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Multicore

Multicore is commercially prevalent recently
« Eight cores and Twelve cores on a chip are

common,

« Hundreds of cores on a single chip will appear in
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Multicore: Challenges

How to fully harness the likely abundant
cores?

— Data parallel applications fit well with multi-core
system
« processes data in private cache of cores
« shares data within cores by main memory

« Issue#1: easy to use
— Average programmers can use

« Issues#2: easy to scale
— Can easily scale to a number of cores/nodes

11-12-2 PPI, Fudan University



Data-Parallel Application

Data-parallel applications emerge and rapidly
Increase in past 10 years

« Google processes about 24 petabytes of data per
day in 2008

« The movie * «_ takes over 1 petabyte of local
storage for 3D rendering *

*

http://www.information-management.com/newsletters/
avatar_data_processing-10016774-1.html
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Data-parallel Programming Model

N\Gp educe: a simple programming model for
data-parallel applications from | Google‘
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Data-parallel Programming Model

Map educe: a simple programming model for
data-parallel applications from ougle

Two Primitive:

| Word Count Map (input)
for each word in input

Reduce (key, values)
int sum = 0;
for each value in values
sum += value;
emit (word, sum)

MapReduce

progr'arnmer' Runtime




State-of-the-Art Mapreduce Systems

an open-source alternative of Google’s
fairly secrete implementation

a shared-memory implementation of
MapFeduce model for data-intensive
processing tasks from Stanford

11-12-2 PPI, Fudan University 9



When MapReduce Meets Multicore

MapReduce: original developed for programming
large clusters

Results:

Little consideration of locality and parallelism on
multiple cores on a single node

E.g., Hadoop uses a JVM-based runtime, which is really hard
to exploit the multicore resource

Aggressively parallelism for large clusters not directly fit
multicore

Contentions on cache, memory and OS services

Simply adapting MapReduce to multicore is not optimal



--=- Qutline ---

Ostrich:

Optimizing MapReduce for a single
machine with multiples core

Chadoop (Briefly):

Exploiting the Locality and Parallelism
with Hierarchical MapReduce on the Cloud
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MapReduce on Multicore

Example: Phoenix [HPCA07 1ISWC'09]

X

A MapReduce runtime
for shared-memory

> CMPs and SMPs

> NUMA 7

X

Features

> Parallelism: threads
> Communication:

shared address spac?

Heavily optimized runtime

> Runtime algorithm
e.g. locality-aware task
distribution

> Scalable data structure
e.g. hash table

> OS Interaction
e.g. memory allocator,
thread pool
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Deficiency of MapReduce on

Multicore

High memory usage

« Keep the whole input data in main memory

all the time
e.g. WordCount with 4GB input requires more than 4.3GB
memory on Phoenix (93% used by input data)

Poor data locality

* Process all input data at one time
e.g. WordCount with 4GB input has about 25%
L2 cache miss rate

Strict dependency barriers
 CPU idle at the exchange of phases



Deficiency of MapReduce on
Multicore

Solution: Tiled-
MapReduce



Contribution

Tiled-MapReduce programming model
— Tiling strategy
— Fault tolerance (in paper)

hree optimizations for Tiled-MapReduce
runtime

— Input Data Buffer Reuse
— NUCA/NUMA-aware Scheduler
— Software Pipeline
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Tiled-MapReduce
"Tiling Strategy”

* Divide a large MapReduce job into a number
of independent small sub-jobs

* |teratively process one sub-job at a time



Tiled-MapReduce
"Tiling Strategy”

* Divide a large MapReduce job into a number
of independent small sub-jobs

* |teratively process one sub-job at a time

Requirement

* Reduce function must be Commutative and
Associative

 all 26 applications in the test suit of Phoenix and
Hadoop meet the requirement
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Tiled-MapReduce

Extensions to MapReduce Model
1. Replace the phase with a

loop of and phases
2. Process one sub-job in each
iteration
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Tiled-MapReduce

Extensions to MapReduce Model

1. Replace the phase with a
loop of and phases

2. Process one sub-job in each
iteration

3. Rename the phase within
loop to the phase

4. Modify the phase to

process the partial results of all
iterations




Prototype of liled-MapReduce

Ostrich: a prototype of Tiled-MapReduce
programming model

« Demonstrate the effectiveness of TMR
programming model

« Base on Phoenix runtime
* Follow the data structure and algorithms
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Ostrich Implementation
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OPT1: Memory Reuse

High Memory Usage

« Keep the whole input data in memory during
the entire lifecycle

Observation

« Only few data in input data is necessary
e.g. WordCount: 1 copy for all duplicated words

* The aggregation of these data improves
data locality



OPT1: Memory Reuse

Input Data Memory Reuse

« Copy necessary data to a new buffer in each
phase

* Only hold the input data of current sub-job
INn memory

* Reuse the Input Buffer among sub-jobs



OPT1: Memory Reuse

Extension of Interface
* Provide 2 optional interfaces

: load input data to memory

: free input data from memory

* The counterparts in other runtimes

Runtime Interface
Ostrich | acquire release
Google MapReduce | reader writer

Hadoop

constructor close




Input Data Memory Reuse
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Poor Data Locality of MapReduce runtime on
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OPT2: Locality Optimization

Poor Data Locality of MapReduce runtime on
Multicore

* Process all input data in one time

Tiled-MapReduce improves data locality

« Make the working set of each sub-job fit into
the last level cache

« Aggregate partial results in phase
(in OPT1)
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Memory Hierarchy

* Multicore hardware usually organizes caches
in a non-uniform cache access (NUCA) way

* The cross-chip operations are expensive®
e.g. Local/Remote L2 cache: 14/110 cycles”

* Intel 16-Core Machine with 4 Xeon 1.6GHz Quad-cores chips



OPT2: Locality Optimization

Memory Hierarchy

* Multicore hardware usually organizes caches
in a non-uniform cache access (NUCA) way

* The cross-chip operations are expensive®
e.g. Local/Remote L2 cache: 14/110 cycles”

NUCA/NUMA-aware scheduler

* Eliminate remote cache and memory access
* Run each sub-job on a single chip

* Intel 16-Core Machine with 4 Xeon 1.6GHz Quad-cores chips



NucA/NUMA-Aware Scheduler
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NucA/NUMA-Aware Scheduler
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NucA/NUMA-Aware Scheduler
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NucA/NUMA-Aware Scheduler
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Data Dependency
« Strict barrier after map and reduce phase

* The execution time of a job is determined by
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OPT3: CPU Optimization

Data Dependency
« Strict barrier after map and reduce phase

* The execution time of a job is determined by
the slowest worker in each phase

Observation

* No data dependency between one sub-job’s
phase and its successor’s phase



OPT3: CPU Optimization

Software Pipeline

* Overlap the phase of the current
sub-job and the phase of its successor



Software Pipeline
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Software Pipeline
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Configuration

Platform
Intel 16-Core machine (4 Quad-cores chips)
32GB Main Memory
Debian Linux with kernel v2.6.24

Systems:

Phoenix-2 with streamflow *
Ostrich with streamflow

* Scalable locality-conscious multithreaded memory allocation - ISMM'06



Configuration

Applications
Applications Key Duplicate
WordCount (WC) many | many
Distributed Sort (DS) | many [ no
Log Statistics (LS) few many
Inverted Index (II) one few




Burden of Programmer

Code Modification

« Support input data memory reuse

Applications Acquire [ Release
WordCount (WC) 11 3
Distributed Sort (DS) | Default Default
Log Statistics (LS) Default Default
Inverted Index (1) 11 3




Overall Performance

Speedup
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NucA/NUMA-Aware Scheduler

1.4 7 ™ Without NUCA/NUMA-Aware Scheduler
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Exploit Locality
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Software Pipeline
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Exploiting Locality and
Parallelism of Mapieduce with
Hierarchical MapReduce



Hadoop: MapReduce on Clusters

PC

JobTracker
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Motivation

Two level of parallelism on typical clusters
— Multi-core based parallel architecture on a single node
— Cluster-level parallelism among nodes

Multiple levels of data locality

— Cache locality
— Data locality among storage and network

Both Hadoop and Ostrich are not good at
exploiting these parallelism and locality

Chadoop: Hierarchical MapReduce
— Based on Hadoop and Ostich

— Fine-grained control on system resources with C
language based runtime



Chadoop Architecture

Jser Slave
Job
Client Master .
- *
Tracker RPC Client | DFS Client

Task Runner

Hadoop Distributed File System 8 @4




Adapt Ostrich to Hadoop (1)

« Adapt MapTask

Map Task

g

+
=] .

\ Phoenix MapReduce /
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Adapt Ostrich to Hadoop (2)

« Adapt ReduceTask

e
+
Reduce Task [ m

g
Phoenix MapReduce /




Hadoop support

Start cache server when initializing TaskTracker

Assign an id to each TaskRunner

— lIDEInfo;c:e each TaskRunner mapped to a specific control
ocC
Improved Scheduler Affinity

— Tasks report the current <split, cache location> pair to
NameNode before done

— NameNode maintains these info

— JobClient queries split locations from NameNode before
submitting jobs

— Scheduler gives higher priority to assign task with cached
data

No more than 50 LOC hacked in Hadoop



K-Means overall performance
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Conclusion

Performance and Scalability are two major
concerns for

MapReduce on multicore based single machine
and clusters

Ostrich
Tiled MapReduce for multicore single machine

Chadoop

Hierarchical parallelism and locality on multicore
based MapReduce clusters



Further Information

« Tiled MapReduce: Optimizing Resource Usages of
Data-parallel Applications on Multicore with Tiling.

— The 19t International Conference on Parallel Architectures
and Compilation Techniques (PACT 2010). pp.523-534.
Vienna, Austria, September, 2010.

* A Hierarchical Apporach to Maximizing MapReduce
Efficiency
— The 20t International Conference on Parallel Architectures

and Compilation Techniques (PACT 2011, poster).
October, 2011



Thanks

Ostrich Questions

The top land speed
and the largest of bird

Parallel Processing Institute
http://ppi.fudan.edu.cn
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MapReduce: WordCount example

input data

ABABABAAC..

[A, 8] [B,6] [C, 4] ...

)

final data

Reduce

ﬂ
Merge

Goodbye my friends, goodbye my campus.

Goodbye my friends, goodbye my campus.

goodbye, 1 my, 1 friends, 1
goodbye, 1 my, 1 campus, 1
goodbye, 2 my, 2 friends, 1 campus, 1
goodbye 2
my 2
friends 1
campus 1
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Cache System Workflow

O R 2red-Me [
Cache Server Cache Client

Initialize Require data

Send a request

SERVED Test and Read

Load Data




Cache miss penalty on K-Means

« Cache miss jobs penalty over cache hit jobs

Total time Map time

hit hit miss

(8 node (k)
5332';1) 100.00% 100.00% 130.52%
10%?4%&1) 100.00% 100.00% 142.75%
1883(/)1:213 100.00% 100.00% 229.19%
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Cache miss rate on K-Means

« Remote cache miss rate
— 6% ~25%
— Tuned HDFS and MapReduce configuration
decrease remote data fetching

« Other data read from local disk

« Our cache system needs only an iteration
to warm up

— Succeeding iterations would process the in-
memory data
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Adapt Ostrich to Hadoop (1)

« Adapt MapTask

Map Task

g

+
=] .

\ Phoenix MapReduce /
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Adapt Ostrich to Hadoop (2)

« Adapt ReduceTask

e
+
Reduce Task [ m

g
Phoenix MapReduce /

104




Fine-grained optimizations (1)

« Exploiting Parallelism

— Overlap data loading and MapReduce
processing time
 Map input: byte-granularity
« Reduce input: file-granularity



Fine-grained optimizations (2)

 Increase the granularity of the serialization and
deserialization

— Require users to provide their (de)serialization
function

« Hadoop requires users to implement the writable interface
— Reduce application function-call overhead

« Configurable number of worker threads
— E.qg., less threads for data-intensive tasks

« Configurable inner-process unit size
— Fit into L1 cache
— Can use online-profiling to tune the unit size



Exploit data locality - memory

 Hadoop (Java) style

\

S— This is a sente~

\ ) Redundant uses of
' memory, duplicated

processing of input
!

—
L d T
N This iS @ vc..eeny wor ext
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Exploit data locality - memory
 Chadoop (C) style

[Sentence | word | l

Reuse data
in memory!




Exploit data locality - storage

— Iterati A ML,

Cache allows sharing of

data among jobs

— Incrementa npu yadInc)
— Joined tables (user info table etc.)
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Cache system design

TaskTracker

o |

TaskRunner TaskRunner CacheServer

| cache |

Shared Memory

HDFS



