
The Sandbox Roulette: Are you ready for
the gamble?

Rafal Wojtczuk rafal@bromium.com

Rahul Kashyap rahul@bromium.com

26 February 2013

What is a sandbox?
In computer security terminology, a sandbox is an environment designed to run untrusted (or

potentially exploitable) code in a manner that prevents the encapsulated code from damaging the rest

of the system. The reason to introduce a sandbox is the assumption that it is more feasible to isolate

potentially malicious code than to build a large application that cannot be subverted by an attacker.

Many different products can be categorized as sandboxes. For this talk, we focus on Windows-based

application sandboxes. Such a sandbox is designed to run as a single application on top of a Windows

OS. Usually, from the point of view of user experience, the existence of a sandbox container should be

as unobtrusive as possible while still providing an additional layer of security. Short overviews of

mechanisms used to implement a few selected sandboxes are presented later in this paper.

The inherent weakness of application sandboxes
The sandbox approach gained significant adoption in the industry recently. In some cases, after

introducing the sandbox, the number of publicly available exploits against the application dropped

dramatically. Despite this fact, in this paper we try to stress the main architectural weakness of

Windows application sandboxes, namely their reliance on kernel security. We believe that the Windows

kernel presents a broad attack surface to the skilled attacker, and a successful exploit against the kernel

can totally breach sandbox defenses. This fact is hardly news – practically every good paper about a

given sandbox implementation mentions briefly the possibility of a kernel-based attack. We postulate

that this attack vector should be considered as a real threat, at least as likely to be exploited as other

possible vectors (e.g. bugs in the sandbox implementation). Particularly, we have developed concrete

examples of exploit code capable of breaking out of four different sandbox implementations, if run on

an old unpatched version of Windows that contain known kernel vulnerabilities.

There is empirical evidence that vulnerabilities in sandbox implementations are relatively rare. In

comparison, Windows kernel vulnerabilities are frequent. In 2012, 25 CVE entries were allocated for

Windows kernel-mode components which resulted in privilege escalation to kernel mode. The Microsoft

security bulletins for February 2013 name 30 CVE items for vulnerabilities in win32k.sys (a kernel mode

component). Exploitation of kernel vulnerabilities is more complex than exploitation of a user mode

application and requires more knowledge on the details of the OS implementation. This is presumably

mailto:rafal@bromium.com
mailto:rahul@bromium.com

the reason why malware authors have not yet used this attack vector widely (with Duqu malware [1]

being the notable exception). Still, the number of Windows kernel vulnerabilities announced each

month justifies our estimate that this attack vector should be considered as the dominant one, and may

be more actively exploited in the near future. It means that each time a vulnerability is announced in the

Windows kernel, sandbox users may be awaiting the equivalent of a roulette spin – was this

vulnerability known before and was it exploited to breach my sandbox?

Sandbox Type 1: OS enhancement based sandbox

The main concept
In this approach, there is a custom kernel driver installed that modifies Windows behavior for a

sandboxed application in order to provide additional protection. For instance, if a sandboxed application

tries to terminate a non-sandboxed process, such a request will be denied. If a sandboxed application

tries to write to a file that is protected (the protected files are defined in the sandbox configuration),

then the driver can transparently create a copy of the file that the sandboxed application can write to,

while the original file is untouched. Such a copy-on-write mechanism allows the unchanged sandboxed

application to work properly, while preventing damage or compromise to the rest of the system.

The main weakness
This design is focused on preventing access to the protected resources and if implemented exhaustively

this goal can be achieved. However it does not significantly limit the possibilities of exploiting a kernel

vulnerability – it allows access to most kernel functionality. The reason is the need to allow a broad

range of applications to run in a sandbox which may require access to many kernel interfaces. Once the

attacker has gained arbitrary code execution in kernel mode, he can completely bypass the sandbox, an

application sandbox has no means to protect itself against code running at the same privilege level.

 Type 1 Sandbox example: Sandboxie
Sandboxie [2] is a popular tool:

It is widely used for malware analysis, and generally for controlled execution of applications.

Unfortunately, Sandboxie documentation does not describe the details of the implementation. The

following diagram shows the main components of Sandboxie; note this diagram was copied from an

unrelated site [3], so that it may be incomplete or outdated.

Due to the differences in x86_32 and x86_64 Windows kernels, Sandboxie’s method of hooking crucial

operations differs between these platforms. The documentation states that the “experimental”

Sandboxie mode on x86_64 provides nearly the same level of protection as in x86_32 case.

We tested the exploit for the CVE-2012-0217 vulnerability (misleadingly named “User Mode Scheduler

Memory Corruption” in Microsoft bulletin MS12-042) in the Sandboxie environment on the x86_64

platform running the default Windows 7 SP1 kernel. This vulnerability is caused by not sanitizing the

return address of a system call; the non-canonical return address results in an unexpected exception

being raised that is handled incorrectly. The exploit worked flawlessly, providing the ability to run

arbitrary code in kernel mode. A slight twist is that the usual kernel shellcode that just steals the

SYSTEM access token is not particularly useful to the attacker. Although the attacker gains SYSTEM rights

in his user mode process, the process is still confined by Sandboxie (and an attempt to kill a non-

sandboxed process from this SYSTEM shell fails). The attacker needs to perform some extra work while

in kernel mode, either:

1) Disable the Sandboxie driver (uninstall hooks, or just overwrite the driver code)

2) Migrate to another process that runs outside of the Sandboxie container

We chose the second method, because it is more generic. The required steps are:

1) Allocate kernel memory for exploit_syscall_handler() function

2) Hook all system calls via overwriting LSTAR MSR, (LSTAR:= exploit_syscall_handler)

3) When the exploit_syscall_handler() function detects it is running in the context of a process

running outside of the sandbox, inject arbitrary shellcode into this process

The result is that after the exploit is run within a sandbox, the attacker can execute arbitrary code in the

context of an arbitrary process. Careful readers certainly recognize that this procedure is similar to how

remote kernel exploits (that often initially execute with raised IRQL) migrate to a stable user mode

environment.

To sum up, we have verified that by exploiting the CVE-2012-0217 vulnerability, a Sandboxie-confined

process can completely bypass Sandboxie protection.

Type 1 Sandbox example: BufferZone Pro [4]
This popular sandbox is similar in concept to Sandboxie. Naturally some implementation details are

different – e.g. by default, it prevents read access to selected directories (to block data theft). The same

CVE-2012-0217 shellcode-migrating exploit can be used to fully bypass BufferZone Pro protection

running on unpatched Windows 7 SP1 on x86_64 platform.

Sandbox type 2: Master/Slave sandbox

The main concept
In this approach, the application is split into two processes. The first one (Slave) runs with very low

privilege (so, it is confined using the OS access control facilities); it is able to access almost none of

existing OS resources. Whenever the Slave needs a particular resource (e.g. read a file), it sends a

message to the other process (Master) via some IPC channel. Master validates the request and if is legit,

performs the required operation on behalf of the Slave.

The idea is that the vast majority of the application code stays in Slave. If Slave is compromised, the OS

prevents it from directly accessing any valuable resource. Master’s codebase is small, therefore it should

not have many bugs, thus it should be difficult for the compromised Slave to compromise the Master.

Type 2 Sandbox example: Chrome sandbox
The following diagram, borrowed from Chrome sandbox documentation [5], shows the main

components:

The slave indeed runs with low privileges:

- Restricted token

- Job object

- Desktop object

- Lowered integrity level

According to the documentation, this privilege allows for very few operations:

- Access to mounted FAT or FAT32 volumes

- TCP/IP

- The rest of the existing resources (e.g. all files on an NTFS filesystem) cannot be accessed

directly.

Let’s see an example of how this sandbox operates:

In the above picture, process 2856 is the Slave. It tried to access a file, and OS denied this request. The

Slave sends a message “open a file for me please” to the Master (unfortunately, Process Monitor does

not show named pipes activity). The Master (process 2808) opens the file, and duplicates the handle

into the Slave process. Later, Slave can access this file via the received handle.

Both Chrome browser and Adobe Acrobat Reader use the Chrome sandbox. The actual implementation

details are slightly different. The following screenshot shows the Adobe Reader Slave access token

details:

The following screenshots show the Chrome browser Slave (named “renderer” in Chrome

documentation) access token details:

One immediately visible difference is the integrity level – “low” in Acrobat Reader, “untrusted” in

Chrome browser. Notably, the Chrome browser Slave is not permitted by the OS to access FAT32 file

systems (despite the explicit remark in the documentation), while the Adobe Reader Slave can access it

freely. More important differences are in the policies enforced by the Masters:

1) In comparison with Chrome browser , Adobe Reader Master allows many more registry accesses

2) In comparison with Chrome browser, Adobe Reader Master allows many more file system

accesses (e.g. any .dll file can be opened read-only).

While it is straightforward to use TCP/IP networking in the context of the Adobe Acrobat Slave (it is

possible to just load the winsock library), it is not so in the context of the Chrome browser Slave. It has

not been determined yet whether the Chrome browser Slave has sufficient privileges to actually create

TCP/IP sockets (although it was verified that it can open the \Device\Afd\Endpoint file, which is crucial in

the process of creating a socket). The ability to connect to arbitrary ports on the local machine and the

corporate network constitutes a possible escalation vector via exploiting a weakness in the accessed

service.

The main weakness
Both the Chrome browser and the Adobe Reader sandboxes have a good vulnerability record. The first

case of an Adobe Reader sandbox vulnerability being exploited in the wild was reported in February

2013 [6] (the escape was possible because of a bug in the Master). Similarly, the attacks against the

Chrome browser Master are rare ([7], [8]). It is fair to state that if the vulnerabilities in the Master were

the only problem, then due to the fact that the Master has a small code base, this type of sandbox

would provide good protection.

However, this type of sandbox (when run on Windows) reduces the attack exposure of the underlying

kernel to an unsatisfactory degree. While some of the operations that may be necessary for some

exploits are not allowed, e.g.

- The job object prevents creation of processes

- Registry keys normally accessible by unprivileged users are not available

Many Windows kernel interfaces are still available for use by the Slave.

Note that on a Linux platform, there is an explicit mechanism available designed to reduce the kernel

exposure. By using seccomp-bpf syscall filter [9], it is possible to significantly trim the access to

functionality that is normally unneeded, but can contain exploitable vulnerabilities. The Chrome browser

on Linux uses the seccomp-bpf syscall filter feature; unfortunately, equivalent functionality is not

available in Windows.

In the Windows OS case, the largest potentially vulnerable kernel component, namely the graphics

subsystem implemented in win32k.sys driver, is mostly accessible for the Chrome sandboxed process.

While it is true that interactions with the windows of other processes is prevented, the sandboxed

process can still create new windows on its own and exploit bugs related to the graphics support code.

CVE-2012-2897 example
This vulnerability (patched in MS12-075 Microsoft security bulletin) is related to a bug in true type fonts

handling in the Windows kernel, namely an integer overflow in the kernel code responsible for parsing

the cmap true type font table. It is enough to just open a crafted web page in a vulnerable Chrome

browser running on a vulnerable Windows version to trigger the vulnerability. The following screenshot

shows the kernel debugger backtrace:

In this case, it is even not necessary to compromise the renderer first – it is enough to just pass it a

crafted .ttf file reference in a .html page. However, in order to achieve code execution reliably, more

control over the kernel memory layout is needed; for this, the ability to run arbitrary code in the

renderer is very helpful.

CVE-2011-3042 example
This vulnerability (patched in MS11-087 Microsoft security bulletin) is also related to true type fonts

parsing. The root cause is an insecure destination buffer address calculation when processing a

malformed compound bitmap stored in the true type font file. It was exploited in the wild by Duqu

malware [1], via malformed MS Office documents. We have verified that on Windows SP1 the host Slave

is able to exploit this vulnerability and achieve arbitrary code execution in kernel mode. The typical

token-stealing shellcode is all the attacker needs in this case. The following screenshot shows the state

of the Adobe Reader Slave after successful exploitation:

The following screenshot shows the state of Chrome browser Slave after successful exploitation:

It is apparent that after the exploit has succeeded, the Slave runs with the highest user mode privilege,

and is capable of taking full control over the OS.

CVE-2011-2018 example
Not just the graphics subsystem vulnerabilities can be triggered from a compromised Slave. CVE-2011-

2018, misleadingly referred to as “Windows Kernel Exception handler Vulnerability” in the MS11-098

bulletin is caused by treating a particular segment selector value as special which is not allowed to be

set by user mode (this assumption is wrong). In fact, using an alternate and unexpected code path when

performing the return from a system call when this special value is seen is possible . This vulnerability

can be used to cause at least a BSOD when exploited from within the Chrome browser or Adobe Reader

sandbox:

A note on methodology
In our experiments with type 2 sandboxes, we did not want to spend time on developing exploits that

are able to get initial code execution in the context of Slave. After all, the core sandbox concept is that

we expect vulnerabilities in the Slave to be present and exploitable. The changelogs of both Chrome

browser and Adobe Reader confirm there is a noticeable number of coding errors fixed in the Slaves in

each software release. Therefore, we have simulated just the second stage of an exploit, when an

attacker is able to run arbitrary code in the context of Slave and tries to bypass the sandbox. We run the

kernel exploits in the context of Slaves by manually copying the exploit code via WriteProcessMemory

and trigger them via CreateRemoteThread. It is quite apparent that shellcode triggered by parsing

malicious .html or .pdf document could perform the same actions and breach the sandbox.

 A short note on hardware-virtualization based sandboxes
These kinds of sandboxes take a different approach – they wrap not just a single application, but the

whole Windows OS with an application in it within a virtual container enforced by the hardware based

VTx capabilities of the chip set. Thanks to this design, vulnerabilities in the OS are nonfatal – even if an

attacker achieves arbitrary code execution in kernel mode, he is still confined by the hardware enforced

virtual “sandbox”, because the latter runs in a more privileged mode that the sandboxed kernel.

While an appealing concept, this approach is not straightforward. The hypervisor and the supporting

environment introduce a new attack vector; possible vulnerabilities in the hypervisor can be used to

fully bypass this type of isolation. Unfortunately, most popular hypervisor solutions are focused on

maximal functionality, not on security. A customized virtualization solution built specifically for security

isolation is required to limit this type of exposure. The amount of functionality exposed by a hardened

hypervisor to the attacker, although not negligible, is orders of magnitude less than the equivalent

Windows OS code – and consequently it is much less prone to attacks.

Bibliography
1) Duqu malware, http://em.wikipedia.org/wiki/Duqu

2) Sandboxie, http://www.sandboxie.com

3) Javier Vicente Vallejo, Sandboxie analysis, http://vallejo.cc/48

4) BufferZone Pro, http://www.trustware.com/BufferZone-Pro/

5) http://dev.chromium.org/developers/design-documents/sandbox

6) https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/

7) http://blog.chromium.org/2012/10/pwnium-2-results-and-wrap-up_10.html

8) "Pwn2Own 2012: Google Chrome browser sandbox first to fall"

http://www.zdnet.com/blog/security/pwn2own-2012-google-chrome-browser-sandbox-first-to-

fall/10588

9) http://blog.chromium.org/2012/11/a-safer-playground-for-your-linux-and.html

http://em.wikipedia.org/wiki/Duqu
http://www.sandboxie.com/
http://vallejo.cc/48
http://www.trustware.com/BufferZone-Pro/
http://dev.chromium.org/developers/design-documents/sandbox
https://krebsonsecurity.com/2012/11/experts-warn-of-zero-day-exploit-for-adobe-reader/
http://blog.chromium.org/2012/10/pwnium-2-results-and-wrap-up_10.html
http://www.zdnet.com/blog/security/pwn2own-2012-google-chrome-browser-sandbox-first-to-fall/10588
http://www.zdnet.com/blog/security/pwn2own-2012-google-chrome-browser-sandbox-first-to-fall/10588
http://blog.chromium.org/2012/11/a-safer-playground-for-your-linux-and.html

