DOT: 一个开发处理大数据软件的分析模型

<u> 张晓东</u>

美国俄亥俄州立大学

Team Members

Yin Huai¹, Rubao Lee¹, Simon Zhang², Cathy H. Xia¹

¹Dept. of Computer Sci. & Eng., The Ohio State University

²Department of Computer Science, Cornell University

The Evolution of Computing

☐ Centralized computing era

• The Von Neumann model (1945): A baseline model to guide centralized computer architecture design

☐ Parallel computing era

• The Bulk Synchronous Parallel (**BSP**) model (Leslie Valiant, 1990): A "scale-up" model to guide parallel architecture improvement and software optimization software for HPC

"The data center as a computer" era

- Only Software frameworks for big data analytics available
 - MapReduce, Hadoop, Dryad and several others
- No models yet

Von Neumann Model: Computer Architecture Design

Von Neumann model

- a memory containing both data and instructions
- a computing unit for both arithmetic and logical operations
- a control unit to interpret instructions and make actions

Before Von Neumann's computer project, several operational computers were built:

- 1936, Zuse's Z1 (1st binary ditital computer) in Germany
- 1937, Atanasoff and Berry's ABC (1st electronic digital computer) in Iowa State University
- 1943, ENIAC based on ABC in UPenn

The most important milestone Von Neumann left is his paper: "First Draft of a Report to the EDVAC", 1945. (a consulting report to US Army) before his IAS Computer Project

BSP is a Scale-Up Model for HPC

- ☐ A parallel architecture model
 - **Key parameters:** p, node speed, message speed, synch latency
 - Low ratio of computing/message is key
- ☐ A programming model
 - Reducing message/synch latency is key:
 - Overlapping computing and communication
 - Exploiting locality
 - Load balance to minimize synch latency
- ☐ A cost model
 - Combining both hardware/software parameters, we can predict **execution time**
- ☐ BSP does not support
 - Data-intensive applications, big data
 - hardware independent performance
 - sustained scalability and high throughput

Scale-out is the Foundation for Big Data Analytics

- ☐ Scale-out = sustained throughput growth as # nodes grows
 - MR processed 1 PB data in 6h 2m on 4000 nodes in 11/2008
 - MR processed **10 PB** in 6 h 27 m on **8000 nodes** 9/2011 (VLDB'11)
 - The data is not movable after it is placed in a system
- ☐ Existing big data software is in a scale-out mode by
 - Focusing on scalability and fault-tolerance in large systems
 - Provide a easy-to-programming environment
- ☐ Effectively responds urgent big data challenges
 - Parallel databases with limited scalability cannot handle big data
 - Big data demands a large scope of data analytics
 - Traditional database business models are not affordable
 - Scale-out model is required for big data analytics

Existing Software Practice for Big Data Analytics

- ☐ For a given framework, is it scalable and fault-tolerant?
 - What is the basis and principle of scalability and fault-tolerance?
- A unified model for big data analytics is needed
 - Define a common distributed environment
 - Abstract the processing paradigm (basic behaviors of computing and communication) in a scalable and fault-tolerant manner (sufficient condition)

Outline

- ☐ Introduction
- ☐ The DOT Model
- ☐ General Optimization Rules
- ☐ Effectiveness of the DOT Model: Case Studies
 - Compare MapReduce and Dryad
 - Query optimization through the DOT model
- □ Conclusion

An Overview of DOT Model

- **DOT** is represented by
 - **D**: distributed data sets
 - O: concurrent data processing operations
 - T: data transformations
- ☐ The DOT model consists three components to describe a big data analytics job
- 1: An elementary DOT block (a root building block)

2: A composite DOT block (an extended building block)

An Overview of DOT Model

- **DOT** is represented by
 - **D**: distributed data sets
 - O: concurrent data processing operations
 - T: data transformations
- ☐ The DOT model consists three components to describe a big data analytics job
- 3: A method to describe execution/dataflow DOT blocks.

An Elementary DOT block

Phase 2:

1 worker collects all intermediate results and transforms them to final results (based on operator t)

Phase 1:

 \mathbf{n} workers perform concurrent operations (operator $\mathbf{o_1}$ to $\mathbf{o_n}$).

No dependency among workers

Data is divided into n sub-datasets $(D_1 \text{ to } D_n)$ and distributed among workers. We call a sub-dataset a **chunk**

A scale-out action: a Composite DOT block

An elementary DOT is a starting point of scale-out

- The *n* data sets can be processed by **multi-groups** of workers
 - to maximize parallelism. e.g. calculate the sum of odd and even numbers from a data set: two concurrent groups of n workers
- The size of intermediate results can be distributed
 - The intermediate data is too large to fit into a single worker

☐ A composite DOT block is created

• Multiple independent elementary DOT blocks are organized to form a composite DOT block

A Composite DOT block

m independent elementary DOT blocks are organized as a composite DOT block

DOT Expression: a Representation of Dataflow

☐ Basic Functions and Operators

- Operands: input and output data vectors
- The data vector result of a DOT block can be the input vector of another DOT block
- $o_i(D_i)$: in an elementary DOT block, apply operator O_i on chunk D_i and return the transformed chunk
- $\bigsqcup_{i=1}^{n} (o_i(D_i))$: in an elementary DOT block, collect n chunks to form a data collection of $(o_1(D_1), \dots, o_n(D_n))$
- $\biguplus_{j=1}^{} (\vec{D}O_jT_j)$: form a composite DOT block from multiple elementary DOT block
- \bigoplus : form a data vector from operands
- \biguplus : form a data vector and remove duplicated chunks

The Matrix Representation

☐ Three benefits of the matrix representation

- Concurrent data processing and data movement are explicitly represented by the "matrix multiplication"
- The fact that **no dependency** among workers in O-layer/T-layer is explicitly represented (column/row workers)
- The **optimization opportunities** are explicitly represented (talk about it latter)

Matrix Representation of an Elementary DOT Block

☐ A data set is represented by a data vector

☐ The elementary DOT block

Matrix Representation of a Composite DOT Block

☐ The composite DOT block

 $\vec{D}O_{composite}T_{composite}$

A Big Data Analytics Job

☐ Dataflow

 Described by the combination of a specific or nonspecific numbers of elementary /composite DOT blocks

☐ Two supporting components of the dataflow

- Global Information
 - Lightweight global information, e.g. job configurations
- Halting conditions
 - Used to determine under what conditions a job will stop
 - Have to be specified jobs described by a non-specific numbers of DOT blocks

A DOT Expression for Multiple Composite Blocks

 $((\vec{D}_1O_1T_1 \uplus \vec{D}_2O_2T_2)O_4T_4 \oplus \vec{D}_3O_3T_4)O_5T_5$

A DOT Expression for an Iterative Process

$$\vec{D}(t) = \vec{D}(t-1)O(t)T(t)$$

Scalability and Fault-tolerance

☐ Two different definitions

- Scalability and fault-tolerance of a job
- Scalability and fault-tolerance of a processing paradigm
- ☐ The processing paradigm of the DOT model is scalable and fault-tolerant (proofs in SOCC'11)

☐ A sufficient condition:

- a framework can be represented by the DOT model, i.e. any job of this framework can be represented by the DOT model => the processing paradigm of this framework is scalable and fault-tolerant
- Proofs in SOCC'11

Outline

- ☐ Introduction
- ☐ The DOT Model
- ☐ General Optimization Rules
- ☐ Effectiveness of the DOT Model: Case Studies
 - Comparison between MapReduce and Dryad
 - Query optimization through the DOT model
- □ Conclusion

Optimization Rules

- ☐ Substituting Expensive Remote Data Transfers with Low-Cost Local Computing
 - Unnecessary data transfers are reduced
- ☐ Exploiting Sharing Opportunities
 - Sharing common chunks
 - Unnecessary data scan is eliminated
 - Sharing common operations
 - Unnecessary operations on the data is eliminated
- ☐ Exploiting the Potential of Parallelism
 - Unnecessary data materialization is eliminated
- ☐ All of these optimization opportunities are explicitly represented by the DOT matrix representation

Exploiting Sharing Opportunities

☐ Sharing common data chunks

• Unnecessary data scan is eliminated

$$(\begin{bmatrix} A & B \end{bmatrix} \oplus \begin{bmatrix} A & C \end{bmatrix}) egin{bmatrix} lpha & o_{1,2} & 0 & o_{1,4} \ o_{2,1} & o_{2,2} & 0 & 0 \ 0 & 0 & lpha & 0 \ 0 & 0 & o_{4,3} & o_{4,4} \end{bmatrix} egin{bmatrix} eta & 0 & 0 & 0 \ 0 & t_2 & 0 & 0 \ 0 & 0 & eta & 0 \ 0 & 0 & 0 & t_4 \end{bmatrix}$$

$$\begin{bmatrix} A & B & C \end{bmatrix} \begin{bmatrix} \alpha & o_{1,2} & \alpha & o_{1,4} \\ o_{2,1} & o_{2,2} & 0 & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & o_{4,3} & o_{4,4} \end{bmatrix} \begin{bmatrix} \beta & 0 & 0 & 0 \\ 0 & t_2 & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & t_4 \end{bmatrix}$$

Exploiting Sharing Opportunities

☐ Sharing common operations

• Unnecessary operations on the data is eliminated

$$\begin{bmatrix} A & B & C \end{bmatrix} \begin{bmatrix} \alpha & o_{1,2} & \alpha & o_{1,4} \\ o_{2,1} & o_{2,2} & 0 & 0 \\ 0 & 0 & o_{4,3} & o_{4,4} \end{bmatrix} \begin{bmatrix} \beta & 0 & 0 & 0 \\ 0 & t_2 & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & t_4 \end{bmatrix}$$

$$\begin{bmatrix} A & B & C \end{bmatrix} \begin{bmatrix} \alpha & o_{1,2} & \alpha & o_{1,4} & \beta & 0 & 0 \\ o_{2,1} & o_{2,2} & 0 & 0 & 0 & 0 \\ o_{4,3} & 0 & o_{4,3} & o_{4,4} & 0 & 0 & t_4 \end{bmatrix}$$

Outline

- ☐ Introduction
- ☐ The DOT Model
- ☐ General Optimization Rules
- ☐ Effectiveness of the DOT Model: Case Studies
 - Comparison between MapReduce and Dryad
 - Query optimization through the DOT model
- □ Conclusion

Representing A Dryad Job by the DOT model

- ☐ A Dryad job is represented by a directed acyclic graph (DAG)
- Represent a Dryad job in the DOT model
 - A method based on graph search
 - A Dryad job is represented by a DOT expression

Representing A Dryad Job by the DOT model

Representing A Dryad Job by the DOT model

A DOT expression can be executed by Dryad (details in SOCC'11)

Representing A MapReduce Job by the DOT model

☐ A MapReduce job

- Map function: o_{map}
- Reduce function: t_{reduce}
- Partitioning function: p
 - p_i: get the intermediate results that will be sent to reducer i

$$\vec{D}OT = \begin{bmatrix} D_1 & \cdots & D_n \end{bmatrix} \begin{bmatrix} p_1(o_{map}) & \cdots & p_m(o_{map}) \\ \vdots & \ddots & \vdots \\ p_1(o_{map}) & \cdots & p_m(o_{map}) \end{bmatrix} \begin{bmatrix} t_{reduce} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & t_{reduce} \end{bmatrix}$$

A DOT expression can be executed by MapReduce (details in SOCC'11)

A Comparison between MapReduce and Dryad

- ☐ Every MapReduce/Dryad job can be represented by the DOT model
- The processing paradigms of MapReduce and Dryad are scalable and fault-tolerant
- ☐ A DOT expression can be executed by MapReduce/Dryad
- Comparing basic behaviors of computing and communication (processing paradigm), Dryad and MapReduce do not have fundamental difference.

Query Optimization in Hive: TPC-H Q17

☐ Optimizing the performance of TPC-H Q17 on the MapReduce framework

4 MapReduce jobs

2 MapReduce jobs

DOT Representation of TPC-H Q17 in Hive

$$Q17 = ((\vec{D}_{L}O_{A1}T_{A1} \oplus (\vec{D}_{L} \oplus \vec{D}_{P})O_{J1}T_{J1})O_{J2}T_{J2})O_{A2}T_{A2}$$

$$= (([D_{L,1} \quad D_{L,2}] \quad \begin{bmatrix} p_{A1,1} & o_{A1,1,1} \\ p_{A1,1} & o_{A1,2,1} \end{bmatrix} \quad \begin{bmatrix} p_{A1,2} & o_{A1,1,2} \\ p_{A1,2} & o_{A1,2,2} \end{bmatrix} \begin{bmatrix} t_{A1,1} & 0 \\ 0 & t_{A1,2} \end{bmatrix} \oplus$$

$$([D_{L,1} \quad D_{L,2}] \oplus [D_{P,1} \quad D_{P,2}]) \quad \begin{bmatrix} p_{J1,1} & o_{J1,1,1} \\ p_{J1,1} & o_{J1,2,1} \\ p_{J1,1} & o_{J1,3,1} \\ p_{J1,1} & o_{J1,4,1} \end{bmatrix} \quad \begin{bmatrix} p_{J1,2} & o_{J1,2,2} \\ p_{J1,2} & o_{J1,3,2} \\ p_{J1,2} & o_{J1,3,2} \\ p_{J1,2} & o_{J1,3,2} \end{bmatrix} \begin{bmatrix} t_{J1,1} & 0 \\ 0 & t_{J1,2} \end{bmatrix})$$

$$p_{J2,1} \begin{pmatrix} o_{J2,1,1} \\ o_{J2,3,1} \\ 0 & p_{J2,2} \begin{pmatrix} o_{J2,2,2} \\ o_{J2,2,2} \\ 0 & p_{J2,2} \end{pmatrix} \begin{bmatrix} t_{J2,1} & 0 \\ 0 & t_{J2,2} \end{bmatrix}) \quad p_{A1,1} = p_{J1,1} = p_{J2,1}$$

$$[p_{A2,1}(o_{A2,1,1}) \quad p_{A2,2}(o_{A2,1,2}) \\ p_{A2,1}(o_{A2,2,1}) \quad p_{A2,2}(o_{A2,2,2}) \end{bmatrix} \begin{bmatrix} t_{A2,1} & 0 \\ 0 & t_{A2,2} \end{bmatrix} \quad p_{A1,2} = p_{J1,2} = p_{J2,2}$$

Query Optimization by DOT for TPC-H Q17 in Hive

$$Q17 = (\vec{D}_{P,L}O_{A1, J1}T_{A1, J1})O'_{J2}T_{J2})O_{A2}T_{A2}$$

$$= (([D_{L,1} \ D_{L,2} \ D_{P,1} \ D_{P,2}] \begin{bmatrix} p_1(o_{A1,1,1}, o_{J1,1,1}) & p_2(o_{A1,1,2}, o_{J1,1,2}) \\ p_1(o_{A1,2,1}, o_{J1,2,1}) & p_2(o_{A1,2,2}, o_{J1,2,2}) \\ p_1(o_{J1,3,1}) & p_2(o_{J1,3,2}) \\ p_1(o_{J1,4,1}) & p_2(o_{J1,3,2}) \end{bmatrix} \begin{bmatrix} (t_{A1,1}, t_{J1,1}) & 0 \\ 0 & (t_{A1,2}, t_{J1,2}) \end{bmatrix} \begin{bmatrix} (o_{J2,1,1}, o_{J2,3,1}) & 0 \\ 0 & (o_{J2,2,2}, o_{J2,4,2}) \end{bmatrix} \begin{bmatrix} t_{J2,1} & 0 \\ 0 & t_{J2,2} \end{bmatrix} \begin{bmatrix} p_{A2,1}(o_{A2,1,1}) & p_{A2,2}(o_{A2,1,2}) \\ p_{A2,1}(o_{A2,2,1}) & p_{A2,2}(o_{A2,2,2}) \end{bmatrix} \begin{bmatrix} t_{A2,1} & 0 \\ 0 & t_{A2,2} \end{bmatrix}$$

It is a diagonal Matrix.

Merge this DOT block into the T matrix of the previous one

Final Form of Query Optimization by DOT for TPC-H Q17 in Hive

$$Q17 = (\vec{D}_{P,L}O_{A1,J1,J2}T_{A1,J1,J2})O_{A2}T_{A2}$$

$$= ([D_{L,1} \quad D_{L,2} \quad D_{P,1} \quad D_{P,2}] \begin{bmatrix} p_1(o_{A1,1,1}, o_{J1,1,1}) & p_2(o_{A1,1,2}, o_{J1,1,2}) \\ p_1(o_{A1,2,1}, o_{J1,2,1}) & p_2(o_{A1,2,2}, o_{J1,2,2}) \\ p_1(o_{J1,3,1}) & p_2(o_{J1,3,2}) \\ p_1(o_{J1,4,1}) & p_2(o_{J1,4,2}) \end{bmatrix} \begin{bmatrix} t_{J2,1}((o_{J2,1,1}, o_{J2,3,1})(t_{A1,1}, t_{J1,1})) \\ 0 & t_{J2,2}((o_{J2,2,2}, o_{J2,4,2})(t_{A1,2}, t_{J2,2})) \end{bmatrix})$$

$$\begin{bmatrix} p_{A2,1}(o_{A2,1,1}) & p_{A2,2}(o_{A2,1,2}) \\ p_{A2,1}(o_{A2,2,1}) & p_{A2,2}(o_{A2,2,2}) \end{bmatrix} \begin{bmatrix} t_{A2,1} & 0 \\ 0 & t_{A2,2} \end{bmatrix}$$

With this optimization, we got more than 2x speedup in our large-scale experiments.

For details, please refer YSmart patched in Hive [ICDCS 2011]

Conclusion

- ☐ DOT is an unified model for big data analytics in distributed systems
- ☐ Its matrix format and related analysis provide
 - A sufficient condition of scalability and fault-tolerance of a processing paradigm
 - A set of optimization rules for applications on various software frameworks with analytical basis
 - A mathematical tool to fairly compare different software frameworks
- ☐ To guide a simulation-based software design for big data analytics
- ☐ A bridging model for execution migration among different software frameworks
- ☐ References: RCFile (ICDE'11), YSmart (ICDCS'11), and DOT (SOCC'11)

What we will do next based on DOT?

☐ A more rigorous math structure to gain more insights

- Other properties of scalability and fault tolerance
- Finding necessary conditions
- Correlating linear algebra theorems to various matrix representations of big data analytics jobs
- A relaxed DOT model

☐ Beyond machine-independent natural parallelism

- Building hidden (implicit) communication mechanisms in DOT
- A DHT-based worker-mapping structure: group communicationrelated workers in a single node or a cluster of neighbor nodes
- Physical node information will be build in the model

☐ A DOT-based cost model

• To guide resource allocations and deployment of large distributed systems under different performance and reliability objectives

叔本华: 抽象的价值在于它的普遍义

- □一切理性知识都是从直观知识中抽象而来的, 这 是一切知识根源。
- □直观是一切真理的源泉,是一切科学的基础。

摘自叔本华(Arthur Schopenhauer, 1788-1860)《主观与客观的世界》(The World as Will and Representation)

Backup

An Algebra for Representing the Dataflow of a job

□ Operand

• Data vectors (a DOT block is also a data vector)

☐ Operations on data vectors

$$\vec{D}_1 = \begin{bmatrix} D_{1,1} & D_{1,2} \end{bmatrix}$$

$$\vec{D}_2 = egin{bmatrix} D_{2,1} & D_{2,2} \end{bmatrix}$$

$$igoplus ec{D}_1 \oplus ec{D}_2 = ig[ec{D}_1 ec{D}_1 ig]$$

$$\bigoplus \quad \vec{D}_1 \oplus \vec{D}_2 = \begin{bmatrix} \vec{D}_1 & \vec{D}_2 \end{bmatrix} = \begin{bmatrix} D_{1,1} & D_{1,2} & D_{2,1} & D_{2,2} \end{bmatrix}$$

$$\biguplus$$
 if $D_{1,1} = D_{2,1}$

$$\biguplus$$
 if $D_{1,1} = D_{2,1}$ $\vec{D}_1 \uplus \vec{D}_2 = \begin{bmatrix} D_{1,1} & D_{1,2} & D_{2,2} \end{bmatrix}$

☐ Operations on DOT blocks

• Two direct-dependent DOT blocks: a DOT block is the data vector (input) of another DOT block

$$(\vec{D}_1O_1T_1)O_2T_2$$

Two independent DOT blocks

$$ec{D}_1O_1T_1\oplusec{D}_2O_2T_2$$

$$\vec{D}_1 O_1 T_1 \oplus \vec{D}_2 O_2 T_2 \qquad \vec{D}_1 O_1 T_1 \uplus \vec{D}_2 O_2 T_2$$

Optimization Rules

- ☐ Substituting Expensive Remote Data Transfers with Low-Cost Local Computing
 - Unnecessary data transfers are reduced
- ☐ Exploiting Sharing Opportunities
 - Sharing common chunks
 - Unnecessary data scan is eliminated
 - Sharing common operations
 - Unnecessary operations on the data is eliminated
- ☐ Exploiting the Potential of Parallelism
 - Unnecessary data materialization is eliminated
- ☐ All of these optimization opportunities are explicitly represented by the matrix representation
 - See our paper for details

Substituting Expensive Remote Data Transfers with Low-Cost Local Computing

☐ Substituting Expensive Remote Data Transfers with Low-Cost Local Computing

• In a DOT block, transfer computation in the matrix O (or T) to matrix T (or O) to reduce the amount of intermediate results

$$\begin{bmatrix} D_{1,1} & D_{1,2} \end{bmatrix} \begin{bmatrix} o_{1,1,1} & o_{1,1,2} \\ o_{1,2,1} & o_{1,2,2} \end{bmatrix} \begin{bmatrix} t_{1,1} & 0 \\ 0 & t_{1,2} \end{bmatrix}.$$
e.g. $t_{1,1}$ is summation operation \sum

$$\begin{bmatrix} D_{1,1} & D_{1,2} \end{bmatrix} \begin{bmatrix} \sum (o_{1,1,1}) & o_{1,1,2} \\ \sum (o_{1,2,1}) & o_{1,2,2} \end{bmatrix} \begin{bmatrix} \sum & 0 \\ 0 & t_{1,2} \end{bmatrix}.$$

Exploiting Sharing Opportunities

☐ Sharing common chunks

• Unnecessary data scan is eliminated

$$(\begin{bmatrix} A & B \end{bmatrix} \oplus \begin{bmatrix} A & C \end{bmatrix}) \begin{bmatrix} \alpha & o_{1,2} & 0 & o_{1,4} \\ o_{2,1} & o_{2,2} & 0 & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & o_{4,3} & o_{4,4} \end{bmatrix} \begin{bmatrix} \beta & 0 & 0 & 0 \\ 0 & t_2 & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & t_4 \end{bmatrix}$$

$$\begin{bmatrix} A & B & C \end{bmatrix} \begin{bmatrix} \alpha & o_{1,2} & \alpha & o_{1,4} \\ o_{2,1} & o_{2,2} & 0 & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & o_{4,3} & o_{4,4} \end{bmatrix} \begin{bmatrix} \beta & 0 & 0 & 0 \\ 0 & t_2 & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & t_4 \end{bmatrix}$$

Exploiting Sharing Opportunities

☐ Sharing common operations

• Unnecessary operations on the data is eliminated

$$\begin{bmatrix} A & B & C \end{bmatrix} \begin{bmatrix} \alpha & o_{1,2} & \alpha & o_{1,4} \\ o_{2,1} & o_{2,2} & 0 & 0 \\ 0 & 0 & o_{4,3} & o_{4,4} \end{bmatrix} \begin{bmatrix} \beta & 0 & 0 & 0 \\ 0 & t_2 & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & t_4 \end{bmatrix}$$

$$\begin{bmatrix} A & B & C \end{bmatrix} \begin{bmatrix} \alpha & o_{1,2} & \alpha & o_{1,4} & \beta & 0 & 0 \\ o_{2,1} & o_{2,2} & 0 & 0 & 0 & 0 \\ o_{4,3} & 0 & o_{4,3} & o_{4,4} & 0 & 0 & t_4 \end{bmatrix}$$

Exploiting the Potential of Parallelism

☐ Merge two chained DOT blocks

- The condition: if either DOT block's matrix O is a diagonal matrix
- Unnecessary data materialization is eliminated

$$\begin{bmatrix} D_1 & D_2 \end{bmatrix} \begin{bmatrix} o_{1,1,1} & o_{1,1,2} \\ o_{1,2,1} & o_{1,2,2} \end{bmatrix} \begin{bmatrix} t_{1,1} & 0 \\ 0 & t_{1,2} \end{bmatrix} \begin{bmatrix} o_{2,1,1} & 0 \\ 0 & o_{2,2,2} \end{bmatrix} \begin{bmatrix} t_{2,1} & 0 \\ 0 & t_{2,2} \end{bmatrix}$$

$$\begin{bmatrix} D_1 & D_2 \end{bmatrix} \begin{bmatrix} o_{1,1,1} & o_{1,1,2} \\ o_{1,2,1} & o_{1,2,2} \end{bmatrix} \begin{bmatrix} t_{2,1}(o_{2,1,1}(t_{1,1})) & 0 \\ 0 & t_{2,2}(o_{2,2,2}(t_{1,2})) \end{bmatrix} t_{2,2}$$

Exploiting Sharing Opportunities

☐ Sharing common chunks

• Unnecessary data scan is eliminated

$$(\begin{bmatrix} A & B \end{bmatrix} \oplus \begin{bmatrix} A & C \end{bmatrix}) \begin{bmatrix} \alpha & o_{1,2} & 0 & o_{1,4} \\ o_{2,1} & o_{2,2} & 0 & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & o_{4,3} & o_{4,4} \end{bmatrix} \begin{bmatrix} \beta & 0 & 0 & 0 \\ 0 & t_2 & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & t_4 \end{bmatrix}$$

$$\begin{bmatrix} A & B & C \end{bmatrix} \begin{bmatrix} \alpha & o_{1,2} & \alpha & o_{1,4} \\ o_{2,1} & o_{2,2} & 0 & 0 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & o_{4,3} & o_{4,4} \end{bmatrix} \begin{bmatrix} \beta & 0 & 0 & 0 \\ 0 & t_2 & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & t_4 \end{bmatrix}$$