

# Big Data in Enterprise challenges & opportunities

Yuanhao Sun 孙元浩 yuanhao.sun@intel.com Software and Service Group



## **Big Data Phenomenon**

1.8ZB in 2011

2 Days > the dawn of civilization to 2003



750M

Photos uploaded to Facebook in 2 days



966PB

Stored in US manufacturii (2009)



20TB/hour

Sensor output of a Boeing jet engine



200+TB

A boy's 240'000 hours by a MIT Media Lab geek



200PB

Created by a Smart City project in China



\$800B

in personal location data within 10 years



\$300B/year

US healthcare saving from Big Data



\$20+B

Acquisitions in the last 12 months



Data are becoming the *new raw*material of business: an
economic input almost on a par
with capital and labor.

The Economist, 2010

Information will be the "oil of the 21st century".

Gartner, 2010





# **Big Data in Telecom**

- Lots of data
  - One telco operator: 360TB Call Data Records within 6months (in a provincial branch, 100M users)
  - nes within 6 The other operator: ~300TB web access logs from mobile months
- Keep growing
  - ~2TB CDR/day in a proving
- Various dat
- Difficult to manage and monetize these data! TRS, 3G, WLAN, Value-add services, etc) CDI
  - counting data, sales & marketing data, etc. Billin
  - Web access logs
  - Network signaling data
  - Base station sensor data





## **How Hadoop helps**

- Map/Reduce for data loading and data cleansing
- HBase as the data store
  - Inserting 10000 records/second/server (2-way, 32GB) in average
  - Read from disk: >400 query/second/server, latency within one second (0.05s~0.8s under different load)
    - A query is a scan to get all CDR within one month for one user.
- Optimizations significantly increase the throughput of a 8-node cluster









## Value chain of big data in telecom







# Healthcare: Care Coordination and Data Sharing for Improved Outcomes



Proactive health and Wellness

Reduce illness.
Promote
wellness and
empowerment



**Home Care** 

Reduce costly emergency care. Better manage chronic disease.



Residential/Community / Ambulatory Care

Reduce hospital (re) admissions. Manage at home.



**Acute Care** 

Reduce ALOS. Earlier Discharge to Ambulatory environments.

## Cost of Care

**Highest Quality of Life at the Lowest Possible Cost** 





# **Enabling Technologies for Coordinated Care**

#### CONNECT

All eyes on the same, shared information



- Electronic health records (EHRs)
- Personal health records (PHRs)
- Security from cell to cloud
- Health information exchange (HIE) software
- Ubiquitous, fast wireless

#### COORDINATE

Team-based care and collaboration for care and pay



- Online team portals
- Care plan creation and status tools
- Real-time status dashboards
- Quality reporting tools and cycles
- Shared payment and asset tracking

#### **SUPPORT**

Decision support from surgeons to citizens



- Algorithms for real-time and recursive information processing
- Clinically validated physician support tools
- Consumer context-aware decision support tools
- Complex, comorbid care management

#### **PERSONALIZE**

Close the loop with individual, customized care



- Personalized prompting and coaching/mHealth
- Multi-device interusability for care management/CDM
- Real-time feedback on drug and behaviorial therapies
- Reliable real time care intervention

WORKFORCE AND WORKFLOW





# China EHR based RHIN platform







## **Challenges**

Various data sources, unstructured, texts, images, videos, etc.

 Health records, lab reports, billing data, PACS images, physical orders, follow-ups, etc

#### Difficult to standardize the data format

- Data needs to be stored for 50 years, its format keeps changing.
- HL7 Clinical Document Architecture (XML) is evolving frequently.

## Big data volume

10PB: A medium city in China (10M population), 50 years' data

Any existing IT system in China cannot process these data in 3~5 years.





# **Opportunities...**

## Improving efficiency and reducing costs

real-time information sharing from clinics, doctors to patients

Care

Coordination

MPI/CP

POs

**MIIS** 

**Data Mining** 

Hadoop/HBase Cluster

real-time status dashboard

## Computer aided diagnostics/research

Disease classifications, like blood poison

## Decision support system

- Trend analysis: cancer trend analysis, epidemic disease analysis, etc.
- Association analysis: adverse drug events analysis

#### Personalized Medicine

Personalized prompting and coaching





# **Internet of Things**







## **Challenges**

#### Numerous data

- City A: 500,000 cameras, 200PB video within 3 months
- City B: 12,000 ITS cameras, 2B traffic records per day, 1PB records in 3 months

## **Real-time processing**

- Real-time data collection, scan, query and sharing
- Real-time event detection
- Near real-time predictive analysis

## Large scale distributed processing

- Central data center is not affordable, because of money, space, power supply, air conditioner, etc
- Application needs a uniform way to access the data





## HBase as the infrastructure, but needs:

#### Global Table View

- Geographical distributed DCs, connected through high speed network
- One very big table across multiple data centers

#### **Active-Active Availability**

Available for read/write even in case of data center failure(s)

## Durability

Auto recover from data center failure

## Locality

- Reduce write latency
- Reduce network bandwidth requirement

## Eventual Consistency across data centers





# Big table over DCs (a reference architecture)











