Running Hadoop Jobs on Typhoon System

Huican Zhu

Talk Overview

- Introduction To Typhoon
- Scheduling Hadoop Jobs to Typhoon
- Mapping HDFS to XFS

Typhoon System

- Typhoon is Tencent's cloud computing platform.
 - Focusing on laaS + PaaS
- Purpose:
 - Manage storage and computing resources.
 - free programmers from maintenance work
 - Resource sharing:
 - Better resource utilization
 - Uniform management :
 - uniform monitoring, maintenance and security

Platform Comparison Tencent 腾讯

Focus on your app, leave the rest to us

- Apps written in Java, Python
- Access to HRD
- Run in sandboxed env.
- -Quota, Limits

AWS

More Platforms

- Heterogeneous Environment
- Harness idle resources
- Flexible matching algorithm
- High throughput

- -Private cloud
- -HDFS, MapReduce, Hbase
- Batch processing

Cloud Computing as OS encent 腾讯

- File system (Storage)
- Process and Resource management(CPU, memory, etc)
- Authentication and Authorization(accounts, permission, quota, etc)
- System software(database etc)
- APIs for software development (networking, threads, etc)

Typhoon Layers

Typhoon Properties Tencent 腾讯

- Private cloud
- Computing nodes are more uniform: Linux OS, central management
- Standalone job scheduler
- Written in C++

Scheduler Architecture Bin Contraction Scheduler Architecture Tencent Bin Contraction Bin Contra

Scheduler Properties Tencent Bill

- Support diverse binary types:
 - MapReduce programs
 - "Hello world" binary
 - Java programs
- Support diverse job types:
 - Online serving:
 - Latency sensitive, resource guarantee.
 - Offline processing:
 - Batch oriented. Throughput more important
- Resource guarantee: Quota

Talk Overview

- Introduction To Typhoon
- Scheduling Hadoop Jobs to Typhoon
- Mapping HDFS to XFS

Why Support Hadoop Jobs

- Allow smooth transition.
 - A lot of existing hadoop jobs:
 - webpage analysis, query analysis, data mining, ...
 - A lot of small hadoop clusters.
 - Owned by different teams.
- Take advantage of advances in Hadoop development.
 - Shared experiment platform
 - Advanced Hadoop features

Hadoop Structure Tencent 腾讯

Support Hadoop Job Support Hadoop Job

- Run Hadoop Jobs in Typhoon w/o modification.
- Challenges:
 - Mostly written in Java
 - Job scheduling API different from Typhoon API.
 - Mostly use HDFS as storage.

Hadoop Scheduling Overview **

Hadoop Jobs on Typhon Tengent Bill

Run Jobtracker as a Typhoon job

Hadoop Jobs on Typhon Tengent 腾讯

- 1. Submit hadoop to Jobtracker
- 2. RA asks master to add more task trackers
- 3. Master adds more.
- 4. Jobtracker asks tasktrackers to run new tasks.

Other Issues

- When to recycle task trackers to make room for non-hadoop jobs?
- How to preempt running hadoop jobs?

Talk Overview

- Introduction To Typhoon
- Scheduling Hadoop Jobs to Typhoon
- Mapping HDFS to XFS (HDFS on XFS)

Tencent 腾讯

What and Why?

- XFS: Tencent file system,
 - similar to GFS and HDFS.
 - better scalability: metadata distributed to multiple machines.
- Why HDFS on XFS?
 - Store data used by HDFS apps on XFS
 - Run hadoop apps without little or no code modification.

Feasibility

- HDFS "FileSystem" interface
 - Support extension for new File Systems
 - Java
- XFS "File" interface
 - Factory pattern. Support registering new File Systems
 - C++
- Solution: Implements an XFSFileSystem class in Java that wraps XFS "File" interface as HDFS "FileSystem".

Challenges

Interface gap

- Langurage: Java vs. C++. complex structures, memory mgmt.
- Functionality: eg. List, getLocation, diff in replica factor, permission

Semantic gap

- Behavior: eg. Should mkdir be recursive?
- Exception handling: eg. What if read non-exist file

Solution overview Tencent 腾讯

HDFS on XFS Layers

- Cover interface gap
 - JNA, for simplicity than JNI and flexibility than SWIG
- Cover semantic gap
 - Analyze both HDFS and XFS source code
 - Perform exact HDFS behaviors by wrapper XFS
 - Use exactly same exception handling policies

Improve Read/Write: why?

- Naïve HDFS on XFS: single client read/write performance: ~20% lower than XFS
- Why? Use read as example

- Two memory copy!
- Lang-copy: copy from C++ to Java due to no "pin" data
- Buf-copy: copy data to user provided buffer

Improve Read/Write: how? The contract the c

- Java NIO + JNA
 - ByteBuffer with direct mode memory allocation in C++ heaps
 - JNA with native memory mgmt in C++ heaps by malloc/free
- HDFS on XFS: two approaches
 - HDFSonXFS-E
 - No lang-copy by JNA, native malloc/free, retain bufcopy
 - HDFSonXFS-D a new API,
 - No lang-copy or buf-copy
 - using JNA native malloc/free to get buffer and pass in call stack

Improve Namespace OPSent Bill

- Naïve HDFS on XFS: slow list, recursive rm, du
 - Cost for scalability: list and dus in XFS must check master and meta servers
 - Cost for stable serving: rmr and dus in XFS runs with limited speed to avoid user requests starving
- Towards fast and stable OPs with scalability
 - Iterable recursive dus and rmr in XFS Master
 - Paging operation in XFS SDK

Evaluations

- Apps without code modication to verify correctness
 - Verified by Hadoop examples
- Performance by Micro-benchmarks
 - Single-client Read/Write
 - Multi-client Read/Write
 - Namespace operations
- Real world running jobs

Single client Read Tencent Bill

 HDFSonXFS-D, 2GB file: 0.4% overhead of XFS

Single client Write Tencent Bill

 HDFSonXFS-D: 2GB file: 0.6% overhead of XFS, but needs apps modifications

Multi-client Read

Each node 5 threads, sequentially read 4MB blocks

HDFSonXFS-E 9 clients: 2.6% overhead of XFS

Impl Summary

- Introduce JNA Lib and XFSFileSystem layers to cover interface and semantic gap
- JNA native memory mgmt to reduce read/write cost to about 0.4% and 0.6%
- XFS server side paging-recursive operations for fast, stable, and scalable namespace OPs
- HDFS on XFS is integrated to Hadoop cluster to submit jobs in Tencent

Conclusions

- Typhoon is our cloud computing system with clearly defined layers
- Typhoon supports running native Hadoop jobs by:
 - Running jobtrack and tasktrackers as jobs
 - Mapping HDFS to XFS
- Questions?