A Testbed for Datacenter Computing

詹剑锋 (@jfzhan)

中国科学院计算技术研究所 先进计算机系统试验室 Hadoop in China 2011 2011.12.2

Outline

- What is datacenter computing?
- Motivation for a new testbed
- Current status of the testbed
- Benchmarks

Datacenter hosting services

- Free services are ubiquitous and pervasive
 - Computing resources
 - Amazon EC2
 - Information
 - Google, Ebay, Baidu, Tencent, Taobao, and......
 - Knowledge
 - Cost-effective solutions

Datacenter racks [copyright wikipedia.com]

Google Datacenter [copyright google.com]

A typical Google datacenter.

Data streaming to/from major sources

- Twitter "fire hose"
 - 50M tweets/day * (140 + 54)B/tw = 10GB/day = 1Mb/sec
- Google search (estimate)
 - 2.36 Mb/sec input queries, 100 Mb/sec out
- LHC (particle accelerator)
 - 15 PB/year = 41 TB/day = 1.712 TB/h = 4.8 Gb/sec
- Email (non spam)
 - Gmail 18 emails/day = 75 TB/day = 7Gb/sec
- SKA (radio telescope)
 - Raw data = 960PB/day, Final processed data = 10 Gb/sec
- Zynga (social network game)
 - 1PB/day = 92 Gb/sec

Courtesy. Dr. Dennis Gannon PDAC-11 Keynote

An informal definition of <u>datacenter</u> <u>computing</u> (*DC*)

- Data-intensive computing or services for the masses hosted on datacenters.
 - Data-intensive services
 - Massive concurrent requests, e.g., million
 - Data scales varying from TB to PB
 - Data-intensive computing (data analysis).
 - A large amount of Jobs composed of independent tasks (loosely coupled)
 - Data scales varying from TB to PB
 - Approaching EB in near future

DC vs. High end HPC

		Workload analysis	Parallelism	Reliability	Metrics
DC	•	Loosely coupled Workload churn	Ample parallelism	No checkpoint need for single failures. Reliability requirements depend upon the nature of data.	High throughput
High end HPC	•	Tightly coupled: a single job with huge resource demand. Depend on collective communication.	Difficult to exploit parallelism.	Checkpoint of a whole application for a single failure.	The turnaround time

J. Zhan, L. Wang and N. Sun, Performance Evaluation of a Datacenter Computer, Communication of CCF. July, 2011.

Outline

• What is datacenter computing?

Motivation for a new testbed

Current status of the testbed

Benchmarks

What is a testbed?

- A collection of connected machines?
 - Yes, maybe geographically distributed

Figure 1. Open Cirrus testbed circa Q1 2009.

Source: Open CirrusTM Cloud Computing Testbed: Federated Data Centers for Open Source Systems and Services Research

What is a testbed?

- A collection of software stack for supporting experiments?
 - e.g., PlanetLab supports distributed virtualization.

Source: Larry Peterson, PlanetLab: Evolution vs Intelligent Design in Global Network Infrastructure

The summary of testbed projects

Characteri stics	Testbeds					
	Open Cirrus	TerraGrid	PlanetLab	EmuLab	Open Cloud Consortium	
Type of research	Systems & services	Scientific applications	Systems and services	Systems	interoperability across clouds using open APIs	
Approach	Federation of heterogeneous data centers	Multi-site hetero clusters super comp.	A collection of nodes hosted by research instit.	A single- site cluster with flexible control	Multi-site	
Participants	HP, Intel, IDA, KIT, UIUC, Yahoo!	Many univ. & organizations	Many univ & organizations	University of Utah 4	4 centers	

Most important requirements for a DC testbed

- Data: from TB or PB
 - Real data, not synthetic data
- Applications
 - State-of-the-art algorithms
- User access traces
 - A search engine
 - Query rate variance
 - Query locality
 - Query frequencies
 - Some search terms are hot.

Most important requirements for a DC testbed

Unfortunately, no testbed provides big data, application, and real user access traces (live workloads).

Data lock-in issue

- Internet service companies indeed own big data, and real applications.
- Commercial confidentiality
 - They would not like to share data, applications with research communities.
- Current open data projects
 - Limited purposes: algorithms researches.

Our targets

- Build a testbed, providing real big data, applications, and user access traces for research communities.
 - Architecture
 - OS/VM
 - Hadoop-like systems
 - Data management
 - Reliability
 - Power management
- Promote innovations
 - Support Web-based experiments for innovative technologies

Outline

• What is Datacenter Computing?

Motivation for a New Testbed

Current Status of the Testbed

Benchmarks

The testbed architecture

An ideal application

- Data-intensive
 - -TB or PB
- A challenging application
 - E.g. machine reading of the World Wide Web
- Valuable services attracts more searches

ProfSearch (http://prof.ncic.ac.cn), online since Sep. 2011.

Front-end service

科研人搜索 Researcher Search

数据中心测试床 关于我们 意见和建议 声明 主页 贡献者名单

登录

您可以根据人物的姓名、研究方向和科研单位等搜索信息

近期被访问次数最多的学者

李维英

西安电子科技大学

胡华

厦门大学

杨怀中

发展哲学 、科学哲学与科 武汉理工大学

张蔚榛

土壤水资源与环境(非饱 中国农业大学

姚妙新

偏微分方程 天津大学

曾晓勤

河海大学

何秀凤

● 卫星导航定位 ● 变形 河海大学

刘广发

生物制氢 研究氢酶结构功 厦门大学

干军

基因组学 生物信息学 负 中国科学院

赵劲松

1、现代建筑设计方法与理 天津大学

当慎勇

管理信息系统开发、数据 中南财经政法大学

吴晓娜

华中师范大学

李顺

社会保障理论 、 马克思主 吉林大学

邢孟道

雷达成像、目标识别和天 西安电子科技大学

郭湛

马克思主义哲学理论及其 中国社会科学院

再多学者>>

Information extraction

Milestones

- ProfSearch 1.0, 2011.9
 - Baseline services
- ProfSearch 1.5, 2011.12
 - Incremental data processing
 - Autonomic management
 - Upgraded algorithms
- ProfSearch 2.0, 2012.2
 - Worldwide scholars from all disciplines
 - Papers
- ProfSearch 3.0, 2012.12
 - Full-fledged services

The detail of the testbed

Main workloads

- Incremental data analysis jobs
- Search
 - File system-based
 - Database-based
- Web server
- Database
- NoSQL
 - Memcached
 - BigTable

Parallel experiments

- Users specify
 - Workloads
 - Data sets
 - Optional hardware configurations
 - Workload traces
 - Scaling factors
- Upload the tested systems
 - E.g., system or VM images
- Perform several experiments simultaneously

The snapshot of the current system

实验名称	
实验平台 Xeon ▼	实验存储 mysql ▼
请求集	重放速率

提交 取消

名称	平台	存储	请求个数	速室(请求/秒)	状态	选择
Hbase_Xeon_HighSpeed	Xeon	hbase	10000	50	complete	
Hbase_Xeon_LowSpeed	Xeon	hbase	10000	10	complete	
Mysql_Atom_HighSpeed	Atom	mysql	10000	50	complete	
Mysql_Atom_LowSpeed	Atom	mysql	10000	10	complete	
Mysql_Xeon_HighSpeed	Xeon	mysql	10000	50	complete	
Mysql_Xeon_LowSpeed	Xeon	mysql	10000	10	complete	

[运行实验] [删除实验] [查看结果] [刷新状态

Parallel evaluation experiments

实验配置

实验名称: Hbase_Xeon_HighSpeed

实验平台: Xeon 实验存储: hbase 请求集: 10000 重放速率: 50

实验平台配置。

CPU类型: Intel(R) Xeon(R) E5310

CPU个数: 4

CPU频率: 1600.136 MHZ 内存容量: 3.86716 GB

操作系统: Linux 内核版本: 2.6.34.7 Gcc版本: 4.1.2

-实验结果

请求强度: 49.9555reqs/s 持续时间: 200.038s 吞吐率: 49.5856reqs/s

平均响应时间: 0.737728s

用户请求速车

Parallel evaluation experiments

内存利用车

Four case studies

different hardware

Different data stores

Domain-specific algorithms

Performance behavior analysis

Different hardware: Xeon vs. Atom

MySQL based search

- Xeon: CPU Type: Intel(R) Xeon(R) E5310; CPU Numbers: 4; CPU Frequency: 1600.136 MHZ; Memory Size: 3.86716 GB
- Atom: CPU Type: Intel(R) Atom(TM) D510; CPU Numbers: 4; CPU Frequency: 1666.428 MHZ; Memory Size: 1.95093 GB

Atom

- Intensity: 9.92923reqs/s
- Duration: 1007.13s
- Throughput: 9.04156reqs/s
- Average Response Time: 3.59891s

Xeon

- Intensity: 9.9713reqs/s
- Duration: 1002.78s
- Throughput: 9.22338reqs/s
- Average Response Time: 1.334s

Different data stores

Different domain specific algorithms

Performance behavior analysis

The current configuration of the deployed front-end service

cores	memory	storages	nodes	Workload types
48	128G	1T	x1	Machine learning
16	12G	1T	x2	Natural language processing
4	4G	4T	x5	Crawler
4	4G	4T	x2	Data cleaning and information extraction
4	4G	120G	x8	Web server, database, search engine

Milestones

- Version 1.0, 2011.9
 - Demo
- Version 1.5, 2011.12
 - Internal use
- version 2.0, 2012.2
 - A part of features open to external users
- ProfSearch 2.5, 2012.6
 - Full-fledged functions: 140 nodes
- ProfSearch 3.0, 2012.12
 - 1000+ nodes
 - Federated testbeds
 - More applications deployed
 - diverse data and applications

Outline

• What is Datacenter Computing?

Motivation for a New Testbed

Current Status

Benchmarks

Current Benchmarks

SPEC CPU

SPEC Web

HPCC

PARSEC

TPCC

Gridmix

YCSB

Current Benchmarks

Our contributions

- •For search engines, we find:
 - Real-world query traces do not follow well-defined probability models
 - Synthetic traces do not accurately reflect the real traces
- •We develop and open source :
 - Search: a benchmark for datacenter computing
 - DCAngel: a comprehensive workload characterization tool
 - Available at http://prof.ncic.ac.cn/DCBenchmarks

Evaluation Methodology

•Workload traces:

Name	Time sequence	Query sequence	Remark
Real	Original	Original	SoGou workload trace
Poisson	Poisson	Original	
Hot	Poisson	Frequency order	Only top 1000 distinct queries
Shuffle	Poisson	Random	Poor temporal locality

H. Xi, J. Zhan, et al. Characterization of Real Workloads of Web Search Engines. 2011 IEEE International Symposium on Workload Characterization (IISWC-2011). 2011.

Response time Four workload traces' response time

Response time and queue length

- ➤ T_response = T_queue + T_service, response time and queue length have a linear relationship
- > Rate variation can make the queue become longer

Throughput

Shuffle has the worst throughput for its worst

temporal locality

Throughput

- •Shuffle has the worst throughput for its worst temporal locality.
- Poisson has the best throughput for its rate variation is not as severe as the real trace.

Current status

- We are publishing more benchmarks for datacenter computing
 - NoSQL based system
 - Data mining and machine learning algorithm
 - A benchmark for shared datacenters
- Hope that you can join!

Summary

- We have built a testbed for datacenter computing
 - Now 5 TB data, 36 nodes.
 - Expected 100TB+ data, 1000+ nodes in Dec. 2012
 - More applications deployed on federated testbeds
- The testbed provides real big data and live workloads.
 - Resolving data lock-in issue.
- Parallel experiment systems
 - Varying from architecture, OS, and domain-specific algorithms.
- Benchmarks
 - Hope you can join!

Contact information

- Homepage
 - http://prof.ncic.ac.cn/jfzhan
- Mail
 - zhanjianfeng@ict.ac.cn
- Weibo
 - http://weibo.com/jfzhan

http://prof.ncic.ac.cn/jfzhan @ 中多科学代刊算技术研究经

