
Running Hadoop Jobs on
Typhoon System

Huican Zhu

Talk Overview

• Introduction To Typhoon

• Scheduling Hadoop Jobs to Typhoon

• Mapping HDFS to XFS

Typhoon System

• Typhoon is Tencent’s cloud computing

platform.

– Focusing on IaaS + PaaS

• Purpose:

– Manage storage and computing resources.

• free programmers from maintenance work

– Resource sharing:

• Better resource utilization

– Uniform management :

• uniform monitoring, maintenance and security

Platform Comparison

S3
RDS Simple

DB

EC2

AWS
- Apps written in

Java, Python

- Access to HRD

- Run in sandboxed env.

-Quota, Limits

Focus on your app, leave the rest to us

More Platforms

-Private cloud

-HDFS, MapReduce, Hbase

- Batch processing

- Heterogeneous Environment

- Harness idle resources

- Flexible matching algorithm

- High throughput

Cloud Computing as OS

– File system (Storage)

– Process and Resource management(CPU,

memory, etc)

– Authentication and Authorization(accounts,

permission, quota, etc)

– System software(database etc)

– APIs for software development （networking,

threads, etc)

Typhoon Layers

DFS Job SchedulerAA

Data

Processing

(MapReduce)

Network Platform (RPC)

Online Serving

DB

Typhoon Properties

• Private cloud

• Computing nodes are more uniform: Linux

OS, central management

• Standalone job scheduler

• Written in C++

Scheduler Architecture
Central

manager
MasterMaster

Submitter

Submitter

Shared File System

Task Runner Task Runner

Task Runner Task Runner Task Runner

Submitter

Submitter

Task Runner

Scheduler Properties

• Support diverse binary types:
• MapReduce programs

• “Hello world” binary

• Java programs

• Support diverse job types:

– Online serving:

• Latency sensitive, resource guarantee.

– Offline processing:

• Batch oriented. Throughput more important

• Resource guarantee: Quota

Talk Overview

• Introduction To Typhoon

• Scheduling Hadoop Jobs to Typhoon

• Mapping HDFS to XFS

Why Support Hadoop Jobs

• Allow smooth transition.

– A lot of existing hadoop jobs:

• webpage analysis, query analysis, data mining, …

– A lot of small hadoop clusters.

• Owned by different teams.

• Take advantage of advances in Hadoop

development.

– Shared experiment platform

– Advanced Hadoop features

Hadoop Structure

Support Hadoop Jobs

• Run Hadoop Jobs in Typhoon w/o

modification.

• Challenges:

– Mostly written in Java

– Job scheduling API different from Typhoon

API.

– Mostly use HDFS as storage.

Hadoop Scheduling Overview

Hadoop Jobs on Typhoon

Task Runner

Job Tracker
Typhoon

Master

Jobtracker job

Run Jobtracker as a Typhoon job

Hadoop Jobs on Typhoon

Task Runner

Job Tracker

Resource

Agent
Typhoon

Master

Task Runner

Hadoop

Job

Task Runner

Task

Tracker

Task

Tracker

1. Submit hadoop to Jobtracker

2. RA asks master to add more

task trackers

3. Master adds more.

4. Jobtracker asks tasktrackers to

run new tasks.

1

2

34

Other Issues

• When to recycle task trackers to make

room for non-hadoop jobs?

• How to preempt running hadoop jobs?

Talk Overview

• Introduction To Typhoon

• Scheduling Hadoop Jobs to Typhoon

• Mapping HDFS to XFS (HDFS on XFS)

What and Why?

– XFS: Tencent file system,
• similar to GFS and HDFS.

• better scalability: metadata distributed to
multiple machines.

– Why HDFS on XFS?
• Store data used by HDFS apps on XFS

• Run hadoop apps without little or no code
modification.

Feasibility

– HDFS “FileSystem” interface
• Support extension for new File Systems

• Java

– XFS “File” interface
• Factory pattern. Support registering new File Systems

• C++

– Solution: Implements an XFSFileSystem

class in Java that wraps XFS “File” interface

as HDFS “FileSystem”.

Challenges
– Interface gap

• Langurage: Java vs. C++. complex structures,

memory mgmt.

• Functionality: eg. List, getLocation, diff in replica

factor, permission

– Semantic gap

• Behavior: eg. Should mkdir be recursive?

• Exception handling: eg. What if read non-exist

file

Solution overview

– HDFS on XFS Layers

– Cover interface gap
• JNA, for simplicity than JNI and flexibility than SWIG

– Cover semantic gap
• Analyze both HDFS and XFS source code

• Perform exact HDFS behaviors by wrapper XFS

• Use exactly same exception handling policies

HDFS

app

(Java)

XFS

FileSyst

em

XFS

JNA Lib

(Java)

XFS

Wrap

(C++)

XFS SDK

(C++)

XFS File

APIs

HDFS FileSystem

APIs

Cover

interface gap

Cover

semantic gap

Improve Read/Write: why?

– Naïve HDFS on XFS: single client read/write

performance: ~20% lower than XFS

– Why? Use read as example

– Two memory copy!

• Lang-copy: copy from C++ to Java due to no “pin”

data

• Buf-copy: copy data to user provided buffer

HDFS

app

(Java)

XFS

FileSyst

em

XFS

JNA Lib

(Java)

XFS

Wrap

(C++)

XFS SDK

(C++)

Lang-copyBuf-copy

Improve Read/Write: how?

– Java NIO + JNA

• ByteBuffer with direct mode memory allocation in
C++ heaps

• JNA with native memory mgmt in C++ heaps by
malloc/free

– HDFS on XFS: two approaches

• HDFSonXFS-E :
– No lang-copy by JNA, native malloc/free, retain buf-

copy

• HDFSonXFS-D : a new API,
– No lang-copy or buf-copy

– using JNA native malloc/free to get buffer and pass in
call stack

Improve Namespace OPs

– Naïve HDFS on XFS: slow list, recursive rm,

du

• Cost for scalability: list and dus in XFS must

check master and meta servers

• Cost for stable serving: rmr and dus in XFS runs

with limited speed to avoid user requests starving

– Towards fast and stable OPs with scalability

• Iterable recursive dus and rmr in XFS Master

• Paging operation in XFS SDK

Evaluations

– Apps without code modication to verify

correctness

• Verified by Hadoop examples

– Performance by Micro-benchmarks

• Single-client Read/Write

• Multi-client Read/Write

• Namespace operations

– Real world running jobs

Single client Read

– HDFSonXFS-D, 2GB file: 0.4% overhead of
XFS

Single client Write

– HDFSonXFS-D: 2GB file: 0.6% overhead of
XFS, but needs apps modifications

Multi-client Read
– Each node 5 threads, sequentially read 4MB blocks

– HDFSonXFS-E 9 clients: 2.6% overhead of XFS

Impl Summary

– Introduce JNA Lib and XFSFileSystem layers

to cover interface and semantic gap

– JNA native memory mgmt to reduce read/write

cost to about 0.4% and 0.6%

– XFS server side paging-recursive operations

for fast, stable, and scalable namespace OPs

– HDFS on XFS is integrated to Hadoop cluster

to submit jobs in Tencent

Conclusions

• Typhoon is our cloud computing system

with clearly defined layers

• Typhoon supports running native Hadoop

jobs by:

– Running jobtrack and tasktrackers as jobs

– Mapping HDFS to XFS

• Questions?

