The Sandbox Roulette: Are you ready for
the gamble?

Rafal Wojtczuk rafal@bromium.com

Rahul Kashyap rahul@bromium.com

26 February 2013

What is a sandbox?

In computer security terminology, a sandbox is an environment designed to run untrusted (or
potentially exploitable) code in a manner that prevents the encapsulated code from damaging the rest
of the system. The reason to introduce a sandbox is the assumption that it is more feasible to isolate
potentially malicious code than to build a large application that cannot be subverted by an attacker.

Many different products can be categorized as sandboxes. For this talk, we focus on Windows-based
application sandboxes. Such a sandbox is designed to run as a single application on top of a Windows
0S. Usually, from the point of view of user experience, the existence of a sandbox container should be
as unobtrusive as possible while still providing an additional layer of security. Short overviews of
mechanisms used to implement a few selected sandboxes are presented later in this paper.

The inherent weakness of application sandboxes

The sandbox approach gained significant adoption in the industry recently. In some cases, after
introducing the sandbox, the number of publicly available exploits against the application dropped
dramatically. Despite this fact, in this paper we try to stress the main architectural weakness of
Windows application sandboxes, namely their reliance on kernel security. We believe that the Windows
kernel presents a broad attack surface to the skilled attacker, and a successful exploit against the kernel
can totally breach sandbox defenses. This fact is hardly news — practically every good paper about a
given sandbox implementation mentions briefly the possibility of a kernel-based attack. We postulate
that this attack vector should be considered as a real threat, at least as likely to be exploited as other
possible vectors (e.g. bugs in the sandbox implementation). Particularly, we have developed concrete
examples of exploit code capable of breaking out of four different sandbox implementations, if run on
an old unpatched version of Windows that contain known kernel vulnerabilities.

There is empirical evidence that vulnerabilities in sandbox implementations are relatively rare. In
comparison, Windows kernel vulnerabilities are frequent. In 2012, 25 CVE entries were allocated for
Windows kernel-mode components which resulted in privilege escalation to kernel mode. The Microsoft
security bulletins for February 2013 name 30 CVE items for vulnerabilities in win32k.sys (a kernel mode
component). Exploitation of kernel vulnerabilities is more complex than exploitation of a user mode
application and requires more knowledge on the details of the OS implementation. This is presumably

mailto:rafal@bromium.com
mailto:rahul@bromium.com

the reason why malware authors have not yet used this attack vector widely (with Dugu malware [1]
being the notable exception). Still, the number of Windows kernel vulnerabilities announced each
month justifies our estimate that this attack vector should be considered as the dominant one, and may
be more actively exploited in the near future. It means that each time a vulnerability is announced in the
Windows kernel, sandbox users may be awaiting the equivalent of a roulette spin — was this
vulnerability known before and was it exploited to breach my sandbox?

Sandbox Type 1: OS enhancement based sandbox

The main concept

In this approach, there is a custom kernel driver installed that modifies Windows behavior for a
sandboxed application in order to provide additional protection. For instance, if a sandboxed application
tries to terminate a non-sandboxed process, such a request will be denied. If a sandboxed application
tries to write to a file that is protected (the protected files are defined in the sandbox configuration),
then the driver can transparently create a copy of the file that the sandboxed application can write to,
while the original file is untouched. Such a copy-on-write mechanism allows the unchanged sandboxed
application to work properly, while preventing damage or compromise to the rest of the system.

The main weakness

This design is focused on preventing access to the protected resources and if implemented exhaustively
this goal can be achieved. However it does not significantly limit the possibilities of exploiting a kernel
vulnerability — it allows access to most kernel functionality. The reason is the need to allow a broad
range of applications to run in a sandbox which may require access to many kernel interfaces. Once the
attacker has gained arbitrary code execution in kernel mode, he can completely bypass the sandbox, an
application sandbox has no means to protect itself against code running at the same privilege level.

Type 1 Sandbox example: Sandboxie
Sandboxie [2] is a popular tool:

Sandboxie is Copyright © 2004-2012 by Ronen Tzur. All rights reserved.
Sandboxie.com | Contact Author
This site has been viewed|195,235,3210ftimes since June 2004

It is widely used for malware analysis, and generally for controlled execution of applications.

Unfortunately, Sandboxie documentation does not describe the details of the implementation. The
following diagram shows the main components of Sandboxie; note this diagram was copied from an
unrelated site [3], so that it may be incomplete or outdated.

RESOURCE
ACCESS pracess

Resource access

Sandboxie user mode

hooks dll ShieDIl

Resource access

Sandboxie Driver io controles

ShieDrv

Controlled resource
ACCESS

Is SandBoxed
process?

\ObjectTypes win32k_NtUserCallHwndParamLock

wind2k_NtUserDestroyWind ow
Token win32k NtUserShowWindow
Process winiZk NtUserSendlnput

Due to the differences in x86_32 and x86_64 Windows kernels, Sandboxie’s method of hooking crucial
operations differs between these platforms. The documentation states that the “experimental”
Sandboxie mode on x86_64 provides nearly the same level of protection as in x86_32 case.

We tested the exploit for the CVE-2012-0217 vulnerability (misleadingly named “User Mode Scheduler
Memory Corruption” in Microsoft bulletin MS12-042) in the Sandboxie environment on the x86_64
platform running the default Windows 7 SP1 kernel. This vulnerability is caused by not sanitizing the
return address of a system call; the non-canonical return address results in an unexpected exception
being raised that is handled incorrectly. The exploit worked flawlessly, providing the ability to run
arbitrary code in kernel mode. A slight twist is that the usual kernel shellcode that just steals the

SYSTEM access token is not particularly useful to the attacker. Although the attacker gains SYSTEM rights
in his user mode process, the process is still confined by Sandboxie (and an attempt to kill a non-
sandboxed process from this SYSTEM shell fails). The attacker needs to perform some extra work while
in kernel mode, either:

1) Disable the Sandboxie driver (uninstall hooks, or just overwrite the driver code)

2) Migrate to another process that runs outside of the Sandboxie container
We chose the second method, because it is more generic. The required steps are:

1) Allocate kernel memory for exploit_syscall_handler() function

2) Hook all system calls via overwriting LSTAR MSR, (LSTAR:= exploit_syscall_handler)

3) When the exploit_syscall_handler() function detects it is running in the context of a process
running outside of the sandbox, inject arbitrary shellcode into this process

The result is that after the exploit is run within a sandbox, the attacker can execute arbitrary code in the
context of an arbitrary process. Careful readers certainly recognize that this procedure is similar to how
remote kernel exploits (that often initially execute with raised IRQL) migrate to a stable user mode
environment.

To sum up, we have verified that by exploiting the CVE-2012-0217 vulnerability, a Sandboxie-confined
process can completely bypass Sandboxie protection.

Type 1 Sandbox example: BufferZone Pro [4]

This popular sandbox is similar in concept to Sandboxie. Naturally some implementation details are
different — e.g. by default, it prevents read access to selected directories (to block data theft). The same
CVE-2012-0217 shellcode-migrating exploit can be used to fully bypass BufferZone Pro protection
running on unpatched Windows 7 SP1 on x86_64 platform.

Sandbox type 2: Master/Slave sandbox

The main concept

In this approach, the application is split into two processes. The first one (Slave) runs with very low
privilege (so, it is confined using the OS access control facilities); it is able to access almost none of
existing OS resources. Whenever the Slave needs a particular resource (e.g. read a file), it sends a
message to the other process (Master) via some IPC channel. Master validates the request and if is legit,
performs the required operation on behalf of the Slave.

The idea is that the vast majority of the application code stays in Slave. If Slave is compromised, the OS
prevents it from directly accessing any valuable resource. Master’s codebase is small, therefore it should
not have many bugs, thus it should be difficult for the compromised Slave to compromise the Master.

Type 2 Sandbox example: Chrome sandbox
The following diagram, borrowed from Chrome sandbox documentation [5], shows the main
components:

Broker

Interception
Manager
IPC Service |— Policy Engine — Policy
w
o
|
. L
—a
ey | i
n []
. Target
= i
wasdupu| IPCClient
.
L
m
. Policy Engine
- [Client
. Interceptions
.
u
u
L
= L
.
S
m
. Target
L H
ALLLE L IPC Client
Policy Engine
[Client
Interceptions

I

~ Xogpues

T

~ Xoqgpues

The slave indeed runs with low privileges:

- Restricted token

- Job object

- Desktop object

- Lowered integrity level

According to the documentation, this privilege allows for very few operations:

- Access to mounted FAT or FAT32 volumes

- TCP/IP

- The rest of the existing resources (e.g. all files on an NTFS filesystem) cannot be accessed
directly.
Let’s see an example of how this sandbox operates:

5 Frocess anior - P
Eile Edit Event Filter Tools Options Help
EE | RBE | TAS | B |
Time ... Process Name FID Operation Dietail
* AcroRd32 exe 2856 SUCCESS Thread ID: 3516
8:54:2.. ERAcroRd32 exe 2856 =hCreateFile Chlsershusersnetscandll ACCESS DENIED Desired Access: R...
8542 .. AcroRd32 exe 2808 BhCreateFile ChlUsershwsernetscandl SUCCESS Desired Access: R
8:54:2.. P8 AcroRd32 exe 2808 BﬂuewNamelnfc...C:\Users‘user\netscan.dll SUCCESS MName: “Uzers‘user.. .
8:54:2 . P8 AcroRd32 exe 2856 [BhCreateFileMapp...C\Users‘user\netscan.dl FILE LOCKED WI... SyncType: SyneTy...
8:54:2 . P8 AcroRd32 exe 2856 A CreateFileMapp...C\Users‘usernetscandl SUCCESS SyncType: SyncTy...
8:54:2 . AcroRd 32 exe 2856 &% Load Image Chlsershuser\netscandl SUCCESS Image Base: (kbcb. ..

In the above picture, process 2856 is the Slave. It tried to access a file, and OS denied this request. The
Slave sends a message “open a file for me please” to the Master (unfortunately, Process Monitor does
not show named pipes activity). The Master (process 2808) opens the file, and duplicates the handle
into the Slave process. Later, Slave can access this file via the received handle.

Both Chrome browser and Adobe Acrobat Reader use the Chrome sandbox. The actual implementation
details are slightly different. The following screenshot shows the Adobe Reader Slave access token
details:

"8 AcroRd32.exe6000 Properties Ml M N — b e
| Image I Performance | Performance Graph | Digk and Metwark I GPU Graph I Threads |
TCR/IP Security ‘ Environment I Job I Strings |

User: emperor3'afal
SID: 5-1-5-21-720617020-3684468047-3915212565-1000

Session: 1 Logon Session: 37814
Virtualized: No
Group Flags
Logon SID (5-1-5-5-0-227259) Mandatory, Restricted
| Logon SID (S-1-5-5-0-227259) Mandatory Hl
| Everyone Mandatory, Restricted W
| Everyone Mandatory H
I Mandatory LabelLow Mandatory Level Integrity I
I LOCAL Deny I
| CONSOLE LOGON Deny l
| NT AUTHORMY\Authenticated Users. Deny l
i NT AUTHORMRESTRICTED Mandatory, Restricted |
| NT AUTHORIMY"This Organization Deny l
| emperor3\Netmon Users Deny l
| emperor3\None Deny l
| BUILTIN\Administrators Deny I
| BUILTIN\Users Mandatory, Restricted I
| BUILTIN\Users Mandatory I
| NT AUTHORMINTERACTIVE Mandatory I
I NT AUTHORITYANTLM Authentication Deny I
: Group 5ID: nfa :
Privilege: Flags
N — SeChangeMotifyPriviege Default Enabled

The following screenshots show the Chrome browser Slave (named “renderer” in Chrome
documentation) access token details:

r -
" chrome.exe:5728 Properties . . l | (Sl S
Image I Performance | Performance Graph I Disk and Netwark I GPU Graph I Threads
TCP/IP | Security | Envionment | Job | Strings

User: emperor 3yafal
SID: 5-1-5-21-720617020-3684468047-3915212565-1000

Session: 1 Logon Session: 37814
virtualized: Mo
Group Flags
Legon SID (5-1-5-5-0-Z27258) Mandatory

| NULL SID Mandatory, Restricted 1
| Everyone Deny |
| Mandatory LabelUntrusted Mandatory Level Integrity |
| LOCAL Deny 1
| CONSOLE LOGON Deny 1
! NT AUTHORMAuthenticated Users Deny l
| NT AUTHORMYThis Organization Deny I
| emperor3\Netmon Users Deny |
| emperor3\lone Deny |
1 BUILTIN\Administrators Deny |
| BUILTINWsers Deny 1
1 NT AUTHORTYUNTERACTIVE Deny 1
| NT AUTHORITYNTLM Authentication Deny 1
| Lt
| t
| Lt
| Lt

Group SID: nfa
| P f i

r 4
=4 P.. Flags
&5 -

A Permissions

| Lo [conel |

One immediately visible difference is the integrity level — “low” in Acrobat Reader, “untrusted” in
Chrome browser. Notably, the Chrome browser Slave is not permitted by the OS to access FAT32 file
systems (despite the explicit remark in the documentation), while the Adobe Reader Slave can access it
freely. More important differences are in the policies enforced by the Masters:

1) In comparison with Chrome browser , Adobe Reader Master allows many more registry accesses
2) In comparison with Chrome browser, Adobe Reader Master allows many more file system
accesses (e.g. any .dll file can be opened read-only).

While it is straightforward to use TCP/IP networking in the context of the Adobe Acrobat Slave (it is
possible to just load the winsock library), it is not so in the context of the Chrome browser Slave. It has
not been determined yet whether the Chrome browser Slave has sufficient privileges to actually create
TCP/IP sockets (although it was verified that it can open the \Device\Afd\Endpoint file, which is crucial in
the process of creating a socket). The ability to connect to arbitrary ports on the local machine and the

corporate network constitutes a possible escalation vector via exploiting a weakness in the accessed
service.

The main weakness

Both the Chrome browser and the Adobe Reader sandboxes have a good vulnerability record. The first
case of an Adobe Reader sandbox vulnerability being exploited in the wild was reported in February
2013 [6] (the escape was possible because of a bug in the Master). Similarly, the attacks against the
Chrome browser Master are rare ([7], [8]). It is fair to state that if the vulnerabilities in the Master were
the only problem, then due to the fact that the Master has a small code base, this type of sandbox
would provide good protection.

However, this type of sandbox (when run on Windows) reduces the attack exposure of the underlying
kernel to an unsatisfactory degree. While some of the operations that may be necessary for some
exploits are not allowed, e.g.

- The job object prevents creation of processes
- Registry keys normally accessible by unprivileged users are not available

Many Windows kernel interfaces are still available for use by the Slave.

Note that on a Linux platform, there is an explicit mechanism available designed to reduce the kernel
exposure. By using seccomp-bpf syscall filter [9], it is possible to significantly trim the access to
functionality that is normally unneeded, but can contain exploitable vulnerabilities. The Chrome browser
on Linux uses the seccomp-bpf syscall filter feature; unfortunately, equivalent functionality is not
available in Windows.

In the Windows OS case, the largest potentially vulnerable kernel component, namely the graphics
subsystem implemented in win32k.sys driver, is mostly accessible for the Chrome sandboxed process.
While it is true that interactions with the windows of other processes is prevented, the sandboxed
process can still create new windows on its own and exploit bugs related to the graphics support code.

CVE-2012-2897 example

This vulnerability (patched in MS12-075 Microsoft security bulletin) is related to a bug in true type fonts
handling in the Windows kernel, namely an integer overflow in the kernel code responsible for parsing
the cmap true type font table. It is enough to just open a crafted web page in a vulnerable Chrome
browser running on a vulnerable Windows version to trigger the vulnerability. The following screenshot
shows the kernel debugger backtrace:

FAULTING_IF:
wind2k|lvGetVerticalGset+4b

AN5123z6 ££37 pu=sh dword ptr [edi]
MM IHTERWAL CODE: 0O

IHAGE HAME: winiZk.=svys
DEBUG_FLE_ THMAGE TIMESTAMP: 4ce?900f
MODULE_HAME: winiZlk

FAULTING_MODOLE: 20510000

DEFAULT BUCKET_ID: IHTEL | MICROCODE ZEROQ
BUGCHECE_STERE: 0=50

PEOCESS HAME: c=rs=. sxe

COERENT _IRQL: 2

TRAP FRAME: 91f642c8 — (trop Oxffffffffa1f642:0)

ErrCode = 00000000
eax=00000000 ebx=ffadZ3ald =cx=00000000 =dz=0000£ffff esi=f=l22020 edi=f=174000

e1p=905123ch esp=91{6433c ebp=91f643d4c 1opl=0 nv up 21 ng nE ha pE nc
c==0008 ===0010 d==0023 e=s=0023 {==0030 g==0000 ef1=00010286
winiZk lwGetVerticalGSet+0xdhb:

9051236 ££37 push dword ptr [edi] d=:0023: fel74000=77?772¢7?7

Rezetting default scope
LAST CONTROL_TRANSFER: from 82716083 to 82eb2110

STACE_TEXT:

91f63=l4 82716083 00000003 bdS0469%4 00000065 nt!RtlpBreakWithStatusInstruction
91i63=bd B82716bS81 00000003 S4eb58e8 000013bE0 nt!KiBugCheckDebugBreak+0zlc

91i64228 826c541b 00000050 £=174000 00000000 nt!KeBugCheckZ+0xz68b

91f642b0 82678348 00000000 f=174000 00000000 nt!MnhccessFault+0=x106

91f642b0 905123c6 00000000 f=174000 00000000 nt!KiTraplE+0=dc

91f6434c 9052680l f=2189010 fffeblla fe95lacd winldZklvGetVerticalGSet+0=x4db

91f649£8 90527547 ££294188 00870010 0006798 wind2k!bLoadTTE+0x3ab

91f64a90 90527262 ££294188 00870010 000679c8 windZ2k!bloadFontFile+0=x293

91f6dadc 90527207 00000001 ££294180 91f64bad wind2k!ttfidSemloadFontFile+lzdc
91i64b24 90527154 00000001 ££294180 91i64bad windZ2k!PDEVOBRT: :LoadFontFile+0x3c
91i64b5c 906e35c? f£fbb2008 00000000 ££294180 windZk!vloadFontFileView+0x226
91i64clc 906b28a3 ££294180 00000000 00000000 win3d2k!PFUBLIC_PFFTOBJT: :hloadMemFont=s+0x845
91f64c80 906bd413 00870000 f=9%4ebd8 00000000 winldZk!GredddFontMemResourceExz+0x8hb
91f64d18 B26751ea 02334000 000679cH 00000000 win3dZk!HNtGdiAdddFontMemResourceE=z+0=xaa
91f64d18 777670b4 02334000 000679cEH 00000000 nt!KiFastCallEntry+0=xlZa

0030=244 00000000 00000000 00000000 00000000 ntdll!KiFastSystemCallRet

In this case, it is even not necessary to compromise the renderer first — it is enough to just pass it a
crafted .ttf file reference in a .html page. However, in order to achieve code execution reliably, more
control over the kernel memory layout is needed; for this, the ability to run arbitrary code in the
renderer is very helpful.

CVE-2011-3042 example

This vulnerability (patched in MS11-087 Microsoft security bulletin) is also related to true type fonts
parsing. The root cause is an insecure destination buffer address calculation when processing a
malformed compound bitmap stored in the true type font file. It was exploited in the wild by Duqu
malware [1], via malformed MS Office documents. We have verified that on Windows SP1 the host Slave
is able to exploit this vulnerability and achieve arbitrary code execution in kernel mode. The typical

token-stealing shellcode is all the attacker needs in this case. The following screenshot shows the state

of the Adobe Reader Slave after successful exploitation:

AcroRd32.exe:2980 Pmperﬁes.. - -

.:.Elﬂ

Image |Performance Performance Graph I Disk and Network I Threads | TCR/TP | Security I Environment I Job

| strings |

Image File
9 Adobe Reader
o
Adobe Systems Incorporated
Version: 11.0.1.36
Build Time: Tue Dec 18 10:42:58 2012
Path:

C:\Program Files‘\Adobe'\Reader 11.0'Reader\AcroRd32.exe

Command line:

i C:\Usersuser)
Autostart Location:
nfa
Parent: AcroRd32.exe(2924]
0| user W
Started: % 13
Comment: |

Data Execution Prevention (DEF) Status: DEP (permanent)

Address Space Load Randomization: Enabled

"C:\Program Files\Adobe\Reader 11.0'Reader\AroRd32.exe” —channel=2924. 1. 148606291 C:\Usersiuser\Downloads\sample, pdf™
Current directory:

Explore

Bring to Front
Kill Process

The following screenshot shows the state of Chrome browser Slave after successful exploitation:

€ chrome.ex=:592 Properties Ml

mlﬁlﬂ

Image |Perfnrmance Performance Graph | Disk and Network I Threads I TCP(TP I Security I Environment I Job

| 5trings |

Image File
G Google Chrome
Google Inc.
Version: 24.0.1312.57
Build Time: Fri Jan 25 16:4%:26 2013
Path:

C:\Program Files\Google\Chrome Wpplication\chrome. exe

Command line:

Current directory:
C:\Program Files\Google\Chrome \Application\24.0. 1312, 573
Autostart Location:

nfa

Parent:

I User:

chrome.exe &)

Started: 8:42:31PM 2/18/2013

Comment: | |

Data Execution Prevention (DEP) Status: DEP (permanent)

Address Space Load Randomization: Enabled

"C:'Program Files\Google\Chrome\applicationchrome. exe lang=en-US —force-fieldtrials =CacheSensitivityAnalysis/Mo/EnableStage3D/e

Explore

Bring to Front
Kill Process

(

OK

] [Cancel

It is apparent that after the exploit has succeeded, the Slave runs with the highest user mode privilege,

and is capable of taking full control over the OS.

CVE-2011-2018 example

Not just the graphics subsystem vulnerabilities can be triggered from a compromised Slave. CVE-2011-
2018, misleadingly referred to as “Windows Kernel Exception handler Vulnerability” in the MS11-098
bulletin is caused by treating a particular segment selector value as special which is not allowed to be
set by user mode (this assumption is wrong). In fact, using an alternate and unexpected code path when
performing the return from a system call when this special value is seen is possible . This vulnerability
can be used to cause at least a BSOD when exploited from within the Chrome browser or Adobe Reader
sandbox:

FAULTING_IF:

nt |KiSy=tenCallExit2+8a

8265a3ca 897308 mov dword ptr [ebz+8].es1
DEFAULT_BUCKET_ID: INWTEL CPU_MICROCODE ZEROC
BUGCHECK_STR: O=A

exe

PROCESS _HAME: [AcroRd3

TRAP_FRAME 92c9fccl — { trap O=ffffffff92c9fccll
ErrCode = 00000002
eax=92c9ffd0 ebx=f{f{fff4 ecx=014d0001 edx=9Zcaldbdc e=si=00000212 edi=77Ze6fcl

eip=8265a3ca esp=92c9fd34 ebp=92c9fd34 iopl=0 nv up di ng nz ac po cy
c==0008 ===0010 ds=0023 es=0023 {==0030 gs==0000 ef1=00010093

nt |KiSystenCallE=it 2+0=8a:

8265a3ca 897308 nov dword ptr [ebx+8].esi ds: 0023 ff£f££££fc=72720007

Resetting default =cope
LAST CONTROL _TRANSFER: from 826fb0B83 to 82697110

STACK_TEXT

92c9f88c 826fb0B3 00000003 18444010 00000065 nt!RtlpBreakWithStatusInstruction
92c9f8dc 826fbb81 00000003 fffffifc 8265adca nt!KiBugCheclkDebugBrealk+0xlc
92c9fcal 8265d5ch 0000000a fffffffc 000000ff nt!HeBugCheck2+0=68b

92c9fcal 8265a3ca 0000000a fffffffc 000000ff nt!KiTrapOE+0=2ct

92c9fd34 772ekfcl badb0d00 00000000 00000000 nt!KiSystenCallExit2+0x8a
0501£80c 00000000 0501£844 02970047 00000000 ntdll!KiUserCallbackDispatcher

g Command - Kemnel 'com:port=\\.\pipe\w7_32_com1,baud=115200,pipe reconnect’' - WinDbg:6.12.0002.633 AMD&4

An attemnpt was made to access a pageable {or conpletely inwalid) address at an
interrupt request level (IRQL) that is too high. This is usually

causzed by drivers using improper addresses.

If a kernel debugger is awailable get the stack backtrace.

Argquments:

Argl: fffffifc, menory referenced

Arg?: 000000£ff, IRQL

Arg3d: 00000001, bitfield :

bit 0 : walue 0 = read operation., 1 = write operation

bit 3 : walue 0 = not an execute opsration, 1 = execute operation {only on
Argd: 8263edca, address which referenced memory

Debugging Details:

VRITE_ADDRESS: fffffffc

CURRENT_IRQL: 2

FAULTING IP:

ntlKiSystenCal lExit 2+8a

8263e3ca 897308 Mo dword ptr [ebx+8].e=i
DEFAULT_BUCKET ID: INTEL CPU _MICROCODE ZERO

BUGCHECE _STR: 0=

PROCESS HAME: [chrome.exe
TRAP_FRAME: 98b%bcct™—— (trap Ozffffffff38h9bcc0)

ErrCode = 00000002

=ax=98b%bfd0 ebx=f{fffff4 ecx=014d0001 =dz=98b0fbdc e=si=00000246 edi=7?7d36fc

eip=8263e3ca e=p=98b%9bd34 ebp=98b9%bd34 iopl=0 nv up di ng ng ac po cv
c==0008 ===0010 ds=0023 e=s=0023 f{s=0030 g==0000 ef1=00010093
ntlKiSystenCal lIExit 2+0=8a:

8263e3ca 897308 Mo dword ptr [ebx+8].e=si ds: 0023 f£f£fffffc=777777077

Resetting default scope
LAST_CONTROL_TRANSFER: from 826df083 to 8267b110

STACK_TEXT:

98b9%b88c 826df083 00000003 c79£86a% 00000065 nt!RtlpBreakWithStatusInstruction
98b9%:8dc 826dfbB81 00000003 fffffffc 8263edca nt|KiBugCheckDebugBreak+0xlc
98b%cal 826415ch 00000002 fffffffc 000000ff nt!KeBugCheck2+0x68b

98b%cal 8263edca 0000000a fffffffc 000000ff nt!|KiTraplE+0xict

98b9%bd34 77d36fc0 badb0d4DO 00000000 00000000 nt!KiSystemCallExit2+0x8a
02eefacc 00000000 00D0OOOOO QOOOOOOO0 00000000 ntdll!KilUserCallbackDispatcher

A note on methodology

In our experiments with type 2 sandboxes, we did not want to spend time on developing exploits that
are able to get initial code execution in the context of Slave. After all, the core sandbox concept is that
we expect vulnerabilities in the Slave to be present and exploitable. The changelogs of both Chrome
browser and Adobe Reader confirm there is a noticeable number of coding errors fixed in the Slaves in
each software release. Therefore, we have simulated just the second stage of an exploit, when an
attacker is able to run arbitrary code in the context of Slave and tries to bypass the sandbox. We run the
kernel exploits in the context of Slaves by manually copying the exploit code via WriteProcessMemory
and trigger them via CreateRemoteThread. It is quite apparent that shellcode triggered by parsing
malicious .html or .pdf document could perform the same actions and breach the sandbox.

A short note on hardware-virtualization based sandboxes

These kinds of sandboxes take a different approach —they wrap not just a single application, but the
whole Windows OS with an application in it within a virtual container enforced by the hardware based
VTx capabilities of the chip set. Thanks to this design, vulnerabilities in the OS are nonfatal — even if an
attacker achieves arbitrary code execution in kernel mode, he is still confined by the hardware enforced
virtual “sandbox”, because the latter runs in a more privileged mode that the sandboxed kernel.

While an appealing concept, this approach is not straightforward. The hypervisor and the supporting
environment introduce a new attack vector; possible vulnerabilities in the hypervisor can be used to
fully bypass this type of isolation. Unfortunately, most popular hypervisor solutions are focused on
maximal functionality, not on security. A customized virtualization solution built specifically for security
isolation is required to limit this type of exposure. The amount of functionality exposed by a hardened
hypervisor to the attacker, although not negligible, is orders of magnitude less than the equivalent
Windows OS code — and consequently it is much less prone to attacks.

Bibliography

1) Duqu malware, http://em.wikipedia.org/wiki/Dugu

N

Sandboxie, http://www.sandboxie.com
Javier Vicente Vallejo, Sandboxie analysis, http://vallejo.cc/48

w

N

)
)
) BufferZone Pro, http://www.trustware.com/BufferZone-Pro/

) http://dev.chromium.org/developers/design-documents/sandbox
)

)

)

Ul

(&)

https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
http://blog.chromium.org/2012/10/pwnium-2-results-and-wrap-up 10.html

~N

00

"Pwn20wn 2012: Google Chrome browser sandbox first to fall"
http://www.zdnet.com/blog/security/pwn2own-2012-google-chrome-browser-sandbox-first-to-

fall/10588

9) http://blog.chromium.org/2012/11/a-safer-playground-for-your-linux-and.html

http://em.wikipedia.org/wiki/Duqu
http://www.sandboxie.com/
http://vallejo.cc/48
http://www.trustware.com/BufferZone-Pro/
http://dev.chromium.org/developers/design-documents/sandbox
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
http://blog.chromium.org/2012/10/pwnium-2-results-and-wrap-up_10.html
http://www.zdnet.com/blog/security/pwn2own-2012-google-chrome-browser-sandbox-first-to-fall/10588
http://www.zdnet.com/blog/security/pwn2own-2012-google-chrome-browser-sandbox-first-to-fall/10588
http://blog.chromium.org/2012/11/a-safer-playground-for-your-linux-and.html

