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Overview
● A quick look at the latest HBase developments
● Focus on coprocessors, moving computation to the 

data
● Observers: triggers on steroids
● Endpoints: custom RPC servers

● HBase security, a coprocessor case study
● Authentication: Kerberose + DIGEST-MD5 authentication 

using signed tokens
● Authorization via AccessController coprocessor

– Endpoint for maintaining ACLs
– Observer for access control checks
– Endpoint for  obtaining authentication tokens 

● Securing ZooKeeper
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HBase is Rapidly Evolving
● 0.92 release status

● RC coming very soon
● Support latest Hadoop versions: 0.20.205
● Distributed WAL splitting
● Region Server graceful decommission
● Coprocessors
● Security
● Many more internal improvements, bug fixes and doc 

updates
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Coprocessors
● Inspired by Bigtable coprocessors, described in Jeff 

Dean's LADIS '09 keynote talk
● Arbitrary code that runs at each tablet in tablet servers
● High-level call interface for clients
● Calls addressed to rows or ranges of rows, mapped to 

locations and parallelized by client library
● Automatic scaling and request routing for application logic 

along with data
● For HBase, a whole new interface to your data and 

how it's stored!
● Embed custom processing with the data
● Enhance or override behavior of core code
● Define and export custom RPC protocols
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Use Cases
● Use case 1: column aggregation: 

● SQL-like: select count(*) from usertable
● Option 1: Client side scan
● Option 2: a map/reduce job
● Option 3: use a counter
● Option 4: a coprocessor

● Use case 2: customize WAL behavior
● Ignore certain columns to WAL

● Use case 3: security
● Check user privilege before a request, at region server
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Observers
● Like database triggers: provide event-based hooks 

for interacting with normal operations
● RegionObserver

● CRUD or DML type operations
● Pre/post-hooks for Get, Put, Scan, etc operations on table 

data
● Can append, substitute it's own results for response to 

client
● Can override normal processing of requests

● MasterObserver
● DDL or metadata operations and cluster administration

● WALObserver
● Write-ahead-log appending and restoration
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Observers: Execution
● Multiple observers can be chained together
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Endpoints: Custom RPC APIs 
● Like stored procedures: custom RPC methods 

called explicitly with parameters
● Loaded per table-region

● Custom code executes in context with region data
● Only supported on Region Servers
● Clients call APIs over a single row or a row range

● Framework translates row keys to region locations
● Parallel execution
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Endpoints: Call Routing
● Clients call RPC methods defined in a custom 

interface
● HTable.coprocessorExec() call defines a row range
● Ranges spanning regions are split and parallelized
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Coprocessor Management
● Class loading:

● Load from configuration: 
– class names as HBase configurations
– will be picked up when region/master is opened, as default 

coprocessors
● Load from shell: only for non-global, region level 

coprocessors
● Show loaded coprocessors from Web UI and shell 
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Committed Projects
● Security

● AccessController Observer intercepts calls and 
performs authorization checks on calling client

● TokenProvider exposes custom API to obtain 
authentication tokens when secure RPC is loaded

● Aggregate operations
● Simple aggregate functions can be executed over table 

data using custom APIs
● Functions exposed using a custom RPC protocol
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Ongoing and Future Possibilities
● HBASE-3529: Embedded search

● RegionObserver updates embedded Lucene indexes 
on data changes

● Custom protocol provides search methods
● Parallel computation framework

● Hadoop MapReduce API (mappers, reducers, 
partitioners, intermediates) but parallel region 
MapReduce ?

● Server-side dynamic scripting execution
● Embedded JRuby scriptlets for queries or custom 

processing
● Eventually consistent secondary indexing
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Need to Improve
● Code weaving:

● Allow arbitrary code execution right now
● Use a rewriting framework like ASM to weave in policies 

at load time
● Improve fault isolation and system integrity protections
● Wrap heap allocations to enforce limits
● Monitor CPU time
● Reject APIs considered unsafe

● Documentation!
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Security: A Case Study
● A bit of background

● No real security in Hadoop 0.20.2 and prior
– User impersonation trivial
– No mutual client/server authentication
– File permission enforcement assumes good actors
– Instead clusters secured at the perimeter

● Secure Hadoop (0.20.205) made secure HBase possible
– Strong authentication using Kerberos
– Mutual authentication of RPC connections
– Data isolation at HDFS level
– Multiple groups can share the same cluster
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Security: Overview
● Target Application

● User isolation (control over your data)
● Multi-tenancy: private and public cloud

● Goals
● Strong authentication of HBase clients
● Mutual authentication of RPC connections
● User data is private unless access has been granted
● Access to data can be granted with table, column family, 

or column qualifier granularity
● Simple administration (relatively!)

● Non-Goals
● Row-level or per value (cell) ACLs
● Push down of file ownership to HDFS
● Full Role Based Access Control
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Security: Implementation
● Secure RPC

● Separate loadable SecureRPCEngine
● Provides SASL authentication of clients

– Kerberos/GSSAPI authentication
– DIGEST-MD5 authentication using signed tokens for Map 

Reduce
● Authorization of all operations

● Simple access control lists
– READ, WRITE, EXEC, CREATE, ADMIN permissions

● Permissions grantable at table, column family, and 
column qualifier granularity

● Supports user based assignment
● Secure ZooKeeper

● SASL based authentication using Kerberos
● Uses existing ZooKeeper ACLs
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Security: AccessController
● Heart of HBase security
● Access Control Lists (ACLs)

● AccessControllerProtocol exposes RPC calls to 
update and query stored user permissions

● ZooKeeper listeners synchronize ACL changes 
throughout the cluster

● Authorization
● RegionObserver implementation mediates data 

operations (like DML)
● MasterObserver implementation mediates metadata 

operations (like DDL)
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AccessController as Endpoint
● Implements AccessControllerProtocol

public interface AccessControllerProtocol
    extends CoprocessorProtocol {

  /** Add a new permision for a user */
  boolean grant(byte[] user, TablePermission permission)
      throws IOException;

  /** Remove a currently granted permisson */
  boolean revoke(byte[] user, TablePermission permission)
      throws IOException;

  /** Return the currently granted permissions for a table */
  List<UserPermission> getUserPermissions(byte[] tableName)
      throws IOException;
}
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AccessController as Endpoint
● Clients call AccessControllerProtocol 

methods for updates
// .META. table stores ACLs
HTable meta = new HTable(HConstants.META_TABLE_NAME);

// We use a dynamic proxy to invoke the RPC protocol
AccessControllerProtocol proxy = meta.coprocessorProxy(
    AccessControllerProtocol.class, 
HConstants.EMPTY_START_ROW);

proxy.grant("sampleuser", 
    new TablePermission("mytable", Action.READ, Action.WRITE));

List<UserPermission> perms = 
proxy.getUserPermissions("mytable");
// now includes an entry for "sampleuser"

● Wrapped in shell already
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AccessController: Authorization
● Implements RegionObserver and MasterObserver

● preXXX() methods perform access-control checks before 
allowing processing to continue

/** Called prior to normal execution of a Get operation */
public void preGet(final ObserverContext<~> ctx,
   final Get get, final List<KeyValue> result)
throws IOException {

  if (!permissionGranted(TablePermission.Action.READ, ctx,
      get.getFamilyMap())) {
    throw new AccessDeniedException(
        "Insufficient permissions (table=" + getTableName(ctx)
        + ", action=READ)");
  }
}
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AccessController: Authorization
● AccessController.preGet() checks for 

authorization of client credentials
● failure generates AccessDeniedException
● success continues through normal processing
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Secure ZooKeeper
● ZooKeeper plays a critical role in HBase cluster 

operations and in the security implementation
● Root catalog table location
● Region assignment
● Server "liveness"
● Synchronizes ACLs throughout cluster
● Synchronizes secret key rolling for token authentication

● Needs strong security or it becomes a weak point 
● Kerberos-based client authentication
● Znode ACLs enforce SASL authenticated access for 

sensitive data



23

Secure ZooKeeper: RPC
● SASLAuthenticationProvider supports 

Kerberos authentication via GSSAPI
● LoginThread on client periodically refreshes 

credentials
● Clients can fallback to unauthenticated access (if 

allowed)
● Supports mixed usage of a single ZooKeeper cluster by 

secure, and unsecured clients
● ZooKeeper ACLs can still restrict sensitive znode access 

to authenticated users
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Secure ZooKeeper: ACLs
● znodes needed for client operations are public
● znodes critical to cluster operation and security are 

private
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Coprocessor and Security 
Feature Status
● All code has submitted to HBase, ZooKeeper

● HBase 0.92
– HBASE-2000: Coprocessor umbrella
– HBASE-3025: Coprocessor based access control
– HBASE-2742: Provide strong authentication with a secure RPC 

engine
– etc.

● Zookeeper 3.4: 
– ZOOKEEPER-938: Support Kerberos authentication of clients

● Need more documentation and blog posts on 
getting it running
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For More Information
● HBase Coprocessors, by Mingjie Lai

http://hbaseblog.com/2010/11/30/hbase-coprocessors/

● HBase Token Authentication
http://wiki.apache.org/hadoop/Hbase/HBaseTokenAuthentication

● Hadoop Security Design
http://github.com/trendmicro/hbase/tree/security
 

http://hbaseblog.com/2010/11/30/hbase-coprocessors/
http://github.com/trendmicro/hbase/tree/security
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Questions?

Thank You
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