
© Hortonworks Inc. 2011

戴建勇

Hortonworks

daijy@hortonworks.com

Page 1

Apache Pig 性能优化

© Hortonworks Inc. 2011

Hortonworks简介

•Yahoo! Cloud Computing Group

•Hadoop最早开发团队

•2011年7月成立

•从事Hadoop整个生态系统软件的开发

–基于Apache

•拥有数量众多的Hadoop Committer, 主导
Apache Hadoop开发，发行

Page 2
Architecting the Future of Big Data

© Hortonworks Inc. 2011

1

Hortonworks Data Platform

Page 3

 降低转换和使用风险

 降低管理成本

 轻松集成现有系统

© Hortonworks Inc. 2011

Hortonworks Data Platform

Page 4
Architecting the Future of Big Data

•基于Apache软件发行版

•完全免费http://hortonworks.com/download/

•有完整的技术支持和培训

© Hortonworks Inc. 2011

自我介绍

•Member of Technical Staff in Hortonworks

•从事Apache Pig开发3年以上

•Apache Pig Committer / PMC Chair

•Apache HCatalog Committer / PMC member

Page 5
Architecting the Future of Big Data

© Hortonworks Inc. 2011

什么是Apache Pig

Page 6
Architecting the Future of Big Data

Pig Latin, 类SQL数据处
理语言

在Hadoop上运行
的Pig Latin执行引
擎

Pig-latin-cup pic from http://www.flickr.com/photos/frippy/2507970530/

© Hortonworks Inc. 2011

Pig-latin例子

Page 7
Architecting the Future of Big Data

•查询: 所有被20到29岁网民访问的网址列表

USERS = load ‘users’ as (uid, age);

USERS_20s = filter USERS by age >= 20 and age <= 29;

PVs = load ‘pages’ as (url, uid, timestamp);

PVs_u20s = join USERS_20s by uid, PVs by uid;

© Hortonworks Inc. 2011

Pig vs Hadoop

Page 8
Architecting the Future of Big Data

•更快的开发

– 更少的代码

– 常见操作的充分优化

Pic courtesy http://www.flickr.com/photos/shutterbc/471935204/

© Hortonworks Inc. 2011

In Pig

Page 9
Architecting the Future of Big Data

Users = load ‘users’ as (name, age);
Fltrd = filter Users by

 age >= 18 and age <= 25;

Pages = load ‘pages’ as (user, url);
Jnd = join Fltrd by name, Pages by user;

Grpd = group Jnd by url;

Smmd = foreach Grpd generate group,

 COUNT(Jnd) as clicks;

Srtd = order Smmd by clicks desc;

Top5 = limit Srtd 5;

store Top5 into ‘top5sites’;

© Hortonworks Inc. 2011

In Map Reduce

Page 10
Architecting the Future of Big Data

import java.io.IOException;

import java.util.ArrayList;

import java.util.Iterator;

import java.util.List;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.io.Writable;

import org.apache.hadoop.io.WritableComparable;

import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.KeyValueTextInputFormat;

import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.RecordReader;

import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.Reporter;

import org.apache.hadoop.mapred.SequenceFileInputFormat;

import org.apache.hadoop.mapred.SequenceFileOutputFormat;

import org.apache.hadoop.mapred.TextInputFormat;

import org.apache.hadoop.mapred.jobcontrol.Job;

import org.apache.hadoop.mapred.jobcontrol.JobControl;

import org.apache.hadoop.mapred.lib.IdentityMapper;

public class MRExample {

 public static class LoadPages extends MapReduceBase

 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,

 OutputCollector<Text, Text> oc,

 Reporter reporter) throws IOException {

 // Pull the key out

 String line = val.toString();

 int firstComma = line.indexOf(',');

 String key = line.substring(0, firstComma);

 String value = line.substring(firstComma + 1);

 Text outKey = new Text(key);

 // Prepend an index to the value so we know which file

 // it came from.

 Text outVal = new Text("1" + value);

 oc.collect(outKey, outVal);

 }

 }

 public static class LoadAndFilterUsers extends MapReduceBase

 implements Mapper<LongWritable, Text, Text, Text> {

 public void map(LongWritable k, Text val,

 OutputCollector<Text, Text> oc,

 Reporter reporter) throws IOException {

 // Pull the key out

 String line = val.toString();

 int firstComma = line.indexOf(',');

 String value = line.substring(firstComma + 1);

 int age = Integer.parseInt(value);

 if (age < 18 || age > 25) return;

 String key = line.substring(0, firstComma);

 Text outKey = new Text(key);

 // Prepend an index to the value so we know which file

 // it came from.

 Text outVal = new Text("2" + value);

 oc.collect(outKey, outVal);

 }

 }

 public static class Join extends MapReduceBase

 implements Reducer<Text, Text, Text, Text> {

 public void reduce(Text key,

 Iterator<Text> iter,

 OutputCollector<Text, Text> oc,

 Reporter reporter) throws IOException {

 // For each value, figure out which file it's from and

store it

 // accordingly.

 List<String> first = new ArrayList<String>();

 List<String> second = new ArrayList<String>();

 while (iter.hasNext()) {

 Text t = iter.next();

 String value = t.toString();

 if (value.charAt(0) == '1')

first.add(value.substring(1));

 else second.add(value.substring(1));

 reporter.setStatus("OK");

 }

 // Do the cross product and collect the values

 for (String s1 : first) {

 for (String s2 : second) {

 String outval = key + "," + s1 + "," + s2;

 oc.collect(null, new Text(outval));

 reporter.setStatus("OK");

 }

 }

 }

 }

 public static class LoadJoined extends MapReduceBase

 implements Mapper<Text, Text, Text, LongWritable> {

 public void map(

 Text k,

 Text val,

 OutputCollector<Text, LongWritable> oc,

 Reporter reporter) throws IOException {

 // Find the url

 String line = val.toString();

 int firstComma = line.indexOf(',');

 int secondComma = line.indexOf(',', firstComma);

 String key = line.substring(firstComma, secondComma);

 // drop the rest of the record, I don't need it anymore,

 // just pass a 1 for the combiner/reducer to sum instead.

 Text outKey = new Text(key);

 oc.collect(outKey, new LongWritable(1L));

 }

 }

 public static class ReduceUrls extends MapReduceBase

 implements Reducer<Text, LongWritable, WritableComparable,

Writable> {

 public void reduce(

 Text key,

 Iterator<LongWritable> iter,

 OutputCollector<WritableComparable, Writable> oc,

 Reporter reporter) throws IOException {

 // Add up all the values we see

 long sum = 0;

 while (iter.hasNext()) {

 sum += iter.next().get();

 reporter.setStatus("OK");

 }

 oc.collect(key, new LongWritable(sum));

 }

 }

 public static class LoadClicks extends MapReduceBase

 implements Mapper<WritableComparable, Writable, LongWritable,

Text> {

 public void map(

 WritableComparable key,

 Writable val,

 OutputCollector<LongWritable, Text> oc,

 Reporter reporter) throws IOException {

 oc.collect((LongWritable)val, (Text)key);

 }

 }

 public static class LimitClicks extends MapReduceBase

 implements Reducer<LongWritable, Text, LongWritable, Text> {

 int count = 0;

 public void reduce(

 LongWritable key,

 Iterator<Text> iter,

 OutputCollector<LongWritable, Text> oc,

 Reporter reporter) throws IOException {

 // Only output the first 100 records

 while (count < 100 && iter.hasNext()) {

 oc.collect(key, iter.next());

 count++;

 }

 }

 }

 public static void main(String[] args) throws IOException {

 JobConf lp = new JobConf(MRExample.class);

 lp.setJobName("Load Pages");

 lp.setInputFormat(TextInputFormat.class);

 lp.setOutputKeyClass(Text.class);

 lp.setOutputValueClass(Text.class);

 lp.setMapperClass(LoadPages.class);

 FileInputFormat.addInputPath(lp, new

Path("/user/gates/pages"));

 FileOutputFormat.setOutputPath(lp,

 new Path("/user/gates/tmp/indexed_pages"));

 lp.setNumReduceTasks(0);

 Job loadPages = new Job(lp);

 JobConf lfu = new JobConf(MRExample.class);

 lfu.setJobName("Load and Filter Users");

 lfu.setInputFormat(TextInputFormat.class);

 lfu.setOutputKeyClass(Text.class);

 lfu.setOutputValueClass(Text.class);

 lfu.setMapperClass(LoadAndFilterUsers.class);

 FileInputFormat.addInputPath(lfu, new

Path("/user/gates/users"));

 FileOutputFormat.setOutputPath(lfu,

 new Path("/user/gates/tmp/filtered_users"));

 lfu.setNumReduceTasks(0);

 Job loadUsers = new Job(lfu);

 JobConf join = new JobConf(MRExample.class);

 join.setJobName("Join Users and Pages");

 join.setInputFormat(KeyValueTextInputFormat.class);

 join.setOutputKeyClass(Text.class);

 join.setOutputValueClass(Text.class);

 join.setMapperClass(IdentityMapper.class);

 join.setReducerClass(Join.class);

 FileInputFormat.addInputPath(join, new

Path("/user/gates/tmp/indexed_pages"));

 FileInputFormat.addInputPath(join, new

Path("/user/gates/tmp/filtered_users"));

 FileOutputFormat.setOutputPath(join, new

Path("/user/gates/tmp/joined"));

 join.setNumReduceTasks(50);

 Job joinJob = new Job(join);

 joinJob.addDependingJob(loadPages);

 joinJob.addDependingJob(loadUsers);

 JobConf group = new JobConf(MRExample.class);

 group.setJobName("Group URLs");

 group.setInputFormat(KeyValueTextInputFormat.class);

 group.setOutputKeyClass(Text.class);

 group.setOutputValueClass(LongWritable.class);

 group.setOutputFormat(SequenceFileOutputFormat.class);

 group.setMapperClass(LoadJoined.class);

 group.setCombinerClass(ReduceUrls.class);

 group.setReducerClass(ReduceUrls.class);

 FileInputFormat.addInputPath(group, new

Path("/user/gates/tmp/joined"));

 FileOutputFormat.setOutputPath(group, new

Path("/user/gates/tmp/grouped"));

 group.setNumReduceTasks(50);

 Job groupJob = new Job(group);

 groupJob.addDependingJob(joinJob);

 JobConf top100 = new JobConf(MRExample.class);

 top100.setJobName("Top 100 sites");

 top100.setInputFormat(SequenceFileInputFormat.class);

 top100.setOutputKeyClass(LongWritable.class);

 top100.setOutputValueClass(Text.class);

 top100.setOutputFormat(SequenceFileOutputFormat.class);

 top100.setMapperClass(LoadClicks.class);

 top100.setCombinerClass(LimitClicks.class);

 top100.setReducerClass(LimitClicks.class);

 FileInputFormat.addInputPath(top100, new

Path("/user/gates/tmp/grouped"));

 FileOutputFormat.setOutputPath(top100, new

Path("/user/gates/top100sitesforusers18to25"));

 top100.setNumReduceTasks(1);

 Job limit = new Job(top100);

 limit.addDependingJob(groupJob);

 JobControl jc = new JobControl("Find top 100 sites for users

18 to 25");

 jc.addJob(loadPages);

 jc.addJob(loadUsers);

 jc.addJob(joinJob);

 jc.addJob(groupJob);

 jc.addJob(limit);

 jc.run();

 }

}

© Hortonworks Inc. 2011

Pig vs Hive

Page 11
Architecting the Future of Big Data

•过程化语言

•灵活性

– Schema不是必须的

– 可扩充性

•Pig的定位

数据加工

Pig
数据采集 数据仓库

Hive

© Hortonworks Inc. 2011

Pig用户和社区

Page 12
Architecting the Future of Big Data

• Pig主要用户

– Yahoo!: 90%以上的MapReduce作业是Pig生成的

– Twitter: 80%以上的MapReduce作业是Pig生成的

– Linkedin: 大部分的MapReduce作业是Pig生成的

– 其他主要用户: Salesforce, Nokia, AOL, comScore

• Pig的主要开发者

– Hortonworks

– Twitter

– Yahoo!

– Cloudera

© Hortonworks Inc. 2011

Pig工具

Page 13
Architecting the Future of Big Data

• Piggybank

– Pig的官方函数库

– 主要由Pig用户维护

– 目前随Pig一起发行

• Elephant bird: Twitter的Pig函数库

• DataFu: Linkedin的Pig函数库

• Ambros: Twitter的Pig作业监控系统

• Mortardata: 基于云的Pig集群管理系统

© Hortonworks Inc. 2011

Pig简史

Page 14
Architecting the Future of Big Data

• 2008, ―Pig Latin: A Not-So-Foreign

Language for Data Processing‖, SIGMOD,

Chris Olson

• 2008, 源码提交Apache, Pig 0.1 release

• 2008, 成为Hadoop子项目

• 2010, 成为Apache一级子项目

© Hortonworks Inc. 2011

Pig版本

Page 15
Architecting the Future of Big Data

• 2010/12—0.8.0

– Python UDF, Scalar, Custom partitioner

• 2011/7—0.9.0

– Pig Embedding

• 2012/4—0.10.0

– Boolean, Jruby

• ??—0.11.0

– Cube/Rank, Datetime

© Hortonworks Inc. 2011

Pig对常见MapReduce操作的实现

Page 16
Architecting the Future of Big Data

• Order by

• Join

– Hash Join

– Replicated Join

– Skewed Join

– Merge Join

© Hortonworks Inc. 2011

Hash Join的实现

Page 17
Architecting the Future of Big Data

Marry math 90

Tom math 87

Marry science 92

Tom science 96

Tom physics 95

Marry 上海

Tom 北京

Marry, (Marry,math,90)

Tom, (Tom,math,87)

Marry, (Marry,science,92)

Tom, (Tom,science,96)

Tom, (Tom,physics,95)

Marry, (Marry,上海)

Tom, (Tom,北京)

(Marry,1), (Marry,math,90)

(Tom,1), (Tom,math,87)

(Marry,1), (Marry,science,92)

(Tom,1), (Tom,science,96)

(Tom,1), (Tom,physics,95)

(Marry,2), (Marry,上海)

(Tom,2), (Tom,北京)

输入文件 分离key tagging
shuffle

(Marry,1),

(Marry,math,90)(Marry,1),

(Marry,science,92)(Marry,2),

(Marry,上海)

(Tom,1), (Tom,math,87)

(Tom,1), (Tom,science,96)

(Tom,1), (Tom,physics,95)

(Tom,2), (Tom,北京)

(Marry,math,90)

(Marry,science,92)

(Marry,上海) (Tom,math,87)

(Tom,science,96)

(Tom,physics,95)

(Tom,北京)

© Hortonworks Inc. 2011

Order by的实现

Page 18
Architecting the Future of Big Data

• 分布式实现

– 每个Reduce实现一部分的排序

– 全局Total Order

• Pig实现

– Sample: 确定每个Reduce负责的数据区间

– Partitioner: 把数据发送到不同的Reduce

– Reduce: 排序

© Hortonworks Inc. 2011

Order by的实现

Page 19
Architecting the Future of Big Data

Mary 95

Tom 83

Lee 87

Jenny 98

Daniel 78

Alan 94

Richard 89

Annie 82

Reduce 1: <88

Reduce 2: >=88 sample

Tom 83

Lee 87

Daniel 78

Annie 82

Reduce 1

Mary 95

Jenny 98

Alan 94

Richard 89

Reduce 2

Job 1

Daniel 78

Annie 82

Tom 83

Lee 87

partitioning
Richard 89

Alan 94

Mary 95

Jenny 98

sorting

sorting

Job 2

© Hortonworks Inc. 2011

Skewed Join的实现

Page 20
Architecting the Future of Big Data

• 解决超大key问题

– Reduce运行缓慢，极耗内存

– 思路：把key分配到不同的reduce

• Pig实现

– Sample: 确定每个Key需要多少Reduce

– Partitioner: 把数据发送到不同的Reduce

– Reduce: 把右关系复制到每个Reduce, Reduce

得到交叉结果

© Hortonworks Inc. 2011

Merge Join的实现

Page 21
Architecting the Future of Big Data

• 思路

– 先排序，再做Merge Sort

• Pig实现

– 左，右关系必须预先排序

– 右关系建立索引

– Map Side

• 通过索引迅速找到右关系开始位置

• 左，右关系进行Merge

© Hortonworks Inc. 2011

充分利用Combiner

Page 22
Architecting the Future of Big Data

 • Combiner

– 送往reduce之前先进行汇总

– 减少Map/Reduce之间传送的数据量

• 常用的Pig函数已经进行了Combiner优化

– COUNT, SUM, AVG, TOP

• 更好的方法

– Combiner的问题：序列化开销过高

– Pig 0.10：在map里直接做汇总，取消combiner

© Hortonworks Inc. 2011

基于规则的优化器

Page 23
Architecting the Future of Big Data

• Column pruner

• Push up filter

• Push down flatten

• Push up limit

• Partition pruning

• 全局优化器

© Hortonworks Inc. 2011

Column Pruner

Page 24
Architecting the Future of Big Data

• Pig自动Prune Column

• 某些情况下Pig无法完成自动Column

Prune

- Load语句没有Schema

- Group by之后有未用到的列

- 用户可以自行用foreach语句略去不用的列

A = load ‗input‘ as (a0, a1, a2);

B = foreach A generate a0+a1;

C = order B by $0;

Store C into ‗output‘;

Pig自动略去a2

© Hortonworks Inc. 2011

Push up filter

Page 25
Architecting the Future of Big Data

• Pig使用规则前先进行选择条件拆分

A

Join

a0>0 && b0>10

B

Filter

A

Join

a0>0

B

Filter b0>10

原始查询 拆分选择条件

A

Join

a0>0

B

Filter
b0>10

使用规则

© Hortonworks Inc. 2011

其他push up/down

Page 26
Architecting the Future of Big Data

• Push down flatten

• Push up limit

Load

Flatten

Order

Load

Flatten

Order

A = load ‗input‘ as (a0:bag, a1);

B = foreach A generate
flattten(a0), a1;

C = order B by a1;

Store C into ‗output‘;

Load

Limit

Foreach

Load

Foreach

Limit

Load (limited)

Foreach

Load

Limit

Order

Load

Order (limited)

© Hortonworks Inc. 2011

分区pruning

Page 27
Architecting the Future of Big Data

• 略去整个不需要的分区

– HCatLoader

 2010

2011

2012

HCatLoader
Filter

(year>=2011)

2010

2011

2012

HCatLoader

(year>=2011)

© Hortonworks Inc. 2011

压缩中间文件

Page 28
Architecting the Future of Big Data

Pig脚本

map 1

reduce 1

map 2

reduce 2

Pig中间文件

map 3

reduce 3

Pig中间文件

•Map和reduce之间
的中间文件
– Snappy

•不同mapreduce作
业间的中间文件
– 缺省没有压缩

© Hortonworks Inc. 2011

定制Pig中间文件压缩

Page 29
Architecting the Future of Big Data

•Pig中间文件缺省不压缩
– snappy的问题(HADOOP-7990)

– LZO: 没有Apache许可

•开启LZO compression
–在Hadoop上安装LZO

–修改conf/pig.properties

–开启LZO，我们观察到高达90%的磁盘空间节省和
4倍的查询速度提升

pig.tmpfilecompression = true

pig.tmpfilecompression.codec = lzo

© Hortonworks Inc. 2011

合并MapReduce作业

Page 30
Architecting the Future of Big Data

• 合并两个以上的MapReduce作业

– Pig自动进行作业合并

– 某些情况下我们需要控制合并粒度：Pig合并了过
多的作业

Load

Group by $0 Group by $1

Foreach Foreach

Store Store

Group by $2

Foreach

Store

© Hortonworks Inc. 2011

控制合并粒度

Page 31
Architecting the Future of Big Data

• 取消multiquery
– 命令行参数: -M

• 用―exec‖标明作业边界
A = load ‗input‘;

B0 = group A by $0;

C0 = foreach B0 generate group, COUNT(A);

Store C0 into ‗output0‘;

B1 = group A by $1;

C1 = foreach B1 generate group, COUNT(A);

Store C1 into ‗output1‘;

exec

B2 = group A by $2;

C2 = foreach B2 generate group, COUNT(A);

Store C2 into ‗output2‘;

© Hortonworks Inc. 2011

合并输入文件

Page 32
Architecting the Future of Big Data

• 一系列小输入文件
– Hadoop: 每个输入文件一个map

– 太多map作业

• Pig自动合并小输入文件

© Hortonworks Inc. 2011

Pig 0.11新特性

Page 33
Architecting the Future of Big Data

• Cube

• Rank

• 新数据类型: Datetime

• JRuby UDF

• 性能优化
– SchemaTuple优化

– Local mode优化

© Hortonworks Inc. 2011

Pig的未来

Page 34
Architecting the Future of Big Data

• Low latency查询
– 利用YARN的新特性

• 性能优化
– Cost based optimizer

– 基于编译的后端

– Hbase的Join优化

• Visualization, 监控

– 图形界面

– 更好的Execution Plan显示

– 监控系统 (Hortonworks Sandbox, Ambari)

© Hortonworks Inc. 2011

参与Pig开发

Page 35
Architecting the Future of Big Data

• 订阅邮件列表

– user@pig.apache.org, dev@pig.apache.org

• 贡献Patch

– 从newbie Jira开始

• Pig Committer

– 在Pig邮件列表和Jira上活跃6个月以上

–贡献若干Patch

– Review其他开发者的Patch

© Hortonworks Inc. 2011 Page 36

 ?

