

• Existing systems, such as Hadoop, are not designed to support 

out-of-band communications 

Statistics 



A Straight Forward Way 

Map 

Map 

Join 

Map 

Join Sort 

Statistics 

Fit out-of-band communications into defined data transfers 

• High overhead 

• Low programming productivity 

• Hard to make this method general-purpose 



Where is SideWalk in the Big Data Ecosystem?  

An General-purpose Out-of-band Communication 

Facility in Large-scale Data Processing 

SideWalk 

Map 

Map 

Join 

Map 

Join Sort … 



Principles and Functions of  SideWalk 

Out-of-band communications are carried by Auxiliary Datum 

Auxiliary Datum is generated by a transformation function 

  Users only focus on defining transformation functions 

• Built-in functions can be deployed with SideWalk 

A small set of  standardized APIs are designed to make 

SideWalk support different applications and systems 

Abusing the capability of  SideWalk is not allowed 

• SideWalk does not handle regular data processing tasks 

• SideWalk is not a relay for arbitrary communications 



Options of  Making Out-of-Bound Communications 

Goals 
Ad hoc solution 

(User-based) 

Specific 

software 

(App-based) 

Programming 

productivity 
Low High 

Applicability 
Limited 

(Not general-purpose) 

Side-effects Potentially high 

SideWalk 

High 

Maximal 

(General-

purpose) 

Minimal 

Out-of-band communications require special treatment 



Outline  

 SideWalk: a messaging facility for big data analytics 
• A communication facility for critically necessary message exchange 

• A light-weight message sharing facility without affecting scalability  

• A user vehicle for communications with restrictions   

 YSmart: a highly efficient query-to-MapReduce translator 
• Correlations-aware  is the key 

• Fundamental Rules in the translation process 

• A part of  production systems and MapReduce teaching tool 

 Data Placement: related optimization and analysis  
• Formal and problem definitions  

• Placement analysis under a unified evaluation framework 

• Why RCFile is the most balanced structure and widely used?  

 Conclusion 

22 



23 

package tpch; 

import java.io.IOException; 

import java.util.ArrayList; 

import org.apache.hadoop.conf.Configuration; 

import org.apache.hadoop.conf.Configured; 

import org.apache.hadoop.fs.Path; 

import org.apache.hadoop.io.DoubleWritable; 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.Job; 

import org.apache.hadoop.mapreduce.Mapper; 

import org.apache.hadoop.mapreduce.Reducer; 

import org.apache.hadoop.mapreduce.Mapper.Context; 

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 

import org.apache.hadoop.mapreduce.lib.input.FileSplit; 

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 

import org.apache.hadoop.util.GenericOptionsParser; 

import org.apache.hadoop.util.Tool; 

import org.apache.hadoop.util.ToolRunner; 

public class Q18Job1  extends Configured implements Tool{ 

 public static class Map extends Mapper<Object, Text, IntWritable, Text>{ 

  

  private final static Text value = new Text(); 

  private IntWritable word = new IntWritable(); 

  private String inputFile; 

  private boolean isLineitem = false; 

  @Override 

  protected void setup(Context context 

         ) throws IOException, InterruptedException { 

   inputFile = ((FileSplit)context.getInputSplit()).getPath().getName(); 

   if (inputFile.compareTo("lineitem.tbl") == 0){ 

    isLineitem = true; 

   } 

   System.out.println("isLineitem:" + isLineitem + " inputFile:" + inputFile); 

  } 

   

  public void map(Object key, Text line, Context context 

                 ) throws IOException, InterruptedException { 

   String[] tokens = (line.toString()).split("\\|"); 

   if (isLineitem){ 

    word.set(Integer.valueOf(tokens[0])); 

    value.set(tokens[4] + "|l"); 

    context.write(word, value); 

   } 

   else{ 

    word.set(Integer.valueOf(tokens[0])); 

    value.set(tokens[1] + "|" + tokens[4]+"|"+tokens[3]+"|o"); 

    context.write(word, value); 

   } 

  } 

 } 

public static class Reduce extends Reducer<IntWritable,Text,IntWritable,Text> { 

 private Text result = new Text(); 

  

 public void reduce(IntWritable key, Iterable<Text> values,  

   Context context 

         ) throws IOException, InterruptedException { 

    

   double sumQuantity = 0.0; 

   IntWritable newKey = new IntWritable(); 

   boolean isDiscard = true; 

   String thisValue = new String(); 

   int thisKey = 0; 

   for (Text val : values) { 

    String[] tokens =  val.toString().split("\\|"); 

    if (tokens[tokens.length - 1].compareTo("l") == 0){ 

     sumQuantity += Double.parseDouble(tokens[0]); 

    } 

    else if (tokens[tokens.length - 1].compareTo("o") == 0){ 

     thisKey = Integer.valueOf(tokens[0]); 

     thisValue = key.toString() + "|" + tokens[1]+"|"+tokens[2]; 

    } 

    else 

     continue; 

   } 

    

   if (sumQuantity > 314){ 

    isDiscard = false; 

   } 

    

   if (!isDiscard){ 

    thisValue = thisValue + "|" + sumQuantity; 

    newKey.set(thisKey); 

    result.set(thisValue); 

    context.write(newKey, result);    

   } 

  } 

 } 

  

 public int run(String[] args) throws Exception { 

  Configuration conf = new Configuration(); 

     String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); 

     if (otherArgs.length != 3) { 

       System.err.println("Usage: Q18Job1 <orders> <lineitem> <out>"); 

       System.exit(2); 

     } 

     Job job = new Job(conf, "TPC-H Q18 Job1"); 

     job.setJarByClass(Q18Job1.class); 

      

     job.setMapperClass(Map.class); 

     job.setMapOutputKeyClass(IntWritable.class); 

     job.setMapOutputValueClass(Text.class); 

      

     job.setReducerClass(Reduce.class); 

     job.setOutputKeyClass(IntWritable.class); 

     job.setOutputValueClass(Text.class); 

      

   

     FileInputFormat.addInputPath(job, new Path(otherArgs[0])); 

     FileInputFormat.addInputPath(job, new Path(otherArgs[1])); 

     FileOutputFormat.setOutputPath(job, new Path(otherArgs[2])); 

  return (job.waitForCompletion(true) ? 0 : 1); 

 } 

  

 public static void main(String[] args) throws Exception { 

     int res = ToolRunner.run(new Configuration(), new Q18Job1(), args); 

     System.exit(res); 

 } 

} 

MR programming is not that “simple”! 

This complex code is for a simple MR job 

We all want to simply write:  

 
“SELECT * FROM Book WHERE price > 100.00”? 

Low Productivity! 



High Quality MapReduce in Automation 

24 
Hadoop Distributed File System (HDFS) 

Workers 

A job description in SQL-like declarative language 

SQL-to-MapReduce 

Translator 

MR programs (jobs) 

Write MR 

programs (jobs) 

A interface between users 

and MR programs (jobs) 



High Quality MapReduce in Automation 

25 
Hadoop Distributed File System (HDFS) 

Workers 

A job description in SQL-like declarative language 

SQL-to-MapReduce 

Translator 

A MR program (job) 

Write MR 

programs (jobs) 

 
 
 

Improve productivity from hand-coding MapReduce programs 
• 95%+ Hadoop jobs in Facebook are generated by Hive * 

• 75%+ Hadoop jobs in Yahoo! are invoked by Pig* * 

 

A data warehousing 

system (Facebook) 

A high-level programming 

environment (Yahoo!) 

A interface between users 

and MR programs (jobs) 

*   http://www.borthakur.com/ftp/hadoopworld.pdf 
** http://hadooplondon.eventbrite.com/ 



Translating SQL-like Queries to MapReduce Jobs: Existing Approach  

 “Sentence by sentence” translation 

• [C. Olston et al. SIGMOD 2008], [A. Gates et al., VLDB 2009] and [A. 
Thusoo et al., ICDE2010] 

• Implementation: Hive and Pig 

 Three steps  

• Identify major sentences with operations that shuffle the data 

– Such as:  Join, Group by and Order by 

• For every operation in the major sentence that shuffles the data, a 
corresponding MR job is generated  

– e.g. a join op. => a join MR job 

• Add other operations, such as selection and projection, into 
corresponding MR jobs 

26 

Existing SQL-to-MapReduce translators give unacceptable  

performance. 



27 

An Example: TPC-H Q21 
 One of  the most complex and time-consuming queries in the 

TPC-H benchmark for data warehousing performance 

Optimized MR Jobs vs. Hive in a Facebook production cluster 

0

20

40

60

80

100

120

140

160

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
in

) 

Optimized MR Jobs Hive

3.7x 

What‟s wrong?  



28 

The Execution Plan of  TPC-H Q21 

lineitem orders 

Join1 

Join2  

AGG1 

Join4 

AGG3 

lineitem 

AGG2 

lineitem 

Left-outer-

Join   

supplier nation 

Join3 

SORT 

It‟s the dominated part on time 

(~90% of  execution time) 

The only difference:  

Hive handle this sub-tree in a 

different way with the 

optimized MR jobs 



29 

lineitem orders 

J1 

J3 

lineitem lineitem 

J5 

A JOIN MR Job 

A Table 

Key: l_orderkey 
Key: l_orderkey Key: l_orderkey 

Key: l_orderkey 

Key: l_orderkey 
Let‟s look at the Partition Key 

J1, J2 and J4 all need the input table „lineitem‟ J1 to J5 all use the same partition key „l_orderkey‟ 

lineitem orders 

J2 

 

J4 

 

An AGG MR Job 

A Composite MR Job 

However, inter-job correlations exist. 

What‟s wrong with existing SQL-to-MR translators? 

Existing translators are correlation-unaware 
1. Ignore common data input 

2. Ignore common data transition 



30 Productivity 

P
e
rf

o
rm

a
n

c
e
 

Hand-coding 

MR jobs 

Existing  

SQL-to-MR 

Translators 

Approaches of  Big Data Analytics in MR: 

The landscape 

Pro:  

high performance MR programs 

Con: 

1: lots of  coding even for a simple job 

2: Redundant coding is inevitable 

3: Hard to debug  

    [J. Tan et al., ICDCS 2010] 

Pro:  

Easy programming, high productivity 

Con: 

Poor performance on complex queries 

(complex queries are usual in daily 

operations)  

Correlation-

aware SQL-to-

MR translator  



31 

Correlation-aware  

SQL-to-MR translator  

Our Approaches and Critical Challenges 

Primitive  

MR Jobs 

Identify 

Correlations 

Merge 

Correlated 

MR jobs 

SQL-like queries 

1: Correlation possibilities 

and detection 

2: Rules for automatically 

exploiting correlations 

3: Implement high-performance 

and low-overhead MR jobs 

MR Jobs for best 

performance 



 Click-stream Analysis 

32 

A typical query in production clickstream analysis: “what is the 

average number of pages a user visits between a page in category 

„X‟ and a page in category „Y‟?”  

In YSmart JOIN1, AGG1, AGG2, JOIN2 and 

AGG3 are executed in a single MR job 

0

100

200

300

400

500

600

700

800

YSmart Hive Pig

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
in

) 

4.8x 

8.4x 



YSmart is Open Source Software Being Used World Wide 

http://ysmart.cse.ohio-state.edu   

33 

http://ysmart.cse.ohio-state.edu/
http://ysmart.cse.ohio-state.edu/
http://ysmart.cse.ohio-state.edu/


YSmart in the Hadoop Ecosystem 

(in the final stage of  merging into Hive)  

34 
Hadoop Distributed File System (HDFS) 

YSmart 

See patch 

HIVE-2206 at 

apache.org 

Hive + YSmart 



Summary of  YSmary 

YSmart is a correlation-aware SQL-to-MapReduce 

translator 

 Its efficient software structure is MapReduce based  

YSmart can outperform Hive by 4.8x, and Pig by 8.4x 

YSmart is in the final stage to be integrated into Hive 

The independent version of  YSmart was released in 

January 2012 

• http://ysmart.cse.ohio-state.edu/  

 

35 

http://ysmart.cse.ohio-state.edu/
http://ysmart.cse.ohio-state.edu/
http://ysmart.cse.ohio-state.edu/


Outline  

 SideWalk: a messaging facility for big data analytics 
• A communication facility for critically necessary message exchange 

• A light-weight message sharing facility without affecting scalability  

• A user vehicle for communications with restrictions   

 YSmart: a highly efficient query-to-MapReduce translator 
• Correlations-aware  is the key 

• Fundamental Rules in the translation process 

• A part of  production systems and MapReduce teaching tool 

 Data Placement: related optimization and analysis  
• Formal and problem definitions  

• Placement analysis under a unified evaluation framework 

• Why RCFile is the most balanced structure and widely used?  

 Conclusion 

36 



 HDFS (Hadoop Distributed File System) blocks are distributed 

 Users have a limited ability to specify customized data placement policy 

• e.g. to specify which blocks should be co-located 

 Minimizing I/O costs in local disks and intra network communication  

Initial Stores of  Big Data in Distributed Environment  

37 

NameNode 
(A part of the 
Master node) 

DataNode 1 DataNode 2 DataNode 3 

HDFS Blocks 

Store Block 3 

Store Block 2 

Store Block 1 



Four Requirements of  Data Placement 

 Data loading (L) 

• the overhead of  writing data to distributed files system and local disks 

 Query processing (P) 

• local storage bandwidths of  query processing 

• the amount of  network transfers  

 Storage space utilization (S) 

• Data compression ratio 

• The convenience of  applying efficient compression algorithms 

 Adaptive to dynamic workload patterns (W) 

• Additional overhead on certain queries 

38 

Objective:  to design and implement a data placement structure 

meeting these requirements in MapReduce-based data warehouses  



RCFile in Facebook  

39 
Picture source: Visualizing Friendships, http://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919 

Large amount of  

log data 

RCFile Data 

… 

… 

… 

Web Servers 

Data Loaders 

Warehouse 

The interface to 1 

billion+ users 

70TB compressed 

data per day 

Capacity: 

21PB in May, 2010 

30PB+ today 



Other Impact of  RCFile  

 RCFile is the default data placement structure in Facebook‟s production 

data warehouse cluster, the largest Hadoop cluster in the world.  

 RCFile has been adopted in Apache Hive (since v0.4) supporting many 

major organizations: Taobao, Netflix and others 

 RCFile has been adopted in Apache Pig (since v0.7) supporting many 

major organizations: Twitter, Yahoo!, Linkedin, AOL and others 

 RCFile is a standard data storage structure in Hadoop software 

environment supported by HCatelog project.  

 RCFile is a part of  Elephant Bird Library developed by Twitter 

 

40 



A Unified Framework to Evaluate Data Placement Structures  

 Several R&D projects on data placements after RCFile 

 

• CFile [SIGMOD 2011] 

• CIF [VLDB 2011] 

• SLC-Store [Cluster 2012] 

• Trevni in Apache Avro [open source, 2012] 

• Trojan data layouts [SOCC 2011] 



a relation table 

Seq. File 

Zebra 

RCFile 

CIF 

Trojan 

Trevni 

CFile 

SLC-store 

Basic Operations: 

(1)Row-column 

partitioning  

(2)Placing 

partitions to file 

blocks 

A unified 

representation for 

all schemes 

Placement Structures 



a relation table 

Seq. File 

Zebra 

RCFile 

CIF 

Trojan 

Trevni 

CFile 

SLC-store 

A HDFS block stores a 

column of a row group 



a relation table 

Seq. File 

Zebra 

RCFile 

CIF 

Trojan 

Trevni 

CFile 

SLC-store 

A HDFS block stores 

one or multiple row 

groups. In a row group, 

values are stored 

column by column 



a relation table 

Seq. File 

Zebra 

RCFile 

CIF 

Trojan 

Trevni 

CFile 

SLC-store 

A HDFS block stores 

one row group. In a row 

group, values are 

stored column by 

column 



a relation table 

Seq. File 

Zebra 

RCFile 

CIF 

Trojan 

Trevni 

CFile 

SLC-store 

A HDFS block stores 

one row group. In a row 

group, values are 

stored column-group by 

column-group 



a relation table 

Seq. File 

Zebra 

RCFile 

CIF 

Trojan 

Trevni 

CFile 

SLC-store 

A HDFS block stores a 

column of a row group 



Evaluations of  Table Placement Schemes in Different Formats 

48 

a relation table 

Seq. File 

Zebra 

RCFile 

CIF 

Trojan 

Trevni 

CFile 

SLC-store 

Comprehensive analyses 

• Performance 

• Execution time 

• Fault-tolerance 

• Recovery time 

• Implications of design 

choices 

 

Final conclusion:  

Rcfile plays the most 

balanced role 



49 

… 

… 

YSmart 

RCFile Data 

A Hadoop-powered 

Data Warehousing 

System (Hive)  

Web servers for 1 billion 

facebook users 

Translate SQL-like queries to 

MapReduce jobs 

Where are YSmart and RCFile 

in the Big Data Ecosystem?   



Conclusion 

 The original MapReduce model serving as an big data processing 

engine can only provide simple analytics  

 Several hurtles blocking highly parallel processing are addressed 

by our R&D efforts:  

• Unnecessary network and disk latencies (SideWalk, Ysmart, RCFile)  

• Fault tolerance overhead (RCFile)  

• Processing engine modification (SideWalk, Ysmart, RCFile)  

• “One size fits all” methodology (SideWalk)  

• Processing engine structure unawareness (Ysmart)  

 RCFile and YSmart are in the critical path of  big data ecosystem.  

 SideWalk provides a communication facility for critically necessary 

messages in  big data ecosystems  

50 Thank You! 


