Optimizing the Performance
and Scalability of Mapeduce
for Multicore

Haibo Chen
Parallel Processing Institute
Fudan University
http://ppi.fudan.edu.cn/haibo _chen

Multicore

Multicore is commercially prevalent recently
« Eight cores and Twelve cores on a chip are

common,

« Hundreds of cores on a single chip will appear in
near feature cose oo
geee ee 2t

ggee e

63 gceecpeeee

se 1%z

8 33 gggeeeee
gggeeeee

1X 4X 8X 64X

Multicore: Challenges

How to fully harness the likely abundant
cores?

— Data parallel applications fit well with multi-core
system
« processes data in private cache of cores
« shares data within cores by main memory

« Issue#1: easy to use
— Average programmers can use

« Issues#2: easy to scale
— Can easily scale to a number of cores/nodes

11-12-2 PPI, Fudan University

Data-Parallel Application

Data-parallel applications emerge and rapidly
Increase in past 10 years

« Google processes about 24 petabytes of data per
day in 2008

« The movie * «_ takes over 1 petabyte of local
storage for 3D rendering *

*

http://www.information-management.com/newsletters/
avatar_data_processing-10016774-1.html

Data-parallel Programming Model

N\Gp educe: a simple programming model for
data-parallel applications from ‘Google

~0090”

Data-parallel Programming Model

N\Clp educe: a simple programming model for
data-parallel applications from ‘Google

~0000”

Functionality

| -y

Parallelism

Data
Distribution

Fault Tolerance

Load Balance

Data-parallel Programming Model

N\Gp educe: a simple programming model for
data-parallel applications from | Google‘

~0p00”

m Two Primitive:

Map (input)
O Parallelization
C/\) | 1‘

Reduce (key, values)

MapReduce

Runtime

Load Balance

Data-parallel Programming Model

Map educe: a simple programming model for
data-parallel applications from ougle

Two Primitive:

| Word Count Map (input)
for each word in input

Reduce (key, values)
int sum = 0;
for each value in values
sum += value;
emit (word, sum)

MapReduce

progr'arnmer' Runtime

State-of-the-Art Mapreduce Systems

an open-source alternative of Google’s
fairly secrete implementation

a shared-memory implementation of
MapFeduce model for data-intensive
processing tasks from Stanford

11-12-2 PPI, Fudan University 9

When MapReduce Meets Multicore

MapReduce: original developed for programming
large clusters

Results:

Little consideration of locality and parallelism on
multiple cores on a single node

E.g., Hadoop uses a JVM-based runtime, which is really hard
to exploit the multicore resource

Aggressively parallelism for large clusters not directly fit
multicore

Contentions on cache, memory and OS services

Simply adapting MapReduce to multicore is not optimal

--=- Qutline ---

Ostrich:

Optimizing MapReduce for a single
machine with multiples core

Chadoop (Briefly):

Exploiting the Locality and Parallelism
with Hierarchical MapReduce on the Cloud

MapReduce on Multicore

Phoenix [HPCA07 ISWC'09]

X

A MapReduce runtime
for shared-memory

> CMPs and SMPs
> NUMA 7

MapReduce on Multicore

Phoenix [HPCA07 ISWC'09]

X

A MapReduce runtime
for shared-memory

> CMPs and SMPs
> NUMA 7

E X
Features
> Parallelism: threads
> Communication:
shared address spac?

MapReduce on Multicore

Example: Phoenix [HPCA07 1ISWC'09]

X

A MapReduce runtime
for shared-memory

> CMPs and SMPs

> NUMA 7

X

Features

> Parallelism: threads
> Communication:

shared address spac?

Heavily optimized runtime

> Runtime algorithm
e.g. locality-aware task
distribution

> Scalable data structure
e.g. hash table

> OS Interaction
e.g. memory allocator,
thread pool

Implementation on Multicore
Disk

' Processors 8

Main Memory

Implementation on Multicore
Disk

' Processors
Start i
.| Worker Threads

Main Memory

Input
BUﬁer ooooooooo

Implementation on Multicore

Start

Processors

Worker Threads

Disk

Input

Main Memory

Intermediate
Buffer

Implementation on Multicore

Disk
Processors

PN Worker Threads

Main Memory

Start
a3

Implementation on Multicore

' Processors

Start
/*\
s/ NS

Worker Threads

G080

Disk

Main Memory

Final Buffer

Implementation on Multicore

Processors

Worker Threads

-

Main Memory

Disk

Start
a3

PR
7 /1 NS

”

e

Implementation on Multicore

Processors

Worker Threads

G080

Main Memory

Disk

Start
a3

PR
7 /1 NS

”

e

o —
-

Implementation on Multicore

e

Start
a3

P ~
7 /1 NS
-

Processors

IO

B
Output Input

Main Memory

Write File

Free

Deficiency of MapReduce on
Multicore

Deficiency of MapReduce on

Multicore

High memory usage

« Keep the whole input data in main memory

all the time
e.g. WordCount with 4GB input requires more than 4.3GB
memory on Phoenix (93% used by input data)

Deficiency of MapReduce on

Multicore

High memory usage

« Keep the whole input data in main memory

all the time
e.g. WordCount with 4GB input requires more than 4.3GB
memory on Phoenix (93% used by input data)

Poor data locality

* Process all input data at one time
e.g. WordCount with 4GB input has about 25%
L2 cache miss rate

Deficiency of MapReduce on

Multicore

High memory usage

« Keep the whole input data in main memory

all the time
e.g. WordCount with 4GB input requires more than 4.3GB
memory on Phoenix (93% used by input data)

Poor data locality

* Process all input data at one time
e.g. WordCount with 4GB input has about 25%
L2 cache miss rate

Strict dependency barriers
 CPU idle at the exchange of phases

Deficiency of MapReduce on
Multicore

Solution: Tiled-
MapReduce

Contribution

Tiled-MapReduce programming model
— Tiling strategy
— Fault tolerance (in paper)

hree optimizations for Tiled-MapReduce
runtime

— Input Data Buffer Reuse
— NUCA/NUMA-aware Scheduler
— Software Pipeline

QOutline

1. Tiled MapReduce
2. Optimization on TMR
3. Evaluation

4. Conclusion

QOutline

1. Tiled MapReduce

2. Optimization on TMR

3. Evaluation

4. Conclusion

Tiled-MapReduce
"Tiling Strategy”

* Divide a large MapReduce job into a number
of independent small sub-jobs

* |teratively process one sub-job at a time

Tiled-MapReduce
"Tiling Strategy”

* Divide a large MapReduce job into a number
of independent small sub-jobs

* |teratively process one sub-job at a time

Requirement

* Reduce function must be Commutative and
Associative

 all 26 applications in the test suit of Phoenix and
Hadoop meet the requirement

Tiled-MapReduce

Extensions to MapReduce Model

Reduce

I

Merge

t
|
v

End

Tiled-MapReduce

Extensions to MapReduce Model

1. Replace the phase with a |

loop of and phases M;P e

:

Reduce

l

Reduce

I

Merge
t
|
. 4

End

Tiled-MapReduce

Extensions to MapReduce Model
1. Replace the phase with a
loop of and phases

2. Process one sub-job in each
iteration

Map |+—

:

Reduce

l

Reduce

I

Merge

t
|
v

End

Tiled-MapReduce

Extensions to MapReduce Model
1. Replace the phase with a

loop of and phases
2. Process one sub-job in each
iteration
3. Rename the phase within
loop to the phase

Map

:

Combine

l

Reduce

I

Merge

t
|
v

End

Tiled-MapReduce

Extensions to MapReduce Model

1. Replace the phase with a
loop of and phases

2. Process one sub-job in each
iteration

3. Rename the phase within
loop to the phase

4. Modify the phase to

process the partial results of all
iterations

Prototype of liled-MapReduce

Ostrich: a prototype of Tiled-MapReduce
programming model

« Demonstrate the effectiveness of TMR
programming model

« Base on Phoenix runtime
* Follow the data structure and algorithms

Ostrich Implementation

Start

Processors

Worker Threads

Disk

Input

Main Memory

Intermediate
Buffer

Ostrich Implementation

Processors

Worker Threads

Disk

Input

Main Memory

Iteration
window

Ostrich Implementation

Disk
Processors
Start |
PNy .| Worker Threads

e 1
7 N '
| \\ : InpUt

\égzgi‘f Main Memory
20N . e R
N N N
.y R

Ilteration |.........
Buffer

Ostrich Implementation

Disk

. Processors
Start i
24N .| Worker Threads
GG

C C C C E P [[[| e e e e

Main Memory

Ostrich Implementation

Disk

. Processors
Start i
24N .| Worker Threads
GG

C C C C E

Main Memory

Ostrich Implementation

' Processors

.| Worker Threads

Disk

Main Memory

Final
Buffer

Ostrich Implementation

Start
*\

A=K

/// ANEN

7 1 \ \\ '
: ; \; |
1

1

1

1

1

1

1

1

N7

el

[

oK

w|<7§k

|X| :
L

N

Merge

' Processors

.| Worker Threads

Disk

Main Memory

!

Result

Ostrich Implementation
Disk

' Processors
Start |
/*\ i
,’/II \\\\\ i D
g @gg‘;@j i Output MPYt

[i
[T

Outline

1. Tiled MapReduce

2. Optimization on TMR

3. Evaluation

4. Conclusion

OPT1: MEMORY REUSE

OPT1: Memory Reuse

High Memory Usage

« Keep the whole input data in memory during
the entire lifecycle

OPT1: Memory Reuse

High Memory Usage

« Keep the whole input data in memory during
the entire lifecycle

Observation

« Only few data in input data is necessary
e.g. WordCount: 1 copy for all duplicated words

OPT1: Memory Reuse

High Memory Usage

« Keep the whole input data in memory during
the entire lifecycle

Observation

« Only few data in input data is necessary
e.g. WordCount: 1 copy for all duplicated words

* The aggregation of these data improves
data locality

OPT1: Memory Reuse

Input Data Memory Reuse

« Copy necessary data to a new buffer in each
phase

* Only hold the input data of current sub-job
INn memory

* Reuse the Input Buffer among sub-jobs

OPT1: Memory Reuse

Extension of Interface
* Provide 2 optional interfaces

: load input data to memory

: free input data from memory

* The counterparts in other runtimes

Runtime Interface
Ostrich | acquire release
Google MapReduce | reader writer

Hadoop

constructor close

Input Data Memory Reuse

Disk
Processors

Worker Threads

Main Memory

//W ~ Load
Input

Buffer i
acquire

Input Data Reuse

Disk
Processors

Worker Threads

Main Memory

_--F-?Baby. ..
N // o .,-’.-}But.

\ / /
Y ’ 7

Input Data Reuse

Processors

Disk

Worker Threads

-

Main Memory

) ,,_—-:?Baby...
SIN R ,<--2But.

/ /
[| [] [] I 7
/ |
B 2 ,
/ 1
! 1
! 1
' New Buffer

Input Data Reuse

Processors

Worker Threads

-

Main Memory

Disk

Input Data Reuse

Processors

Worker Threads

-

Main Memory

Disk

Free

2 release

OPT2: LOCALITY OPTIMIZATION

OPT2: Locality Optimization

Poor Data Locality of MapReduce runtime on
Multicore

* Process all input data in one time

OPT2: Locality Optimization

Poor Data Locality of MapReduce runtime on
Multicore

* Process all input data in one time

Tiled-MapReduce improves data locality

« Make the working set of each sub-job fit into
the last level cache

« Aggregate partial results in phase
(in OPT1)

OPT2: Locality Optimization

Memory Hierarchy

* Multicore hardware usually organizes caches
in a non-uniform cache access (NUCA) way

* The cross-chip operations are expensive®
e.g. Local/Remote L2 cache: 14/110 cycles”

* Intel 16-Core Machine with 4 Xeon 1.6GHz Quad-cores chips

OPT2: Locality Optimization

Memory Hierarchy

* Multicore hardware usually organizes caches
in a non-uniform cache access (NUCA) way

* The cross-chip operations are expensive®
e.g. Local/Remote L2 cache: 14/110 cycles”

NUCA/NUMA-aware scheduler

* Eliminate remote cache and memory access
* Run each sub-job on a single chip

* Intel 16-Core Machine with 4 Xeon 1.6GHz Quad-cores chips

NucA/NUMA-Aware Scheduler

}I— - - - - - - '

oY) 7) 0 7 o 7

Oy X X X X X X X

ml- | . | . | . | . | . | . |

o © (o] (o] (o] (o) o (o] o

€3 3 3 3 3 3 3 3
1111 1111 1111 1111 1111 1111 1111 1111
Jcore[C dcoreC Jcore[C Jcore[C Jcore[C dcorelC Jcorel Jcore[C

$ $ $|1|9 $ $ $ $

shared cache shared cache
J1il1i1lL1 J1il1i1lL1 J1iliLilLl J1il1i1lL1
1 main £ 7 main [71 main [1 main [
4 memory L] memory [Jd memory £] memory [
TTrTrrrni ITrTrrrrni TTrTrrrni TTrTrrrni

LLLCPPP PP B PP PPyl

NucA/NUMA-Aware Scheduler

master

grOUp

- -)
ks) 0) ks 0 0 0

= g = = = - = = =

[{» - . - [{* - — .

g_Q (@] o (@] g_o (@) o (@)

az\9/) 2\5/ 2\9) s\9/|22\5) 8\9) 3\9/ 2

e b

core core core core core core core core

$ $ $ | 9 $ $ $ $

shared cache shared cache

main main main main
memory memory memory memory

NucA/NUMA-Aware Scheduler

HEEEEEEE JObIII'IIIIII
queue
~ ~
| N . | . | - 1 . | | . | .
Qo)) [TR))))
X X X B X X ~
| | | . | = | . | .- |
go (o) () g_o (o) (o) ()
oS 3 S o> 3 3 3
| . |
core core core core core core core core
shared cache shared cache
main main main main

memory memory memory memory

NucA/NUMA-Aware Scheduler

master

repeater/
worker

.
)
=<
-
o
S

Intermediate Buffer

Iteration Buffer

N
| |

JOb I

queue

repeater/
worker

worker
worker
worker

Intermediate Buffer

Final Buffer

Iteration Buffer

OPT3: CPU OPTIMIZATION

OPT3: CPU Optimization

Data Dependency
« Strict barrier after map and reduce phase

* The execution time of a job is determined by
the slowest worker in each phase

OPT3: CPU Optimization

Data Dependency
« Strict barrier after map and reduce phase

* The execution time of a job is determined by
the slowest worker in each phase

Observation

* No data dependency between one sub-job’s
phase and its successor’s phase

OPT3: CPU Optimization

Software Pipeline

* Overlap the phase of the current
sub-job and the phase of its successor

Software Pipeline

3 Map Time |] '
I Combine ,,,, : =

Cidle dcoref I)

1111
JcorelC
1111

TJcore[
LI

Jeore[N[

Software Pipeline

3 Map Time | | | |
3 Combine 4,,, ' '
Cidle 1>k

1111

JcorelC

1111

Jdcore[

1111

Jdcore[

Barriers

Software Pipeline

3 Map

3 Combine 4,,,

Jldle

Time

Jdcore[C
TN
Jdcore[C
[HE N
Jcore[C
[HE N

TJcore[
LI

Software
Pipeline

Time

L1111
Jcore
L1
Jcore[C
L1
Jcore[C
L1

JcorelC
LI

Outline

1. Tiled MapReduce
2. Optimization on TMR

3. Evaluation

4. Conclusion

Configuration

Platform
Intel 16-Core machine (4 Quad-cores chips)
32GB Main Memory
Debian Linux with kernel v2.6.24

Systems:

Phoenix-2 with streamflow *
Ostrich with streamflow

* Scalable locality-conscious multithreaded memory allocation - ISMM'06

Configuration

Applications
Applications Key Duplicate
WordCount (WC) many | many
Distributed Sort (DS) | many [no
Log Statistics (LS) few many
Inverted Index (II) one few

Burden of Programmer

Code Modification

« Support input data memory reuse

Applications Acquire [Release
WordCount (WC) 11 3
Distributed Sort (DS) | Default Default
Log Statistics (LS) Default Default
Inverted Index (1) 11 3

Overall Performance

Speedup

4 r ™ Phoenix

3.3X ™ Ostrich

nldnl_n!n!ﬂl L

1 2 4 1 2 4 1 2 4
DS LS II

L Intermediate

E Input

| ¥-1S0

t-OHd
¢-1S0O
¢-OHd
1-1S0
1-OHd

t-1S0
-OHd
¢-1S0O
¢-OHd
1-1S0
1-OHd

t-1S0
-OHd
¢-1S0O
¢-OHd
1-1SO
1-OHd

-1S0
t-OHd
¢-1S0O
¢-OHd
1-1SO

11

LS

DS

WC

. . . L T-OHd

LN < (09} &N A o

(g9) uondwnsuod AJOWS

Memory Consumption

NucA/NUMA-Aware Scheduler

1.4 7 ™ Without NUCA/NUMA-Aware Scheduler
1.3 } ™ With NUCA/NUMA-Aware Scheduler
Q. -
Q 1.2
@
D 1.1 |
a
V1.0
0.8
4 81216 4 81216 4 8 1216 4

WC DS LS I1

Exploit Locality

30% “ Phoenix
250 | I ® Ostrich
20% l I I I I I

15% [l

10% F

5% | l l

oo, LLEH l_!_!_D!D!D!
1 2 4 1 2 4 1 2 4 1 2 4
WC DS LS I1

L2 Cache Miss Rate

Software Pipeline

& @ Merge @ Reduce
o 7 B Combine(ldle) O Combine(Active)
Lo O Map
)
£ 5
i= —
- 4
O
o 3 -
o 2
X —
w3
0

WC WC/P DS DS/P LS LS/P IT II/P

Exploiting Locality and
Parallelism of Mapieduce with
Hierarchical MapReduce

Hadoop: MapReduce on Clusters

PC

JobTracker

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e
-

Multicore

TaskTracker g
TaskTracker §

TaskTracker

S

Hadoop Distributed File System

85

Motivation

Two level of parallelism on typical clusters
— Multi-core based parallel architecture on a single node
— Cluster-level parallelism among nodes

Multiple levels of data locality

— Cache locality
— Data locality among storage and network

Both Hadoop and Ostrich are not good at
exploiting these parallelism and locality

Chadoop: Hierarchical MapReduce
— Based on Hadoop and Ostich

— Fine-grained control on system resources with C
language based runtime

Chadoop Architecture

Jser Slave
Job
Client Master .
- *
Tracker RPC Client | DFS Client

Task Runner

Hadoop Distributed File System 8 @4

Adapt Ostrich to Hadoop (1)

« Adapt MapTask

Map Task

g

+
=] .

\ Phoenix MapReduce /

88

Adapt Ostrich to Hadoop (2)

« Adapt ReduceTask

e
+
Reduce Task [m

g
Phoenix MapReduce /

Hadoop support

Start cache server when initializing TaskTracker

Assign an id to each TaskRunner

— lIDEInfo;c:e each TaskRunner mapped to a specific control
ocC
Improved Scheduler Affinity

— Tasks report the current <split, cache location> pair to
NameNode before done

— NameNode maintains these info

— JobClient queries split locations from NameNode before
submitting jobs

— Scheduler gives higher priority to assign task with cached
data

No more than 50 LOC hacked in Hadoop

K-Means overall performance

1800.000

1600.000

1400.000

1200.000

1000.000

800.000

600.000

Execute Time / Second

400.000

200.000

0.000 -

2.9~3.5x
speedup

I 2.572.6x
speedup

1.1~1.4x

speedup

M Chadoop-Cache

M Chadoop

10 15
Number of iterations

® Hadoop

20

91

WordCount

900

800

~
o
o

(o2}
o
o

[
o
o

400

300

Execution Time (Second)

200

100

' 2.8~3.5x
] speedup

2G 4G 8G
Job Input Size

16G

® Chadoop

¥ Haoop

92

Conclusion

Performance and Scalability are two major
concerns for

MapReduce on multicore based single machine
and clusters

Ostrich
Tiled MapReduce for multicore single machine

Chadoop

Hierarchical parallelism and locality on multicore
based MapReduce clusters

Further Information

« Tiled MapReduce: Optimizing Resource Usages of
Data-parallel Applications on Multicore with Tiling.

— The 19t International Conference on Parallel Architectures
and Compilation Techniques (PACT 2010). pp.523-534.
Vienna, Austria, September, 2010.

* A Hierarchical Apporach to Maximizing MapReduce
Efficiency
— The 20t International Conference on Parallel Architectures

and Compilation Techniques (PACT 2011, poster).
October, 2011

Thanks

Ostrich Questions

The top land speed
and the largest of bird

Parallel Processing Institute
http://ppi.fudan.edu.cn

Backup Slides

MapReduce: WordCount example

input data

ABABABAAC..

[A, 8] [B,6] [C, 4] ...

)

final data

Reduce

ﬂ
Merge

Goodbye my friends, goodbye my campus.

Goodbye my friends, goodbye my campus.

goodbye, 1 my, 1 friends, 1
goodbye, 1 my, 1 campus, 1
goodbye, 2 my, 2 friends, 1 campus, 1
goodbye 2
my 2
friends 1
campus 1

50% -

45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

Prevalence of multi-core based
clusters

Top 500 Multi-Core Clusters Percentage

/

Z

P

-

2005 Nov

2006 June

2006 Nov

2007 June

98

Cache System Workflow

O R 2red-Me [
Cache Server Cache Client

Initialize Require data

Send a request

SERVED Test and Read

Load Data

Cache miss penalty on K-Means

« Cache miss jobs penalty over cache hit jobs

Total time Map time

hit hit miss

(8 node (k)
5332';1) 100.00% 100.00% 130.52%
10%?4%&1) 100.00% 100.00% 142.75%
1883(/)1:213 100.00% 100.00% 229.19%

100

Cache miss rate on K-Means

« Remote cache miss rate
— 6% ~25%
— Tuned HDFS and MapReduce configuration
decrease remote data fetching

« Other data read from local disk

« Our cache system needs only an iteration
to warm up

— Succeeding iterations would process the in-
memory data

GigaSort

900

800

1.3~1.5x

speedup

~
o
o

o]
o
o

(O]
o
o

400 ¥ Chadoop

¥ Haoop

300

Execution Time (Second)

200

2G 4G 6G 8G
Job Input Size

102

Adapt Ostrich to Hadoop (1)

« Adapt MapTask

Map Task

g

+
=] .

\ Phoenix MapReduce /

103

Adapt Ostrich to Hadoop (2)

« Adapt ReduceTask

e
+
Reduce Task [m

g
Phoenix MapReduce /

104

Fine-grained optimizations (1)

« Exploiting Parallelism

— Overlap data loading and MapReduce
processing time
 Map input: byte-granularity
« Reduce input: file-granularity

Fine-grained optimizations (2)

 Increase the granularity of the serialization and
deserialization

— Require users to provide their (de)serialization
function

« Hadoop requires users to implement the writable interface
— Reduce application function-call overhead

« Configurable number of worker threads
— E.qg., less threads for data-intensive tasks

« Configurable inner-process unit size
— Fit into L1 cache
— Can use online-profiling to tune the unit size

Exploit data locality - memory

 Hadoop (Java) style

\

S— This is a sente~

\) Redundant uses of
' memory, duplicated

processing of input
!

—
L d T
N This iS @ vc..eeny wor ext

107

Exploit data locality - memory
 Chadoop (C) style

[Sentence | word | l

Reuse data
in memory!

Exploit data locality - storage

— Iterati A ML,

Cache allows sharing of

data among jobs

— Incrementa npu yadInc)
— Joined tables (user info table etc.)

109

Cache system design

TaskTracker

o |

TaskRunner TaskRunner CacheServer

| cache |

Shared Memory

HDFS

