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Analytics and Real-time
what and why



Facebook Insights

• Use cases

▪ Websites/Ads/Apps/Pages

▪ Time series

▪ Demographic break-downs

▪ Unique counts/heavy hitters

• Major challenges

▪ Scalability

▪ Latency



Analytics based on Hadoop/Hive

• 3000-node Hadoop cluster

• Copier/Loader: Map-Reduce hides machine failures

• Pipeline Jobs: Hive allows SQL-like syntax

• Good scalability, but poor latency! 24 – 48 hours.
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How to Get Lower Latency?

• Small-batch Processing

▪ Run Map-reduce/Hive every hour, every 

15 min, every 5 min, …

▪ How do we reduce per-batch 

overhead?

• Stream Processing

▪ Aggregate the data as soon as it arrives

▪ How to solve the reliability problem?



Decisions

• Stream Processing wins!

• Data Freeway

▪ Scalable Data Stream Framework

• Puma

▪ Reliable Stream Aggregation Engine



Data Freeway
scalable data stream



Scribe

• Simple push/RPC-based logging system

• Open-sourced in 2008.   100 log categories at that time.

• Routing driven by static configuration.
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• 9GB/sec at peak, 10 sec latency, 2500 log categories

Data Freeway
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Calligraphus

• RPC  File System

▪ Each log category is represented by 1 or more FS directories

▪ Each directory is an ordered list of files

• Bucketing support

▪ Application buckets are application-defined shards.

▪ Infrastructure buckets allows log streams from x B/s to x GB/s

• Performance

▪ Latency: Call sync every 7 seconds

▪ Throughput: Easily saturate 1Gbit NIC



Continuous Copier

• File System  File System

• Low latency and smooth network usage

• Deployment

▪ Implemented as long-running map-only job

▪ Can move to any simple job scheduler

• Coordination

▪ Use lock files on HDFS for now

▪ Plan to move to Zookeeper



PTail

• File System  Stream (  RPC )

• Reliability

▪ Checkpoints inserted into the data stream

▪ Can roll back to tail from any data checkpoints

▪ No data loss/duplicates
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Channel Comparison

Push / RPC Pull / FS

Latency 1-2 sec 10 sec

Loss/Dups Few None

Robustness Low High

Complexity Low High
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Puma
real-time aggregation/storage



Overview

• ~ 1M log lines per second, but light read

• Multiple Group-By operations per log line

• The first key in Group By is always time/date-related

• Complex aggregations: Unique user count, most frequent 

elements
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MySQL and HBase: one page

MySQL HBase

Parallel Manual sharding Automatic

load balancing

Fail-over Manual master/slave 

switch

Automatic

Read efficiency High Low

Write efficiency Medium High

Columnar support No Yes



Puma2 Architecture

• PTail provide parallel data streams

• For each log line, Puma2 issue “increment” operations to 

HBase.  Puma2 is symmetric (no sharding).

• HBase: single increment on multiple columns
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Puma2: Pros and Cons

• Pros

▪ Puma2 code is very simple.

▪ Puma2 service is very easy to maintain. 

• Cons

▪ “Increment” operation is expensive.

▪ Do not support complex aggregations.

▪ Hacky implementation of “most frequent elements”.

▪ Can cause small data duplicates.



Improvements in Puma2

• Puma2

▪ Batching of requests.  Didn‟t work well because of long-tail distribution.

• HBase

▪ “Increment” operation optimized by reducing locks.

▪ HBase region/HDFS file locality; short-circuited read.

▪ Reliability improvements under high load.

• Still not good enough!



Puma3 Architecture

• Puma3 is sharded by aggregation key.

• Each shard is a hashmap in memory.

• Each entry in hashmap is a pair of

an aggregation key and a user-defined aggregation.

• HBase as persistent key-value storage.
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Puma3 Architecture

• Write workflow

▪ For each log line, extract the columns for key and value.

▪ Look up in the hashmap and call user-defined aggregation
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Puma3 Architecture

• Checkpoint workflow

▪ Every 5 min, save modified hashmap entries,

PTail checkpoint to HBase

▪ On startup (after node failure), load from HBase

▪ Get rid of items in memory once the time window has passed
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Puma3 Architecture

• Read workflow

▪ Read uncommitted: directly serve from the in-memory hashmap; load 

from Hbase on miss.

▪ Read committed: read from HBase and serve.
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Puma3 Architecture

• Join

▪ Static join table in HBase.

▪ Distributed hash lookup in user-defined function (udf).

▪ Local cache improves the throughput of the udf a lot.
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Puma2 / Puma3 comparison

• Puma3 is much better in write throughput

▪ Use 25% of the boxes to handle the same load.

▪ HBase is really good at write throughput.

• Puma3 needs a lot of memory

▪ Use 60GB of memory per box for the hashmap

▪ SSD can scale to 10x per box.



Puma3 Special Aggregations

• Unique Counts Calculation

▪ Adaptive sampling

▪ Bloom filter (in the plan)

• Most frequent item (in the plan)

▪ Lossy counting

▪ Probabilistic lossy counting



PQL – Puma Query Language
• CREATE INPUT TABLE t („time', 

„adid‟, „userid‟);

• CREATE VIEW v AS

SELECT *, udf.age(userid)

FROM t

WHERE udf.age(userid) > 21

• CREATE HBASE TABLE h …

• CREATE LOGICAL TABLE l …

• CREATE AGGREGATION „abc‟

INSERT INTO l (a, b, c)

SELECT 

udf.hour(time),

adid,

age,

count(1),

udf.count_distinc(userid)

FROM v

GROUP BY

udf.hour(time),

adid,

age;



Future Works
challenges and opportunities



Future Works

• Scheduler Support

▪ Just need simple scheduling because the work load is continuous

• Mass adoption

▪ Migrate most daily reporting queries from Hive

• Open Source

▪ Biggest bottleneck:  Java Thrift dependency

▪ Will come one by one



Similar Systems

• STREAM from Stanford

• Flume from Cloudera

• S4 from Yahoo

• Rainbird/Storm from Twitter

• Kafka from Linkedin



Key differences

• Scalable Data Streams

▪ 9 GB/sec with < 10 sec of latency

▪ Both Push/RPC-based and Pull/File System-based

▪ Components to support arbitrary combination of channels

• Reliable Stream Aggregations

▪ Good support for Time-based Group By, Table-Stream Lookup Join

▪ Query Language:    Puma : Realtime-MR = Hive : MR

▪ No support for sliding window, stream joins
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