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Talk Overview

• Introduction To Typhoon

• Scheduling Hadoop Jobs to Typhoon

• Mapping HDFS to XFS



Typhoon System

• Typhoon is Tencent’s cloud computing 

platform.

– Focusing  on IaaS + PaaS

• Purpose:

– Manage storage and computing resources.

• free programmers from maintenance work

– Resource sharing:

• Better resource utilization

– Uniform management :

• uniform monitoring, maintenance and security



Platform Comparison
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Focus on your app, leave the rest to us



More Platforms

-Private cloud

-HDFS, MapReduce, Hbase

- Batch processing

- Heterogeneous Environment

- Harness idle resources

- Flexible matching algorithm

- High throughput



Cloud Computing as OS

– File system (Storage)

– Process and Resource management(CPU, 

memory, etc)

– Authentication and Authorization(accounts, 

permission, quota, etc)

– System software(database etc)

– APIs for software development （networking,  

threads, etc)



Typhoon Layers
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Typhoon Properties

• Private cloud

• Computing nodes are more uniform: Linux 

OS, central management

• Standalone job scheduler

• Written in C++
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Scheduler Properties

• Support diverse binary types:
• MapReduce programs

• “Hello world” binary

• Java programs

• Support diverse job types:

– Online serving: 

• Latency sensitive, resource guarantee.

– Offline processing: 

• Batch oriented. Throughput more important 

• Resource guarantee: Quota
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Why Support Hadoop Jobs

• Allow smooth transition.

– A lot of existing hadoop jobs:

• webpage analysis, query analysis, data mining, …

– A lot of small hadoop clusters.

• Owned by different teams.

• Take advantage of advances in Hadoop 

development.

– Shared experiment platform

– Advanced Hadoop features



Hadoop Structure



Support Hadoop Jobs

• Run Hadoop Jobs in Typhoon w/o 

modification.

• Challenges:

– Mostly written in Java

– Job scheduling API different from Typhoon 

API.

– Mostly use HDFS as storage.



Hadoop Scheduling Overview



Hadoop Jobs on Typhoon
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Hadoop Jobs on Typhoon
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Other Issues

• When to recycle task trackers to make 

room for non-hadoop jobs?

• How to preempt running hadoop jobs?



Talk Overview

• Introduction To Typhoon

• Scheduling Hadoop Jobs to Typhoon

• Mapping HDFS to XFS (HDFS on XFS)



What and Why?

– XFS: Tencent file system, 
• similar to GFS and HDFS.

• better scalability: metadata distributed to 
multiple machines.

– Why HDFS on XFS?
• Store data used by HDFS apps on XFS

• Run hadoop apps without little or no code 
modification.



Feasibility

– HDFS “FileSystem” interface
• Support extension for new File Systems

• Java

– XFS “File” interface
• Factory pattern. Support registering new File Systems

• C++

– Solution: Implements an XFSFileSystem  

class in Java that wraps XFS “File” interface 

as HDFS “FileSystem”.



Challenges
– Interface gap

• Langurage: Java vs. C++. complex structures, 

memory mgmt.

• Functionality: eg. List, getLocation, diff in replica 

factor, permission

– Semantic gap

• Behavior: eg. Should mkdir be recursive?

• Exception handling: eg. What if read non-exist 

file



Solution overview

– HDFS on XFS Layers

– Cover interface gap
• JNA, for simplicity than JNI and flexibility than SWIG

– Cover semantic gap
• Analyze both HDFS and XFS source code 

• Perform exact HDFS behaviors by wrapper XFS

• Use exactly same exception handling policies 
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Improve Read/Write: why?

– Naïve HDFS on XFS: single client read/write 

performance: ~20% lower than XFS

– Why? Use read as example

– Two memory copy!

• Lang-copy: copy from C++ to Java due to no “pin” 

data

• Buf-copy: copy data to user provided buffer

HDFS 

app 

(Java)

XFS

FileSyst

em

XFS 

JNA Lib

(Java)

XFS

Wrap 

(C++)

XFS SDK

(C++)

Lang-copyBuf-copy



Improve Read/Write: how?

– Java NIO + JNA

• ByteBuffer with direct mode memory allocation in 
C++ heaps

• JNA with native memory mgmt in C++ heaps by 
malloc/free

– HDFS on XFS: two approaches

• HDFSonXFS-E :  
– No lang-copy by JNA, native malloc/free, retain buf-

copy

• HDFSonXFS-D : a new API, 
– No lang-copy or buf-copy

– using JNA native malloc/free to get buffer and pass in 
call stack



Improve Namespace OPs

– Naïve HDFS on XFS: slow list, recursive rm, 

du

• Cost for scalability: list and dus in XFS must 

check master and meta servers

• Cost for stable serving: rmr and dus in XFS runs 

with limited speed to avoid user requests starving

– Towards fast and stable OPs with scalability

• Iterable recursive dus and rmr in XFS Master

• Paging operation in XFS SDK



Evaluations

– Apps without code modication to verify 

correctness

• Verified by Hadoop examples

– Performance by Micro-benchmarks

• Single-client Read/Write

• Multi-client Read/Write

• Namespace operations

– Real world running jobs



Single client Read

– HDFSonXFS-D, 2GB file: 0.4% overhead of 
XFS



Single client Write

– HDFSonXFS-D: 2GB file: 0.6% overhead of 
XFS, but needs apps modifications



Multi-client Read
– Each node 5 threads, sequentially read 4MB blocks

– HDFSonXFS-E 9 clients: 2.6% overhead of XFS



Impl Summary

– Introduce JNA Lib and XFSFileSystem layers 

to cover interface and semantic gap

– JNA native memory mgmt to reduce read/write 

cost to about 0.4% and 0.6%

– XFS server side paging-recursive operations 

for fast, stable, and scalable namespace OPs

– HDFS on XFS is integrated to Hadoop cluster 

to submit jobs in Tencent



Conclusions

• Typhoon is our cloud computing system 

with clearly defined layers

• Typhoon supports running native Hadoop 

jobs by:

– Running jobtrack and tasktrackers as jobs

– Mapping HDFS to XFS

• Questions?


