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Facebook Messages: brief history

▪ Project started in Dec 2009 

▪ Oct 2010, selected users are in production

▪ Jan 2011, meaningful number of users are in production. 

▪ Mid 2011, fully rolled out to all users (800M+), legacy messages for 
1B+ accounts are migrated over to HBase as well. 



Facebook Messages: Quick Facts

▪ Unstable vs. stable storage: 

▪ This is the permanent storage system for all private messages of 
users of Facebook, and it is the single source of truth  Stable 
Storage system, backup!

▪ Online vs. offline storage: 

▪ It is online! Any problems with HBase are visible to the users  High 
availability, low latency. 



Facebook Messages: Quick Stats

▪ 8B+ messages/day

▪ Traffic to HBase

▪ 75+ Billion  R+W ops/day

▪ At peak: 1.5M ops/sec 

▪ ~ 55% Read vs. 45% Write ops

▪ Avg write op inserts ~16 records across multiple 
column families.



Facebook Messages: Quick Stats (contd.)

▪ 2PB+ of online data in HBase (6PB+ with replication; 
excludes backups)

▪ message data, metadata, search index

▪ All data LZO compressed

▪ Growing at 250TB/month



Why we chose HBase

▪ High write throughput

▪ Good random read performance

▪ Horizontal scalability

▪ Automatic Failover

▪ Strong consistency

▪ Benefits of HDFS

▪ Fault tolerant, scalable, checksums, MapReduce

▪ internal dev & ops expertise



What do we store in HBase

▪ HBase

▪ Small messages

▪ Message metadata (thread/message indices)

▪ Search index

▪ Haystack (our photo store)

▪ Attachments

▪ Large messages



How do we make it work?

▪ Cell based architecture

▪ Schema Design/Iteration

▪ Stabilize HBase

▪ Monitoring and operations



Facebook Messages Architecture
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Cluster Layout For a HBase Cell

▪ Multiple clusters/cells for messaging

▪ 20 servers/rack; 5 or more racks per cluster

▪ Controllers (master/Zookeeper) spread across racks
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Why multiple cells?

▪ If HBase goes down, it affects only a portion of the user base

▪ Upgrades that need a full cluster restart

▪ Bugs resulting in cluster outages

▪ Easy to move to new datacenters

▪ Enable us to do shadow testing – a cell with same load as production 
cells.



• Each user is one row:

• The entire messaging history of a user is in one HBase row. For 
some users, this can be as big as a few G. 

• Use the row atomicity of HBase well!   

• The message search index is also in the same row. This enables 
us to atomically update search index. 

• The row key is: md5(userid) + userid

• Randomly distribute users and avoid hot region problem. 

• This also enables us to presplit the table. 

Messages Schema - Row Keys



Messages Schema & Evolution

▪ “Actions” (data) Column Family the source of truth

▪ Log of all user actions (addMessage, markAsRead, etc.) 

▪ Metadata (thread index, message index, search index) etc. in other 
column families

▪ Metadata portion of schema underwent 3 changes:

▪ Coarse grained snapshots (early development; rollout up to 1M users)

▪ Hybrid (up to full rollout – 1B+ accounts; 800M+ active)

▪ Fine-grained metadata (after rollout)

▪ MapReduce jobs against production clusters!

▪ Ran in throttled way

▪ Heavy use of HBase bulk import features



Get/Put Latency (Before)



Get/Put Latency (After)



Stabilizing HBase

▪ Right before launch (Oct 2010), we created a production branch from 
Apache trunk, close to 0.89.20100924. Now the code base is on 
Apache under 0.89-fb. 

▪ The refactored master code was coming in around the same time and 
we decided not to take it due to imminent product release. 

▪ Continuously iterate on this branch and contribute back patches to 
Apache trunk. 

▪ Sometime, knowing what to avoid can also help 

▪ disable automatic split, instead presplit your table and set a huge 
split limit. 



Stabilizing HBase

HBase has never been put into test at this scale. 
The only way is to roll it out and iterate rapidly. 



Shadow Testing: Before Rollout

▪ Both product and infrastructure were changing.

▪ Shadows the old messages product + chat while the new one was 
under development
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Shadow Testing: After Rollout

▪ Shadows the live traffic for a production cell to a shadow cell.

▪ All backend changes go through shadow cluster before prod push
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Shadow Testing

▪ A high % of issues caught in shadow/stress testing

▪ Sometimes, tried things which hadn’t been tested in shadow cluster!

▪ Added a rack of servers to help with performance issue

▪ Pegged top of the rack network bandwidth!

▪ Had to add the servers at much slower pace. Very manual .

▪ Intelligent load balancing needed to make this more automated.



Monitoring and Operation

▪ Monitoring/ops is a huge part of HBase reliability. 

▪ Alerts (HBCK, memory alerts, perf alerts, health alerts)

▪ auto detecting/decommissioning misbehaving machines

▪ Dashboards

▪ HBase is not very DBA/application developer friendly yet. We’ve spent 
quite bit of effort there (slow query log, job monitor, etc).  Have to go 
through master/region server logs in order to identify issues. Even 
worse, these logs do not make much sense unless you know the inner 
details of HBase. 

▪ We are learning along the way. 



Scares & Scars!

▪ Not without our share of scares and incidents:

▪ 1/3 of region servers in many cells went down around the same time due to a bug in 
config management.

▪ Multiple region servers died around the same time due to DFS time out. It turns out, the 
NFS filer where we save the namenode log to is slow. 

▪ HDFS Namenode – SPOF. It happens more often than you thought it would. 

▪ s/w bugs. (e.g., deadlocks, incompatible LZO used for bulk imported data, etc.) 

▪ found a edge case bug in log recovery a few weeks ago, which can cause data loss!

▪ performance spikes every 6 hours (even off-peak)!

▪ cleanup of HDFS’s Recycle bin was sub-optimal! Needed code and config fix.

▪ transient rack switch failures



Recent HBase Development At 
Facebook



HBase Development at Facebook

▪ History with Apache HBase

▪ Based on Apache HBase 0.89

▪ Need time to stabilize one branch for production.

▪ Release Early, Release Soon

▪ Benefit from Open Source

▪ Contribute back to the Apache HBase 0.90, 0.92, 0.94 …

▪ HBase Engineer and Ops Team

▪ 3 committers and 9 active contributors at Facebook



HBase Applications at Facebook

▪ Facebook Messages

▪ Realtime Data Streams and Analytics

▪ Ads Insight

▪ Open Graph

▪ More and more applications in the future…



Major Contributions from Facebook in 0.92

▪ HFile V2

▪ Compactions Improvement

▪ Off peak compactions

▪ Multi-thread compactions

▪ Improved compaction selection algorithms

▪ Distributed Log Splitting

▪ CacheOnWrite and EvictOnClose

▪ Online Schema Changes



Major Contributions from Facebook (Contd.)

▪ Rolling Region Server Restarts

▪ String-based Filter Language

▪ Per Table/CF Metrics

▪ Delete Optimizations

▪ Lazy Seek Optimizations (31%)

▪ Delete Family Bloom Filters (41%)

▪ Create Table with Presplit

▪ Backups

▪ RBU, CBU, DBU

▪ Multi CF Bulk Loader



HFile V2 Motiviation
Opening a HFile

▪ Loading when region server startup

▪ Block indexes and Bloom filters may take a while to load

▪ Dark launch #1: 250 MB × 20 regions = 5 GB of block index data to 
load before a region server is up

▪ No need to waste memory space for unused or infrequently CFs

▪ Cache miss/age out for bloom filter, huge outliers in terms of 
latency

▪ Need a cheaper way to load a small chunk of bloom filter



HFile V2 Motivation (Contd.)
Writing HFile

▪ Memory footprint when writing an HFile

▪ No need to hold all the bloom filter and block index when writing

▪ Write block index data and Bloom filter data along with keys/values

▪ More important with multithreaded compactions

Ease of bloom configuration

▪ No more guessing how many keys will be added to an HFile

▪ To allocate the blooms space and other config

▪ New Bloom filter settings:

▪ Target false positive rate

▪ Allocate bloom block as a fixed size (e.g. 128 K)



HFile

Write Operation

1)Data Block

2)Write bloom/ index inline

3)Only hold root level index 
in memory
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HFile

Open/Read Operation

Open Operation
1) Version / backward compatible
2) Loading data

Read Operation
1)    Lookup Root level index/Bloom 
Index
2) Go to leaf level index on demand 
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Compactions Improvement

▪ More problems!

▪ Read performance dips during 
peak

▪ Major compaction storms

▪ Large compactions bottleneck

▪ Enhancements/fixes:

▪ Staggered major compactions

▪ Multi-thread compactions; 
separate queues for small & big 
compactions

▪ Aggressive off-peak compactions

Compaction

Small Compaction Q

Compaction

Compaction

Compaction

Compaction

Compaction

Big Compaction Q



Compactions Improvement

▪ Critical for read performance

▪ Old Algorithm:

#1. Start from newest file (file 0); include next file if:

▪ size[i] < size[i-1] * C  (good!)

#2. Always compact at least 4 files, even if rule #1 isn’t met.

Solution:

#1. Compact at least 4 files, but only if eligible files found.

#2. Also, new file selection based on summation of sizes. 

size[i] < (size[0] + size[1] + …size[i-1]) * C

Was

Now



Metrics, metrics, metrics…

▪ Initially, only had coarse level overall metrics (get/put latency/ops; 
block cache counters).

▪ Slow query logging

▪ Added Per Table/Column Family stats for:

▪ ops counts, latency

▪ block cache usage & hit ratio

▪ memstore usage

▪ on-disk file sizes

▪ file counts

▪ bytes returned, bytes flushed, compaction statistics

▪ stats by block type (data block vs. index blocks vs. bloom blocks, etc.)

▪ bloom filter stats



Metrics (contd.)

▪ HBase Master Statistics:

▪ Number of region servers alive

▪ Number of regions

▪ Load balancing statistics

▪ ..

▪ All stats stored in Facebook’s Operational Data Store (ODS).

▪ Lots of ODS dashboards for debugging issues

▪ Side note: ODS planning to use HBase for storage pretty soon!



Backups

▪ Stage 1 – RBU or in-Rack Backup Unit

▪ Backup stored on the live DFS used by Hbase

▪ Stage 2 – CBU or in-Cluster Backup Unit

▪ Backup on another DFS in the same DC

▪ Stage 3 – DBU or cross-DataCenter Backup Unit

▪ Backed up on another DFS in a different DC

▪ Protects against DC level failures



Backups

Protection	against	 Stage	1	
(RBU)	

Stage	2	
(CBU)	

Stage	3	
(DBU/ISI)	

Operator	errors	 X	 X	 X	

Fast	Restores	 X	 X	 	

Stable	Storage	 	 X	 X	

Heterogeneous	Racks	 	 X	 X	

Datacenter	Separation	 	 	 X	

	



Backups Tools

▪ Backup one, multiple or all CF’s in a table

▪ Backing up to Stage 1 (rbu), Stage 2 (cbu) and Stage 3 (dbu)

▪ Retain only last n versions of the backups

▪ Restore backups to a point in time

▪ Restore to a running or offline cluster

▪ Restore to the same table name or a new one

▪ Restore tables on the Stage 2 (cbu) as needed

▪ Verify a percentage of data in the backups (this may not be do-able 
without app knowledge)

▪ Alerts and dashboards for monitoring



Need to keep up as data grows on you!

▪ Rapidly iterated on several new features while in production:

▪ Block indexes up to 6GB per server! Cluster starts taking longer and 
longer. Block cache hit ratio on the decline.

▪ Solution: HFile V2

▪ Multi-level block index, Sharded Bloom Filters

▪ Network pegged after restarts

▪ Solution: Locality on full & rolling restart

▪ High disk utilization during peak

▪ Solution: Several “seek” optimizations to reduce disk IOPS

▪ Lazy Seeks (use time hints to avoid seeking into older HFiles)

▪ Special bloom filter for deletes to avoid additional seek

▪ Utilize off-peak IOPS to do more aggressive compactions during



Future Work

▪ Reliability, Availability, Scalability!

▪ Lot of new use cases on top of HBase in the works.

▪ HDFS  Namenode HA 

▪ Recovering gracefully from transient issues

▪ Fast hot-backups

▪ Delta-encoding in block cache

▪ Replication (Multi-Datacenter)

▪ Performance (HBase and HDFS)

▪ HBase as a service Multi-tenancy

▪ Region Assignment based on Data Locality



Thanks! Questions?
facebook.com/engineering



Open Operation
Open Operation
1) Version / backward compatible
2) Loading data

Write Operation
1) Data Block
2) Write bloom/ index inline
3) Only hold root level index in memory

Read Operation
1)    Lookup Root level index/Bloom Index
2) Go to leaf level index on demand (Block Cache)

Scan Operation
1) SeekTo
2) Next
3) ReSeek



HBase-HDFS System Overview
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