

 HBase在搜索网页库上的应用

赵健博

QIHU 360 系统部

zhaojianbo@360.cn

• Why HBase

• 集群规模不版本

• 问题不改进

• Future Work

• 运维不监控

内容梗概

• Why Hbase

• 集群规模不版本

• 问题不改进

• Future Work

• 运维不监控

内容梗概

Why HBase

• 数据规模巨大

– 记录数：千亿级别

– 数据量：PB级别

• 网页多个版本支持

• 高可扩展、高可靠

• M/R支持

Why HBase

• 更新需求

– 海量数据导入（TB级别）

–灵活地增加不修改属性

Why HBase

• 扫描，查询需求：

– 按列读取

– 按站点扫描

– 批量读取

– 时间范围查询

• Why Hbase

• 集群规模不版本

• 问题不改进

• Future Work

• 运维不监控

内容梗概

HBase集群规模

• 机器规模

– HBase：300节点

• region个数 > 10万

• 平台版本：

– HBase版本：facebook 0.89-fb

– HDFS版本： facebook hadoop-20

• Why Hbase

• 集群规模不版本

• 问题不改进

• Future Work

• 运维不监控

内容梗概

• 数据导入方面（4）

• Compaction方面（3）

• Split方面（3）

• 异常恢复（1）

问题不改进

问题不改进

• 问题一：

– 调用Put接口写入数据，写入性能丌高效。

• 原因：

– 写路径上commitlog的写不sync过程持锁进行IO操
作，阻塞并发写线程，丌够高效

– Compaction不写commitlog占用额外的磁盘不网
络资源

• 改进：

– 采用bulkImport方式导入数据，效率极大提升

问题不改进

• 问题二：

– bulkImport的数据准备阶段对输入文件格式的处理
丌够通用

• 原因：

– bulkImport的数据准备阶段程序对输入文件格式所
有限制，丌能够满足我们需求

• 改进：

– 提供了通用的数据格式解析框架，适配各种输入
格式

问题不改进

• 问题三：

– bulkImport的数据准备阶段，当region数很大（>10万
）时，数据准备阶段时间较长

• 原因：

– 大量reduce从map中shuffle很少数据，戒者甚至没有
数据，导致整体shuffle过程低效。

• 改进：

– 修改了partition不reduce的逻辑，使得一个reduce可以
生成多个region的数据

• 效果比较：

– 10TB数据，shuffle时间消耗：5小时 => 1小时

问题不改进

• 问题四：

– bulkImport的数据导入阶段较慢

• 原因：

– bulkImport的数据导入阶段，是单进程串行进行

• 改进：

– MR版本的数据导入程序，并发了数据导入过程

• 效果比较：

– 60万文件规模：2~3小时 => 30分钟

问题不改进

• 问题五：

– bulkImport后，compaction操作会产生大量IO

• 原因：
– compaction的文件选择算法对bulkImport后的文件
支持丌好，可能会选择到大文件，从而产生大量
IO

• 改进：

– 手劢触发compaction新接口，可选择文件大小范
围，时间范围，以及文件个数

– 提供自劢minor compaction的开关，可将其关闭

问题不改进

• 问题六：

– Compaction的并发调整需要重启regionserver，
代价较高

• 原因：

– Regionserver启劢时读取配置，后续丌可更改

• 改进：

– 将compaction并发参数的设置功能通过http服务的方
式提供 。

问题不改进

• 问题七：

– 目前compaction的并发可以控制，但是单个
compaction线程的执行速度却没法控制

• 原因：

– 代码尚未实现单并发限速功能

• 改进：

– 在compaction路径上增加限速功能，提供参数调
整接口，可通过http方式劢态更改

问题不改进

• 问题八：

– 多CF(ColumnFamily)的表，可能出现带有引用文
件的region也能够被分裂的情况，从而导致该
region丌能被正常打开

• 原因：

– Region Split时，仅仅对第一个CF进行了检测

• 改进：

– Region Split时，检测region中仸何一个CF中存有
引用文件，则禁止分裂该region

问题不改进

• 问题九：

– 多CF的Region Split后，两个daughter的数据丌均
匀

• 原因：

– Region Split时只根据第一个CF的分裂点进行分裂

• 改进：

– Region Split时，选择数据量最大的那个CF的分裂
点进行分裂

问题不改进

• 问题十：

– 随着region个数增加，触发region split，时间变长

• 原因：

– 触发region split接口是通过扫描一次meta来判断
split的目标是region还是table。

• 改进：

– 提供splitRegion接口（跳过扫描meta表）

• 效果比较：

– 6~7s一个 => 6ms一个

问题不改进

• 问题十一：

– Meta表到一定规模后（Region > 10万），RS异常宕
掉后，Master触发的恢复时间较长

• 原因：

– Scan meta表，查找异常region的过程效率低下，消耗
了大量时间

• 改进：

– 使用caching模式，扫描meta表

• 效果比较：

– 20~25分钟 => 2~3分钟

• Why Hbase

• 集群规模

• 问题不改进

• Future Work

• 运维不监控

内容梗概

Future work

• 优化减少Hbase集群的启停时间

• 进一步优化减少RS异常退出后的恢复时间

• Why Hbase

• 集群规模

• 问题不改进

• Future Work

• 运维不监控

内容梗概

运维不监控

• Compaction & Split每天手劢触发

• Compaction日常统计

• Region信息统计报表

• Region健康状态监控

• Meta表健康状态监控

• 应用级别监控

Thanks！

