

基于Hadoop的 SNS统计平台和聚类推荐

白伯纯 张叶银

renren.com

人人网

- 2.2亿用户
- 平均190好友
- 月40亿照片访问

- 一成付费用户
- 五成用户每天使用
- 八成有真实的资料

机遇

• 唯一标识

机遇

• 唯一标识

机遇

• 结构化数据

挑战

• 高复杂度计算

部署

- 200台
 - Hadoop 0.21.0
 - -4k+任务/天
 - 700TB Used/1.2PB Total
 - Hive/HBase/Streaming
- 30台
 - Hadoop 0.20.3
 - HBase only

结构

体系结构

Social computing at Renren

Data driven applications

Distribute

- TB of daily log data to be analyzed
- Millions of blogs, videos to be recommended
- Hundreds of millions of friends to be recommended

The most Computational-Intensive applications with highly structured big data

MapReduce

Adjacent list data structure

- A sparse representation facilitate to pass graph structures from iteration to the next iteration
- Parallel Breadth-first search
 - To find shortest path in the graph
- Google page rank
 - Impact index passing through graph links
- Distributed k-means clustering
 - Clustering large data into pre-defined number of groups

Case I: Friend recommendation by agglomerative hierarchical clustering

- Primary problem of friend recommendation
 - User familiarity
 - Common friends
 - User profile
 - User access
 - User interest

People you may know

Friends' friends

王赟

加为好友查看资料(16个共同好友)

张莹舟♥

♣ 加为好友
查看资料(17个共同好友)

刘国庆

加为好友查看资料(18个共同好友)

similarity(user1, user2) = $|friendset1 \cap friendset2|$

Hierarchy

- Clustering to find communities in social network
 - All in one community share some properties.
 - These overlapping communities reveal some social relationship of different levels.
 - They help to building new friendships in the social network.

Clustering: unsupervised learning

flat clustering

hierarchical clustering

Hierarchical agglomerative clustering

Method: Merge the nearest clusters until a single cluster is left

Procedure HAC (N points, stop criterion)

- (1) Initialize n points as n cluster centers;
- (2) Iterate over centers until stop criterion is satisfied:
- a. Compute pair-wise similarity between any two centers $sim(c_i, c_j)$
 - b. Find the nearest pair of centers
 - c. Merge the two centers

$$\langle i, j \rangle \leftarrow \arg\max_{i,j} sim(c_i, c_j)$$

(3) Output the hierarchical clusters.

Pair-wise distances

Iterative map/reduce

Iterative map/reduce

Mapper:

assign Block IDs to each data point.

Reducer:

each reducer is responsible for find the local nearest pair of centers.

Assignment table

Iterative map/reduce

Iterative map/reduce

Mapper:

preload centers in memory and compute distances from each center to all the centers coming into mappers.

Reducer:

each reducer is responsible for find the local nearest pair of centers.

Find the global nearest centers and merge them

Block map/reduce

Partition

- 100,000,000 users have to be partitioned to blocks before clustering.
- User profile helps to partition users into overlapping blocks.
- There are millions of blocks and each block contains several thousands of users on average.

Speed-up

- For small blocks, iterative map/reduce is not efficient for the overhead of start and end of a job.
- Only few of elements of the similarity matrix need to be updated.

One-off map/reduce

One-off map/reduce

Mapper:

Passing friend list to reducers.

Reducer:

Agglomeration until clustering stops and output clustering results.

Scalability

• Only suitable for m*n matrix where $m,n < 10^4$

Distance caching

 Avoid re-calculating pair-wise distance between centers not for agglomeration from iteration to the next.

Compressed storage for lower triangle

 Choose a row compressed storage mode to keep pair-wise distance between centers in memory.

$$K = (i+1)*i/2+j$$

Performance

Number of data points

Performance

Case II: Topic detection by Mean-shift clustering

- Clustering to find topics in news feed
 - High density indicates hot news.
 - Without knowing the number of topics.

Mean shift clustering

Iterative map/reduce

Iterative map/reduce

Mapper:

select a point as the center and compute distances from the center to all the data points, and assign a label to the points within the bandwidth.

Reducer:

collect data points of the same label and compute the center of mass of them.

Performance

Iterative map/reduce

Num of data points

Performance

人人数据平台

白伯纯 bochun.bai@renren-inc.com http://renren.com/bbc

张叶银 yeyin.zhang@renren-inc.com http://renren.com/hartebeest