DOT: — M FF R Ab:

1RSI 5K 1 20 A 2

TKBE IR

56 E R AR ST K=

Team Members

Yin Huail, Rubao Leel,
Simon Zhang?, Cathy H. Xia?

Dept. of Computer Sci. & Eng., The Ohio State University

2Department of Computer Science, Cornell University

The Evolution of Computing

d Centralized computing era
* The Von Neumann model (1945): A baseline model to guide

centralized computer architecture design

dParallel computing era

* The Bulk Synchronous Parallel (BSP) model (I.eslie Valiant,
1990): A “scale-up” model to guide parallel architecture
improvement and software optimization software for HPC

J“The data center as a computer” era

* Only Software frameworks for big data analytics available

— MapReduce, Hadoop, Dryad and several others
* No models yet

Von Neumann Model: Computer Architecture Design

Before Von Neumann’s computer
project, several operational
computers were built:

* 1936, Zuse’s 7.1 (1** binary ditital
computer) in Germany

* 1937, Atanasoff and Berry’s ABC (1*

electronic digital computer) in Iowa
State University

Von Neumann model) 1943, ENIAC based on ABC in UPenn

*a memory containing both dataand The most important milestone Von
instructions

Neumann left 1s his paper: “First

- a computing unit for both arithmetic Draft of a Report to the EDVAC?,
and logical operations 1945. (a consulting report to US
Army) before his IAS Computer

« a control unit to interpret

instructions and make actions Pro]ect

Superstep i

BSP is a Scale-Up Model for HPC

Barrier

O A parallel architecture model

* Key parameters: p, node speed, message
speed, synch latency

* Low ratio of computing/message is key

d A programming model
* Reducing message/synch latency is key:

— Opvetlapping computing and communication
— Exploiting locality

— Load balance to minimize synch latency

J A cost model

¢ Combining both hardware/software
parameters, we can predict execution time

[BSP does not support
* Data-intensive applications, big data
* hardware independent performance

* sustained scalability and high throughput
5

Scale-out is the Foundation for Big Data Analytics

1 Scale-out = sustained throughput growth as # nodes grows
* MR processed 1 PB data in 6h 2m on 4000 nodes in 11/2008
* MR processed 10 PB in 6 h 27 m on 8000 nodes 9/2011 (VLDB’11)

* The data is not movable after it is placed in a system

d Existing big data software is in a scale-out mode by
* Focusing on scalability and fault-tolerance in large systems

* Provide a easy-to-programming environment

1 Effectively responds urgent big data challenges
* Parallel databases with limited scalability cannot handle big data
* Big data demands a large scope of data analytics
* Traditional database business models are not atfordable

* Scale-out model is required for big data analytics

Existing Software Practice for Big Data Analytics

Apps oo0o-loeoo.-

Frameworks

d For a given framework, is it scalable and fault-tolerant?
* What is the basis and principle of scalability and fault-tolerance ?

JA unified model for big data analytics is needed
® Define a common distributed environment

* Abstract the processing paradigm (basic behaviors of computing
and communication) in a scalable and fault-tolerant manner
(sufficient condition)

Outline

JThe DOT Model
(General Optimization Rules

L Effectiveness of the DOT Model: Case Studies

* Compare MapReduce and Dryad
* Query optimization through the DOT model

J Conclusion

An Overview of DOT Model

ADOT is represented by
e D: distributed data sets

* O: concurrent data processing operations

e T: data transformations

JThe DOT model consists three components to
describe a big data analytics job

2: A composite DOT block

1: An elementary DOT block o
(an extended building block)

(a root building block)

11

An Overview of DOT Model

ADOT is represented by
e D: distributed data sets

* O: concurrent data processing operations

e T: data transformations

JThe DOT model consists three components to
describe a big data analytics job

3: A method to describe execution/dataflow DOT blocks.

12

An Elementary DOT block

Phase 2:

1 worker collects all intermediate
results and transforms them to final
results (based on operator t)

Phase 1:

n workers perform concurrent
operations (operator 0, to 0,).

No dependency among workers

Data is divided into n sub-datasets
(D, to D,) and distributed among

workers. We call a sub-dataset a
chunk

A scale-out action: a Composite DOT block

J An elementary DOT is a starting point of scale-out

* The # data sets can be processed by multi-groups of workers

— to maximize parallelism. e.g. calculate the sum of odd and even
numbers from a data set: two concurrent groups of » workers

* The size of intermediate results can be distributed

— The intermediate data is too large to fit into a single worker

J A composite DOT block is created

* Multiple independent elementary DOT blocks are organized to
form a composite DOT block

A Composite DOT block

m independent elementary DOT blocks
are organized as a composite DOT block

15

DOT Expression: a Representation of Dataflow

d Basic Functions and Operators

Operands: input and output data vectors

The data vector result of a DOT block can be the input
vector of another DOT block

0;(D;): in an elementary DOT block, apply operator 0; on
chunk D; and return the transformed chunk

||1(0z(D 1)) : in an elementary DOT block, collect # chunks to
form a data collection of (01(D1),- -, 0n(Dy))

Ul(D OiT5) ; form a composite DOT block from multiple
elementary DOT block

e (B : form a data vector from operands

e [H : form a data vector and remove duplicated chunks

The Matrix Representation

D-layer O-layer T-layer
01,1 || 01,2 or| [t1 O -+ 0]
02,1 || 02,2 o2mf| |0 a2 0
[Dl D2 Dn] ...:.........: I S
OnlonQ Onm, _00 tm_
iR o
n n n 0] |to 0
(o) Oeam) - Uewmon](l 7] |
0] |0 bl

 Three benefits of the matrix representation

* Concurrent data processing and data movement are explicitly
represented by the “matrix multiplication”

* The fact that no dependency among workers in O-layer/T-
layer is explicitly represented (column/row workers)

* The optimization opportunities are explicitly represented
(talk about it latter)

Matrix Representation of an Elementary DOT Block

J A data set is represented by a data vector
T LIN |
D, D, D,

J'The elementary DOT block

18

Matrix Representation of a Composite DOT Block

(1 The composite DOT block

A Big Data Analytics Job

A Dataflow

* Described by the combination of a specific or non-
specific numbers of elementary /composite DOT

blocks

Jd'Two supporting components of the dataflow
* Global Information
— Lightweight global information, e.g. job configurations
* Halting conditions
— Used to determine under what conditions a job will stop

— Have to be specified jobs described by a non-specific
numbers of DOT blocks

A DOT Expression for Multiple Composite Blocks

((D101Ty & DyO5T)O4Ty @ D3O5T4) 05T

- T T S
f_//’_ TN N\ N

S)

Global Information)

e,

It Vs
,-‘ fﬁh-——_ _rﬂ’dﬂ—___f-. hh
) " A ",
i A ':
DOT Block 1< ¥
R DOT Block 4
VA OT Bloc "
DOT Block 2 DOT Block 5
.
DOT Block 3

21

A DOT Expression for an Iterative Process

— i
/_/— N

'.‘-_'

D(t)

DOT Block

(Tiubal Informa

e

-
.
#
o
&
S R -
o

)
tion

AN

\

D(t—1)Ot)T(t)

No

Stop? __._""}—FYES

T T
.,-'—_"; e -

C) . p)
;%__IkHaItlng Condltlon?_>

- — e

Scalability and Fault-tolerance

J'Two different definitions
* Scalability and fault-tolerance of a job

* Scalability and fault-tolerance of a processing paradigm

d'The processing paradigm of the DOT model is
scalable and fault-tolerant (proofs in SOCC’11)

J A sufficient condition:

* a framework can be represented by the DOT model, i.e. any
job of this framework can be represented by the DOT
model => the processing paradigm of this framework 1s
scalable and fault-tolerant

e Proofs in SOCC’11

Outline

1 General Optimization Rules

L Effectiveness of the DOT Model: Case Studies

* Comparison between MapReduce and Dryad
* Query optimization through the DOT model

J Conclusion

24

Optimization Rules

 Substituting Expensive Remote Data Transfers with
Low-Cost Local Computing

* Unnecessary data transfers are reduced

d Exploiting Sharing Opportunities
* Sharing common chunks
— Unnecessary data scan is eliminated

* Sharing common operations

— Unnecessary operations on the data is eliminated

1 Exploiting the Potential of Parallelism

* Unnecessary data materialization is eliminated

 All of these optimization opportunities are explicitly
represented by the DOT matrix representation

25

Exploiting Sharing Opportunities

dSharing common data chunks

* Unnecessary data scan is eliminated

o o012 0 o14] [B O

02,1 02’2 0 0 0 tQ

(A Blela ¢y 0" o oo o
i 0 0 04,3 04’4_ _0 0

 « 01,2 8 01,4- _/8 0

02,1 022 0 0 0 tz

[A B C] 0 0 Q 0 0 O

i 0 0 04,3 04,4_ _0 0

O O O

S O O

Exploiting Sharing Opportunities

JSharing common operations

* Unnecessary operations on the data is eliminated

A B C]

A B (]

8}

021
0

(@

021

_04,3

01,2

02 2
0

01,2

02 2
0

o
0

04,3

\ 4

«
0

04,3

01,4
0

04,4

01,4
0

04 .4

3 0 0
to

0 0
0 0 8
0 0 O

Outline

J Effectiveness of the DOT Model: Case Studies

* Comparison between MapReduce and Dryad
* Query optimization through the DOT model

J Conclusion

28

Representing A Dryad Job by the DOT model
J A Dryad job is represented by a directed acyclic
graph (DAG)

d Represent a Dryad job in the DOT model

* A method based on graph search
* A Dryad job 1s represented by a DOT expression

Representing A Dryad Job by the DOT model

Job :(BU,Nol,QanTl,an
O2,n><4nT2,4n><4n D BU)

03,5n><nT3,n><nO4,n>< 1T4,1 X1

[Michael Isard et al. EuroSys 2007] 30

Representing A Dryad Job by the DOT model

A DOT expression can be executed by Dryad (details in
SOCC’11)

Representing A MapReduce Job by the DOT model

J A MapReduce job

* Map function: o,

* Reduce function: t_4 .

 Partitioning function: p

— p;: get the intermediate results that will be sent to reducer 1

P1 (Omap) e pm(oma'p) t'reduce e 0

| P1 (Omap) T pm(omap)_ i 0 T t'redfu,ce_

A DOT expression can be executed by MapReduce (details

in SOCC’11)

A Comparison between MapReduce and Dryad

JEvery MapReduce/Dryad job can be represented
by the DOT model

» The processing paradigms of MapReduce and
Dryad are scalable and fault-tolerant

JA DOT expression can be executed by
MapReduce/Dryad

» Comparing basic behaviors of computing and
communication (processing paradigm), Dryad
and MapReduce do not have fundamental
difference.

Query Optimization in Hive: TPC-H Q17

d Optimizing the performance of TPC-H Q17 on the
MapReduce framework

lineitem lineitem lineitem
4 MapReduce jobs 2 MapReduce jobs

34

DOT Representation of TPC-H Q17 in Hive

Q17 = ((ﬁLoAlTAl & (ﬁL D BP)OJITJI)OJ2TJ2)OA2TA2
PA1,180A1,1 1)
— D D 3 5Ly @
(([M 0A1,2,1) tA1,2]

(|[Dr,1 D2 ® |Dp1 Dp,2))

,]) Pa1,17P;1,1=P;3, 1
()

Pa2.1(0421.1) paz22(04a212)| |taza 0 _ _

pa2.1(042.21) Pa22(0422.2) 0 ta2o pA1,2_p11,2_p12,2

35

PJj21 J2,3,1)

Query Optimization by DOT for TPC-H Q17 in Hive

QL7 = (BP,LOAl, 71741, 71)05T52)0 42T 4o

R110A1,1,1,5 0J1,1,1) P2(0A1,1,2, OJ1,1,2)

; p1(0A121, S 1) p2(0A122, 0J122)

— D D l D)&y 9 &y 3 &y

(([L1 L2 Bl L P1(0J1,3,1)) (0J1,3,2)

p1(0J1,4,1) P20 T os
(ta11,t01.1) 0 ((072.1.1,02,3.1) 0
0 (ta1,2,ts1,2) (02,2,2,052,4.2)

_pAQ,l(OAQ,l,l) pA2,2(0A2,1,2 V
PA2,1(042,2,1) Pa22(04222)] | O taz

It is a diagonal Matrix.
Merge this DOT block into the
T matrix of the previous one

36

Final Form of Query Optimization by DOT for TPC-H Q17 in Hive

Q17 :(ﬁP,LOAl, g1, 72741, 71, 72)Oa2T a2

p1(0J1,3,1) P2(0J1,3,2)
P1(0J1,4,1) P2(0J1,4,2)

t72.1((052.1,1,072.3.1)(ta1.1,t01.1))

(Da21(042.11) Paz2(0a21.2)] [taza 0
PA2,1(042,2,1) Pa22(042,2,2) 0 fa22

With this optimization, we got more than 2x speedup in our

large-scale experiments.
For details, please refer YSmart patched in Hive [ICDCS 2011]

P1(0A1,1,1, 0J1,1,1) P2(0A1,1,2= 0J1,1,2)
0 0] 0] 0
:([DL,l Do Dp, DP,2] p1(0a121, 0s1,21) P2(04122, 0J1,2,2)

G t12.9((072.22,009.49) (Ear 2, t22)) |

Conclusion

d DOT is an unified model for big data analytics in
distributed systems

1 Its matrix format and related analysis provide

* A sufficient condition of scalability and fault-tolerance of a
processing paradigm

* A set of optimization rules for applications on various software
frameworks with analytical basis

* A mathematical tool to fairly compare different software
frameworks

1 To guide a simulation-based software design for big data
analytics

d A bridging model for execution migration among different
software frameworks

U References: RCFile (ICDE’11), YSmart (ICDCS’11), and
DOT (SOCC11)

What we will do next based on DOT?

d A more rigorous math structure to gain more insights
* Other properties of scalability and fault tolerance
* Finding necessary conditions

* Correlating linear algebra theorems to various matrix representations
of big data analytics jobs

e A relaxed DOT model

d Beyond machine-independent natural parallelism
* Building hidden (implicit) communication mechanisms in DOT

* A DHT-based worker-mapping structure: group communication-
related workers in a single node or a cluster of neighbor nodes

* Physical node information will be build in the model

J A DOT-based cost model

* To guide resource allocations and deployment of large distributed
systems under different performance and reliability objectives

39

WAAE: FRBOMEE T ErIEREX

o1

Q—{IEEARAEMNERARPHRMER, X
& —VIRRRIE.

QERZ—UEENIER, E2—TUIRFREA.

i EMAHE (Arthur Schopenhauer, 1788-1860) (XM 5%
MEIHFEY (The World as Will and Representation)

Thank You!

Backup

An Algebra for Representing the Dataflow of a job

d Operand
* Data vectors (a DOT block is also a data vector)

d Operations on data vectors
Dy =[Di1 D] Dy = [D21 Doy

@ 51 @52 = [51 52] = [D1,1 D12 Day D2,2]

4 i Di1=Da; Dy w Dy = [D1,1 D o D2,2]

d Operations on DOT blocks

* Two direct-dependent DOT blocks: a DOT block is the data
vector (input) of another DOT block

(5101T1)02T2

* 'Two independent DOT blocks
ﬁlOlTl D EQOQTQ ﬁlOlTl W, ﬁQOQTQ

Optimization Rules

 Substituting Expensive Remote Data Transfers with
Low-Cost Local Computing

* Unnecessary data transfers are reduced

d Exploiting Sharing Opportunities
* Sharing common chunks
— Unnecessary data scan is eliminated
* Sharing common operations
— Unnecessary operations on the data is eliminated

U Exploiting the Potential of Parallelism
* Unnecessary data materialization 1s eliminated

1 All of these optimization opportunities are explicitly
represented by the matrix representation

* See our paper for details

Substituting Expensive Remote Data Transfers

with Low-Cost Local Computing

d Substituting Expensive Remote Data Transfers
with Low-Cost Local Computing

* In a DOT block, transfer computation in the matrix O
(or T) to matrix T (or O) to reduce the amount of
intermediate results

0111 0112 |tia O
[D1,1 D1,2] 0 .l
01,2,1 01,22 1,2

' e.g. t; 1 1s summation opetration >

(D11 Diy] F(Om,l) 01,1,2] [2 o].

Y (0121) 01220 tio

44

Exploiting Sharing Opportunities

dSharing common chunks

* Unnecessary data scan is eliminated

o o012 0 o14] [B O

02,1 02’2 0 0 0 tQ

(A Blela ¢y 0" o oo o
i 0 0 04,3 04’4_ _0 0

 « 01,2 8 01,4- _/8 0

02,1 022 0 0 0 tz

[A B C] 0 0 Q 0 0 O

i 0 0 04,3 04,4_ _0 0

O O O

S O O

Exploiting Sharing Opportunities

JSharing common operations

* Unnecessary operations on the data is eliminated

A B C]

A B (]

8}

021
0

(@

021

_04,3

01,2

02 2
0

01,2

02 2
0

o
0

04,3

\ 4

«
0

04,3

01,4
0

04,4

01,4
0

04 .4

3 0 0
to

0 0
0 0 8
0 0 O

46

Exploiting the Potential of Parallelism

dMerge two chained DOT blocks

* The condition: if either DOT block’ matrix O i1s a
diagonal matrix

* Unnecessary data materialization is eliminated
D, Dy 01,11 01,12 |[t1,1 O | o211 0 toq1 0
! : 0121 0122|| 0 ti2 0 0222 | 0 t22

\ 4

0 0 to 1(0 01J¢ 0
(D, D] [1,1,1 1,1,2”2,1(2,1,1(41,1)) 2.1]t]

01,2,1 01,22 0 t2,2(02,2,9(t02)) [f2,2

Exploiting Sharing Opportunities

dSharing common chunks

* Unnecessary data scan is eliminated

o o012 0 o14] [B O

02,1 02’2 0 0 0 tQ

(A Blela ¢y 0" o oo o
i 0 0 04,3 04’4_ _0 0

 « 01,2 8 01,4- _/8 0

02,1 022 0 0 0 tz

[A B C] 0 0 Q 0 0 O

i 0 0 04,3 04,4_ _0 0

O O O

S O O

