THUIRDB :A Large-Scale, Highly-
Efficient Index, Fast-Access
Key-Value Store

10billion records,1bit index per
record,1million/sec throughput in 1 machine

http://www.thuir.org/thuirdb/
mgigabyte@gmail.com

mailto:mgigabyte@gmail.com
mailto:mgigabyte@gmail.com
mailto:mgigabyte@gmail.com

Structure of Report

 |Introduction

* Requirement and motivation
* Background review

* Problems

* Problems for binary-search

* Problems for B+-tree

* Problems for hash

* Problems for building database

e Rational

» Separating key and value by location
Sorting then linear write

Data lay-out

Building the index bottom-up
Highly-efficiency compressing

Requirement and motivation

* A special requirement for key-value store:
(1) Large scale, billions of record
(2) Random query, hundreds of random query for a task
(3) Static dataset, once built never changed, just read no update
(4) Low cost, sometimes should be built in a machine

* Pratical application situation:
(1) log-based analysis systems
(2) language-model based machine translation

Backgroud Review

[Tobin 1986] issue an new data structure:T- N e Node
tree . T-tree inherits from both B-tree and
AVL-tree and is used by main-memory " -
databases, such as Datablitz, eXtremeDB,

MySQL Cluster.

[Philip 2001]pk-Ttree and pkB-tree add index
compression.

[1998 Rao Jun]Rao created CSS-tree, and
developed to CSB+ tree and CSS+tree

l6-10 1f11-15

‘ 31-53 ‘ ‘ 56-80

Background Review

Google introduced LMS-tree and multi-level skip
list based key-value store called LevelDB in 2011.

-\ find(117), find(118)
Level 3 ‘ next-pointer ..
own-pointer

@ @ - ®
e GH-M-GD .G @) (), @).©)

From Alon Efrat’s ppt of skip list

Level 2

http://blog.nosqlfan.com/html/3041.html

Problems for binary-search

* Importance of data is out of control

— 9is the key and index key, very important

— 8 and 10 is only key, not important, but have been put
into L1 cache with 9 unfortunately

* Poor Data reference locality

Register
importance 15

21 109

Memory

$SD/Disk

cheap storage

Problems for B+-tree

(1)Each node stores child pointers and Each node 50% full.
(2)Data write is low-efficiency.
(3)Data write is not sequential

) (e) [(em
Cren]] v 7o e

))

TR BT W B
re-write old block <::I |:> write new block

Problems for Hash

High space overhead

Hard to compress

Can’t support ordered access
Cant’s support range-query

Problems for building database

* Both B+-tree-based and Hash-based databases
are in trouble with memory-shortage, why?

* Why them need so much memory in hand?
Why not sync these dirty data to disk from

buffer?

Rational of THUIR-DB

(1) separating key and value by location

(2) sorting the key-value pairs, linear write them
(3) build the index bottom-up

(4) pointer eliminating

(5)highly-efficiency compressing

Separation of index and data

Insert:
location = store_s.put(value)
search_s.insert(key,location)
query:
location = search_s.find(key)
value = store_s.get(location)

Location

Separating index and data makes the index smaller, provides
chances to apply different compression methods and some other
tricks, such as data reordering.

In a word, Indirection provides flexibility

Variable-length key and value

* insert:
location = store_s.put(key,value);
inner_key = md5(key)
search_s.insert(inner_key,location);

e query:
inner_key = md5(selected_key)
locations = search_s.find(inner_key)
array(<key,value>)=store_s.get(locations)
for each itemin arry
if(keyi = selected_key)
return valuei

index

e Certainty is the base of optimizing

Inner-key | = | Location @

linear inserting, building index bottom-up

TR I EET R T W
12345 67891 1112131“ 16 17 1§ -
EREI T T BT

advantage:
(1) important data constructed together(cache conscious)

(2) write data sequentially
(3) full-write each node

(4) set the stage for compression

Lay-out

search_s lay-out

search_s |keyl

non-leaf |off 1

search_s |keyl |key2 keyl28
root off 1 |off 2 off 128
key2 keyl28 | keyl |key2 key128
off_2 off_128| off 1 |off 2 off 128
]

\

Sl e head bloom filter | variable-compressed data head bloom filter | variable-compresseddata | « + + + + «
leaf
| | store_s lay-out
I I
e o head off v [size v| key value off v [size v| key value s et e

Compression of Integer Sequence

* 1) if we known value-range in advance

a give integer sequence S, all integer in the range [0, L], then it
cost S "‘l_log2 L1 bits to save them all

e 2) if we know it is ordered .
use difference to make the smaller, such as

1,4,6,15,25,40, after differencing, we get 1,3,2,9,10,15, if all
integer in the new sequence is in the range [0,L'],then it cost

S*[log,L"| pits.
* 3) sometimes there are very large number, such as

1,4,6,15,25,10000,100001, use exception block to save them,
Pfordelta and New-Pfordelta solve the problem very well.

Adaptive-compression

* If we have the integer sequence like these.
112315161617 192021 22...

* Try to find a economical way to compress
11 2 3 [1bit gap] -> X bit /record
11231516 17.. [4bit gap]-> Y bit/record
If X<Y then

[11 2 3] as a block to compress

guestion

A B C D

*112334567899...100{101102/ 102 102

how the chose the segment point?

let’s suppose that the max block have 256 sets, and chose
A ,B,C or D is ok for the limit

if we have 2000 keys that all are the 1027 (more than 256)

102 102

|
102 102, 102 J ‘ 102 102, 102 J

102 ,,, 102 J

Apply SIMD to speed-up compression

#define dOpa Ck].(x,y,z,o,p) "pxor %%xmm1l,%%xmm1l\npxor %%xmm?2,%%xmm2\npxor

%%xmm3,%%xmm3\npxor %%xmm4,%%xmma\nmovhpd "#x"(%1),%%xmm1\npsllq
$32,%%xmm1\nmovhpd "#y"(%1),%%xmm2\npsllq $32,%%xmm2\npsrlg $32,%%xmm2\nORPD
%%xmm1,%%xmm2\nmovss "#z"(%1),%%xmm3\npsllg $32,%%xmm3\nmovss
"#0"(%1),%%xmm4\nORPD %%xmm3,%%xmma\npslld $"#p”,%%xmm15\nORPD
%%xmm2,%%xmm15\nORPD %%xmm4,%%xmm15\n*

#define PAck1(X) dopackl(x*4,128+x*4,256+x*4,384+x*4,1)

void PACK1(uint32_t* code,uint32_t* data,size_t n){
unsigned char* des = (unsigned char*)code;
unsigned char* src = (unsigned char*)data;

__asm__ __ volatile_(
"pxor %%xmm15,%%xmm15\n"
pack1(0)
pack1(1)
pack1(31)

"movdqu %%xmm15 ,(%0)\n"
:"r"(des),"r"(src):"memory");

__asm___ volatile__(
"sfence\n"

pxor %%xmm1,%%xmm1\n
pxor %%xmm?2,%%xmm2\n
pxor %%xmm3,%%xmm3\n
pxor %%xmm4,%%xmm4\n
movhpd "#x"(%1),%%xmm1\n
psllg $32,%%xmm1\n

movhpd "#y"(%1),%%xmm2\n
psllg $32,%%xmm?2\n

psrlg $32,%%xmm2\n

ORPD %%xmm1,%%xmm2\n
movss "#z"(%1),%%xmm3\n
psllg $32,%%xmm3\n

movss "#o"(%1),%%xmm4\n
ORPD %%xmm3,%%xmm4\n
pslld S"#p",%%xmm15\n
ORPD %%xmm2,%%xmm15\n
ORPD %%xmm4,%%xmm15\n

unfold

explanation

01 10 11 10 :anintege array of 8 elements.

SupoosE (T gister is 8bit, think of it as
4 blocks \

1) zero xmml: 000000
2) first-write: 00010101
3) shifting: 00101010
4) second-write: 01101110

/
L J

Analysis

write once for a block

pxor %%xmm1,%%xmm1\n
pxor %%xmm2,%%xmm2\n
pxor %%xmm3,%%xmm3\n
pxor %%xmm4,%%xmmd\n
movhpd "#x"(%1),%%xmm1\n
pslla $32,%%xmm1\n

movhpd "#y"(%1),%%xmm2\n
pslla $32,%%xmm2\n

psrla $32,%%xmm2\n

ORPD %%xmm1,%%xmm2\n
movss "#z2"(%1),%%xmm3\n
pslla $32,%%xmm3\n

movss "#0"(%1),%%xmm4\n
ORPD %%xmm3,%%xmm4\n
pslld $"#p",%%xmm15\n

ORPD %%xmm2,%%xmm15\n
ORPD %%xmm4,%%xmm15\n

"movdau %%xmm15 ,(%0)\n"

write 128 times for a block

code[1] = 0;

code[1] |= datal j+0]<<0;
code[1] |= data[l j+1]<<1;
code[1] |= datal j+2]<<2;
code[1] |= datal j+3]<<5;

code[1] |= datal j+26]<<26;
code[1] |= datal j+27] <<27;
code[1] |= datal j+28] <<28&;
code[1] |= datal j+28]<<285;
code[1] |= datal jJ+30] <<30;
code[1] |= datal j+31]<<31;

Result of applying SIMD

* Experiments for comperssing 1.28billion
Integers.

NO SIMD: 9.02second
SIMD:1.14second

Improvement 6.91 times.

Flynn's taxonomy
Single Instruction Multiple Instruction

Single Data SISD MISD
Multiple Data SIMD MIMD

In application, intel issured SSE instructions set and AMD put forward
3DNow!. AMD declared to support SSE instructions set soon.

Future work
How to insert?

Reference(1)

[Tobin 1986]A Study of Index Structures for Main Memory Database
Management Systems

[Philip 2001]Main-Memory Index Structures with Fixed-Size partial Keys

A.Anand.C.Muthukrishnan, S.Kappes, A.Akelaa, and S.Nath. 2010.Cheap and
large CAMs for high performance data-intensive networked system.In
Proceedings of the 7th USENIX conference on Networked system design and
implementation, 29-29.

Adam Pauls and Dan Klein. 2011.Faster and smaller n-gram language models.
In Proceedings of 49t ACL, 258-267,Portland,Oregon.

Alexy Khrabrov and George Cybenko. 2010. Discovering Influence in
Communication Networks using Dynamic Graph Analysis. In Proceedings of
SocialComm 2010, 288-294.

An Oracle White Paper 2011 oracle NoSQL Database.

B. Debnath, S.Sengupta, and J.Li. 2011. SkimpyStash:RAM space skimpy key-
value store on flash-based storage. In Proc. In Proceedings of International
Conference on Management of Data, ACM SIGMOD’11,25-36,

Reference(2)

Biplob Debnath, Sudipta Sengupta, Jin Li . 2010. FlashStore: High Throughput
Persistent Key-Value Store . Journal: In Proceedings of The Vidb Endowment -
PVLDB, vol. 3, no. 2, 1414-1425

D.Beaver, S.Kumar, H.C.Li,J.Sobel, and P.Vajgel. 2010.Finding a needle in
Haystack:Facebook’s photo storage. In Proceedings of 9t" USENIX OSDI OCT.1-8

D. K. Blandford and G. E. Blelloch. 2008.Compact dictionaries for variable-length
keys and data with applications. ACM Trans.Alg. 4,2,17:1-17:25.

Fotakis, D., Pagh, R., Sanders, P., and Spirakis, P. G. 2005. Space efficient hash
tables with worst case constant access time. Theory of Computing Systems 38,2,
229-248.

G.Decandia, D.Hashtorun, M.Jampani, G.Kakulapati, A. Lakshman, A.Pilchin, S.
Sivasubramanian, PVosshall, and W.Vogels. 2007.Dynamo: Amazon’s highly
available key-value store. In Proc.215t ACM Symposium on Operating System
Principles(SOSP), 205-220.

Hyeontaek Lim, Bin Fan, David G.Andersen, Michael Kaminsky. 2011.SILT:A
Memory-Efficient, High-Performance Key-Value Store, In Proceedings of the 23rd
ACM symposium on Operating System Principles,1-13.

Jun Rao and Kenneth A. Ross. 1999.Cache conscious indexing for decision-support
in main memory. In Proceedings of the 25th VLDB Conference.78-89.

Reference(3)

KNUTH, D. E 1973. The Art of Computer Programming/Sorting and
Searching, vol.3.Addison Wesley.

Patrick O’Neil,Edward Cheng Dieter Gawlick, Elizabeth O’Neil. 1996.The
log-structured merge-tree (LSM-tree). Acta Informatica, 33,4,351-385.

S.Nath and A.kansal. 2007. FlashDB:Dynamic Self-tuning Database for
NAND Flash. In Proceedings of 6t IPSN, 410-419.

Torp, Kristian and Mark, Leo and Jensen, Christian S. 1998. Efficient
differential timeslice computation. IEEE Transactions on knowledge and
data engineering 10,4. 599-611.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean.
2007. Large language models in machine translation. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing.858-867.

Trishul M.Chilimbi James R.Larus Mark D.Hill. Improving pointer-based
codes through cache-conscious data placement. Technical report 98,
University Wisconsin-Madison, Computer Science Department, University
of Wisconsin-Madison Madison, Wisconsin 53706, 1998.

Question??

My son, 11-month old

