
HBase Coprocessors and Security
Mingjie Lai, Apache Incubator Flume Committer,

Software Engineer at Trend Micro
mlai@apache.org

2

Overview
● A quick look at the latest HBase developments
● Focus on coprocessors, moving computation to the

data
● Observers: triggers on steroids
● Endpoints: custom RPC servers

● HBase security, a coprocessor case study
● Authentication: Kerberose + DIGEST-MD5 authentication

using signed tokens
● Authorization via AccessController coprocessor

– Endpoint for maintaining ACLs
– Observer for access control checks
– Endpoint for obtaining authentication tokens

● Securing ZooKeeper

3

HBase is Rapidly Evolving
● 0.92 release status

● RC coming very soon
● Support latest Hadoop versions: 0.20.205
● Distributed WAL splitting
● Region Server graceful decommission
● Coprocessors
● Security
● Many more internal improvements, bug fixes and doc

updates

4

Coprocessors
● Inspired by Bigtable coprocessors, described in Jeff

Dean's LADIS '09 keynote talk
● Arbitrary code that runs at each tablet in tablet servers
● High-level call interface for clients
● Calls addressed to rows or ranges of rows, mapped to

locations and parallelized by client library
● Automatic scaling and request routing for application logic

along with data
● For HBase, a whole new interface to your data and

how it's stored!
● Embed custom processing with the data
● Enhance or override behavior of core code
● Define and export custom RPC protocols

5

Use Cases
● Use case 1: column aggregation:

● SQL-like: select count(*) from usertable
● Option 1: Client side scan
● Option 2: a map/reduce job
● Option 3: use a counter
● Option 4: a coprocessor

● Use case 2: customize WAL behavior
● Ignore certain columns to WAL

● Use case 3: security
● Check user privilege before a request, at region server

6

Observers
● Like database triggers: provide event-based hooks

for interacting with normal operations
● RegionObserver

● CRUD or DML type operations
● Pre/post-hooks for Get, Put, Scan, etc operations on table

data
● Can append, substitute it's own results for response to

client
● Can override normal processing of requests

● MasterObserver
● DDL or metadata operations and cluster administration

● WALObserver
● Write-ahead-log appending and restoration

7

Observers: Execution
● Multiple observers can be chained together

8

Endpoints: Custom RPC APIs
● Like stored procedures: custom RPC methods

called explicitly with parameters
● Loaded per table-region

● Custom code executes in context with region data
● Only supported on Region Servers
● Clients call APIs over a single row or a row range

● Framework translates row keys to region locations
● Parallel execution

9

Endpoints: Call Routing
● Clients call RPC methods defined in a custom

interface
● HTable.coprocessorExec() call defines a row range
● Ranges spanning regions are split and parallelized

10

Coprocessor Management
● Class loading:

● Load from configuration:
– class names as HBase configurations
– will be picked up when region/master is opened, as default

coprocessors
● Load from shell: only for non-global, region level

coprocessors
● Show loaded coprocessors from Web UI and shell

11

Committed Projects
● Security

● AccessController Observer intercepts calls and
performs authorization checks on calling client

● TokenProvider exposes custom API to obtain
authentication tokens when secure RPC is loaded

● Aggregate operations
● Simple aggregate functions can be executed over table

data using custom APIs
● Functions exposed using a custom RPC protocol

12

Ongoing and Future Possibilities
● HBASE-3529: Embedded search

● RegionObserver updates embedded Lucene indexes
on data changes

● Custom protocol provides search methods
● Parallel computation framework

● Hadoop MapReduce API (mappers, reducers,
partitioners, intermediates) but parallel region
MapReduce ?

● Server-side dynamic scripting execution
● Embedded JRuby scriptlets for queries or custom

processing
● Eventually consistent secondary indexing

13

Need to Improve
● Code weaving:

● Allow arbitrary code execution right now
● Use a rewriting framework like ASM to weave in policies

at load time
● Improve fault isolation and system integrity protections
● Wrap heap allocations to enforce limits
● Monitor CPU time
● Reject APIs considered unsafe

● Documentation!

14

Security: A Case Study
● A bit of background

● No real security in Hadoop 0.20.2 and prior
– User impersonation trivial
– No mutual client/server authentication
– File permission enforcement assumes good actors
– Instead clusters secured at the perimeter

● Secure Hadoop (0.20.205) made secure HBase possible
– Strong authentication using Kerberos
– Mutual authentication of RPC connections
– Data isolation at HDFS level
– Multiple groups can share the same cluster

15

Security: Overview
● Target Application

● User isolation (control over your data)
● Multi-tenancy: private and public cloud

● Goals
● Strong authentication of HBase clients
● Mutual authentication of RPC connections
● User data is private unless access has been granted
● Access to data can be granted with table, column family,

or column qualifier granularity
● Simple administration (relatively!)

● Non-Goals
● Row-level or per value (cell) ACLs
● Push down of file ownership to HDFS
● Full Role Based Access Control

16

Security: Implementation
● Secure RPC

● Separate loadable SecureRPCEngine
● Provides SASL authentication of clients

– Kerberos/GSSAPI authentication
– DIGEST-MD5 authentication using signed tokens for Map

Reduce
● Authorization of all operations

● Simple access control lists
– READ, WRITE, EXEC, CREATE, ADMIN permissions

● Permissions grantable at table, column family, and
column qualifier granularity

● Supports user based assignment
● Secure ZooKeeper

● SASL based authentication using Kerberos
● Uses existing ZooKeeper ACLs

17

Security: AccessController
● Heart of HBase security
● Access Control Lists (ACLs)

● AccessControllerProtocol exposes RPC calls to
update and query stored user permissions

● ZooKeeper listeners synchronize ACL changes
throughout the cluster

● Authorization
● RegionObserver implementation mediates data

operations (like DML)
● MasterObserver implementation mediates metadata

operations (like DDL)

18

AccessController as Endpoint
● Implements AccessControllerProtocol

public interface AccessControllerProtocol
 extends CoprocessorProtocol {

 /** Add a new permision for a user */
 boolean grant(byte[] user, TablePermission permission)
 throws IOException;

 /** Remove a currently granted permisson */
 boolean revoke(byte[] user, TablePermission permission)
 throws IOException;

 /** Return the currently granted permissions for a table */
 List<UserPermission> getUserPermissions(byte[] tableName)
 throws IOException;
}

19

AccessController as Endpoint
● Clients call AccessControllerProtocol

methods for updates
// .META. table stores ACLs
HTable meta = new HTable(HConstants.META_TABLE_NAME);

// We use a dynamic proxy to invoke the RPC protocol
AccessControllerProtocol proxy = meta.coprocessorProxy(
 AccessControllerProtocol.class,
HConstants.EMPTY_START_ROW);

proxy.grant("sampleuser",
 new TablePermission("mytable", Action.READ, Action.WRITE));

List<UserPermission> perms =
proxy.getUserPermissions("mytable");
// now includes an entry for "sampleuser"

● Wrapped in shell already

20

AccessController: Authorization
● Implements RegionObserver and MasterObserver

● preXXX() methods perform access-control checks before
allowing processing to continue

/** Called prior to normal execution of a Get operation */
public void preGet(final ObserverContext<~> ctx,
 final Get get, final List<KeyValue> result)
throws IOException {

 if (!permissionGranted(TablePermission.Action.READ, ctx,
 get.getFamilyMap())) {
 throw new AccessDeniedException(
 "Insufficient permissions (table=" + getTableName(ctx)
 + ", action=READ)");
 }
}

21

AccessController: Authorization
● AccessController.preGet() checks for

authorization of client credentials
● failure generates AccessDeniedException
● success continues through normal processing

22

Secure ZooKeeper
● ZooKeeper plays a critical role in HBase cluster

operations and in the security implementation
● Root catalog table location
● Region assignment
● Server "liveness"
● Synchronizes ACLs throughout cluster
● Synchronizes secret key rolling for token authentication

● Needs strong security or it becomes a weak point
● Kerberos-based client authentication
● Znode ACLs enforce SASL authenticated access for

sensitive data

23

Secure ZooKeeper: RPC
● SASLAuthenticationProvider supports

Kerberos authentication via GSSAPI
● LoginThread on client periodically refreshes

credentials
● Clients can fallback to unauthenticated access (if

allowed)
● Supports mixed usage of a single ZooKeeper cluster by

secure, and unsecured clients
● ZooKeeper ACLs can still restrict sensitive znode access

to authenticated users

24

Secure ZooKeeper: ACLs
● znodes needed for client operations are public
● znodes critical to cluster operation and security are

private

25

Coprocessor and Security
Feature Status
● All code has submitted to HBase, ZooKeeper

● HBase 0.92
– HBASE-2000: Coprocessor umbrella
– HBASE-3025: Coprocessor based access control
– HBASE-2742: Provide strong authentication with a secure RPC

engine
– etc.

● Zookeeper 3.4:
– ZOOKEEPER-938: Support Kerberos authentication of clients

● Need more documentation and blog posts on
getting it running

26

For More Information
● HBase Coprocessors, by Mingjie Lai

http://hbaseblog.com/2010/11/30/hbase-coprocessors/

● HBase Token Authentication
http://wiki.apache.org/hadoop/Hbase/HBaseTokenAuthentication

● Hadoop Security Design
http://github.com/trendmicro/hbase/tree/security

http://hbaseblog.com/2010/11/30/hbase-coprocessors/
http://github.com/trendmicro/hbase/tree/security

27

Questions?

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

