
Detecting 
Web Browser 

Heap Corruption 
Attacks 

Stephan Chenette 
Moti Joseph

Websense Security Labs



Who we are…
Stephan Chenette 
Manager of Websense Security Research/Senior Researcher, 
Websense Security Labs

Focus on reverse engineering of malicious web content: obfuscated JavaScript, 
malicious code, malware, packers/protectors.
Detection techniques: heuristic malware/exploit detection, user-land/kernel-land 
behavior analysis tools, dynamic/static data analysis. 

Previously worked at eEye Digital Security as a Security Software engineer.

Moti Joseph
Senior Researcher, 
Websense Security Labs

Focus on exploitation techniques, reverse engineering, bug hunting, code 
analysis, user-land hooking mechanisms

Previously worked at Checkpoint



What are we presenting?
This presentation will focus on our research in the detection of
browser heap corruption attacks. 

This research inspired an internal tool we call “xmon” (exploitation 
monitor), which is part of a larger malicious web content detection 
network.

It is important to note, we are presenting detection techniques. We 
will NOT cover in any detail any existing exploitation protection 
measures i.e. DEP, SAFESEH, ASLR, etc.

We are going to give some background in web browser based heap 
attacks, so if you’ve seen Alexander Sotirov’s presentation (we 
hope you have), then there will be some repetition of background
information. Hopefully it will reaffirm your understanding of the 
subject.



What do web browser exploits look like?

At first glance, most malicious web pages simply look like a 
regular webpage



What do web browser exploits look like?

If we actually look at the source code we can see what is 
really going on… the attacker is using the MS06-071 (XML 
Core Services) vulnerability.



What do heap corruption vulns look like?
Vulnerability in Vector Markup Language Could Allow 
Remote Code Execution (MS07-004)

The VML bug was a pure integer overflow vulnerability



What do heap corruption vulns look like?
Vulnerability in Microsoft XML Core Services Could Allow 
Remote Code Execution  (MS06-071)

The XMLHTTP bug was a double free vulnerability



Heap corruption exploits

Exploitable heap corruptions are caused when user-
controllable data can corrupt the heap in a predictable way.

In order to allow remote code execution, the attacker must 
be able to use this memory corruption to influence the 
instruction pointer. 

Corruption of heap headers and function pointers are two 
common ways this is achieved.



History lesson... 

Older heap exploits were extremely unreliable. 

For a few reasons:
– Many exploit-writers found heap exploits too hard to 

write or were only accustomed to writing stack based 
overflows, so their proof of concept (POC) were often 
created to simply crash the browser instead of executing 
a payload. 

– Some exploits that were created, used random areas of 
heap memory to store their shellcode (e.g., images, 
movie files, html tags, etc). The location of this data was 
extremely unreliable as memory arrangement and 
location of that data often varied. 



More reliability needed… heap spraying.

Developed by Blazde and SkyLined and first used in a POC 
exploit for the IFRAME SRC NAME heap overflow 
vulnerability.

This method allowed us to place shellcode onto the heap by 
allocating space on the heap using JavaScript code and 
copying our shellcode to our newly allocated buffer.

The idea behind this method is to spray enough of the heap 
with NOPs followed by shellcode and then trigger the 
vulnerability which has been set up to jump to the heap.



How reliable is heap spraying?

Not as reliable as you might think…

Demo…



The next step in reliable heap exploitation…

Alexander Sotirov’s “Heap Feng Shui” (HeapLib)
– Released this year at Blackhat Europe
– Integrated with Metasploit 3



Commonality

What do all these methods have in common?

How can we detect these generically?



Malicious Activity Detection Methods



Large scale exploit detection …. enter xmon 

Generic detection of exploit techniques

Minimal configuration

Part of larger framework

Multiple methods used for detection

Signatures for optional vulnerability identification only

Main concerns: speed and accuracy.



Method 1 

Patch all calls to virtual functions and function pointers

– Use IDA plug-in to scan for pointers

– Patching is an ongoing process

• Patch all calls at start

• Patch calls as modules are loaded dynamically

When call is made check to see where the execution is 
directed to



Method 2 

Hooking Structured Exception Handlers (SEH)

– When an exception occurs, verify the location of the 
exception handler



Method X 

Hook all known universal pointers

– Top-level SEH

– Fast PEB lock

– Other global function pointers

Method X+n?

– More …



xmon demo

Great. What do we do now?



Honeyclients

Low-Interaction (LI): Custom Spiders
– Ridiculously fast, bandwidth primary limitation
– Special processes required for active content analysis
– Requires custom signatures, limited detection for 

unknown exploits

High-Interaction (HI): Controlled Browsers
– Relatively slow, hardware resources primary limitation
– Active content handled natively by the browser
– Traditionally detects malicious activity via unauthorized 

modifications to system state



Traditional High-Interaction Honeyclients



Finding The Middle Ground

Greatly increase performance levels

Accurate detection of both known and unknown exploits

Eliminate the need to monitor or restore system state

Reduce uncertainty – no more notion of “suspicious”



Honeyclients – Now with xmon!



Problems?

Not all malicious websites use actual exploits

Vulnerable control or component not installed

Uses jmp ptr/technique we haven’t seen before

Others …

Detection in depth



Thank you for coming!

Questions?

Contact Info:
– Stephan Chenette 

• schenette || websense.com

– Moti Joseph 
• mjoseph || websense.com


	Detecting �Web Browser �Heap Corruption � Attacks 
	Who we are…
	What are we presenting?
	What do web browser exploits look like?
	What do web browser exploits look like?
	What do heap corruption vulns look like?
	What do heap corruption vulns look like?
	Heap corruption exploits
	History lesson... 
	More reliability needed… heap spraying.
	How reliable is heap spraying?
	The next step in reliable heap exploitation…
	Commonality
	Malicious Activity Detection Methods
	Large scale exploit detection …. enter xmon 
	Method 1 
	Method 2 
	Method X 
	Slide Number 19
	Honeyclients
	Traditional High-Interaction Honeyclients
	Finding The Middle Ground
	Honeyclients – Now with xmon!
	Problems?
	Thank you for coming!

