

BookKeeper

Flavio Junqueira Yahoo! Research, Barcelona

Hadoop in China 2011

What's BookKeeper?

- Shared storage for writing fast sequences of byte arrays
- Data is replicated
- Writes are striped
- Many processes can access it

Motivation

- Recoverable systems
 - √ Journal/write-ahead log
 - √ Integrity and durability
 - √ Efficient: sequential synchronous writes
- Why is writing sequentially important?
 - √ To avoid random seeks

More motivation

- Examples
 - √ Many databases (e.g., Postgres)
 - √ Hbase region server
 - ✓ ZooKeeper
 - √ HDFS namenode
 - √ Hedwig hubs

HDFS at a glance

- Main components: namenode and datanode
 - √ Single name node
 - ✓ A number of data nodes
- Namenode
 - √ Manages FS namespace
 - √ Regulates access to the FS
 - √ Mapping of blocks to data nodes
- Datanode
 - √ Stores blocks
 - √ Serves reads and writes

HDFS Architecture

http://hadoop.apache.org/common/docs/current/hdfs_design.html

Write

Rack 1

5

Rack 2

Namenode

- File system state
 - ✓ Metadata, block map
 - ✓ In memory
- Checkpoint
 - ✓ On disk
 - ✓ Snapshot of the service state
- Edit log
 - √ Persists changes to the file system metadata
 - ✓ Written to disk

Namenode

- Edit log is a journal
 - √ Local disk
 - √ NFS server
- Production use
 - ✓ Enterprise-class NFS
 - ✓ Expensive devices
 - √ E.g., Netapp Filer
 - ✓ Robust, but still a single point of failure

Making the namenode highly available

- Backup node
 - √ One step ahead
 - √ Receives a stream of updates
 - √ Warm standby
- Shortcomings
 - √ Cannot guarantee consistency
 - √ Difficult to have multiple backups

Making the namenode highly available

Communication among processes to coordinate

Making the namenode highly available

- Replicate the functionality of the name node
 - ✓ Performance penalty
 - √ Not scalable
- Write log to external device
 - √ NFS
 - Avatarnode
 - Replication is not transparent
 - √ External high-performance logging/journaling service
 - BookKeeper

BookKeeper

- Shared storage for logs
- Design goals
 - ✓ Efficient sequential writes
 - √ Fault tolerance
 - √ Scalability

BookKeeeper architecture

- Bookie: Storage node
- Ledger: log file
- **Ensemble**: group of bookies storing a ledger
- Writes to quorums of Bookies
- Parallel writes to quorums
- Reads from the same quorum

The anatomy of a bookie

Transaction log

- ✓ Pre-allocates, batches
- √ Return upon write/sync to disk
- Index
 - √ Position of entry
- Entries
 - √ Written sequentially to entry log

Scalability of writes

- Write quorums do not necessarily intersect
- Assuming that:
 - Lach bookie performs e entries/s
 - 2. Number of bookies: r
 - **3.** Write quorum: *q* bookies
- Ideal maximum throughput: $\frac{r \times e}{q}$
- In practice, network bandwidth or cpu limits the total capacity in bytes written per second

API at a glance

- createLedger
- openLedger
- addEntry
 - √ Async and sync
- readEntries
 - √ Async and sync
- closeLedger
 - √ Writes the last entry id to ZooKeeper

Why keep last entry id?

- Acknowledgement
 - √ Ledger closed properly
- Agreement
 - √ Two readers don't read different sets of entries
- What if no last entry id has been written?

Recovery procedure

- Reader client executes a ledger recovery procedure
- Hints on ledger entries

Procedure

- √ Request last entry hint from bookies
- √ Try to read as many entries greater than the hint
- √ Make sure entries are written to a quorum

How to use it

- Application writer
 - √ Creates a ledger
 - √ Add entries to the ledger
 - √ Return upon confirmation from quorum
 - √ Closes the ledger
- Application readers
 - ✓ Open ledger
 - √ Read from the ledger
- Application does not reopen to append

18

BookKeeper service

- Service
 - ✓ Bookies in the cloud
 - √ Through ZooKeeper
- ZooKeeper
 - √ Bookies online
 - √ Ledger metadata

Performance

Setup

- Cluster of identical machines
- 2 Quad Core Intel Xeon 2.5GHz
- 16GB of RAM
- Four SATA disks, 7,200 RPMs
- I Gbit/s network interface

BookKeeper performance

Single writer

BookKeeper performance

- Multi-writer
 - √ Aggregate throughput

- Concurrent ledgers
 - √ Up to 40k ledgers

bytes	2Q		3 Q	
	3E	6E	3E	6 E
128	87k	116K	57k	108k
1024	31k	54k	20k	38k
4096	8k	I6k	5k	Hk

add operations/s

BookKeeper and the Namenode

Hedwig

Hedwig

- Multi-region pub/sub system
- Guaranteed-delivery topic-based pub-sub system
- Extremely High Performance
- Elastically scalable
 - √ Deployed over commodity machines
 - √ Capacity can be added on-the-fly by adding machines
- Low Operational Complexity
 - √ Tolerate failures without manual intervention
 - ✓ Automatic load balancing
- Designed for multiple data-centers

Hedwig overview

Wrap up

Advanced features

- Opening without recovery
 - √ Warm standbys
 - √ Must know what you're doing
- Fencing
 - √ Consistency despite concurrent accesses
 - ✓ Prevents new sucessful writes once recovered

Status

- Release on the way
 - √ Candidate should be out this week
- BookKeeper and the namenode
 - √ Watch HDFS-1580 and HDFS-234

The team

- Dhruba Borthakur (Facebook)
- Flavio Junqueira (Yahoo!)
- Ivan Kelly (Yahoo!)
- Benjamin Reed (Yahoo!)
- Utkarsh Srivastava (Twitter)

Contributing

- Sign up for the lists
- Discuss with the community
- Propose improvements
 - √ Bug fixes
 - √ New features

http://zookeeper.apache.org/bookkeeper

Questions?

http://zookeeper.apache.org/bookkeeper