&
Emergis

, ®
&
L

SECURITY

A Real World Scenario of a

SQL Server 2005 Database Forensics Investigation

Black Hat USA 2007

Author: Kevvie Fowler, GCFA Gold, CISSP, MCTS, MCSD, MCDBA, MCSE
kevvie.fowler@emergis.com
©2007 Emergis Inc.

Outline

INVESTIGAtioON INEFOTUCTION.oiiiiiiiiiiet bbbttt b bbb eneas 3
Y (= oI LT g 1 107 1 o] o OSSR 3
Step 2: SYStEM DESCHIPTION......c.iiiieie ettt e e s te e e s re e s te et e s reesaeensesseeseeenne e 9
Y= o IR T AV To [o ot o] | [-Tod A o] o OSSPSR 11
Step 4: TIMEIINE CrEATIONc.viiiie bbbt sb bbbt enes 15
Y= T\ =To [T AN F= 1Y A LSS 18
STEP 6: DALA RECOVETY ...vvviiiiiie ittt et e et e et e e e s bt e e st e e e nnb e e e nnb e e e snbeeennreeans 36
SEEP 772 SEIING SEANCTI ...ttt b et be et s re et e e e nneenes 41
INVESTIGALION SUMIMATYeiitiiiiiiiiiieieee bbbttt e bbbt b bt b e e et et et eb et be e 42
N o] T o | NSRS 43
N o] 0 1=T o [l = S SO SSS 44
] (] =] oL TP 46

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

Investigation Introduction

On March 1%, 2007, | received a call from a client who stated that they may have been a
victim of a security incident sometime over the past 24 hours. They believed unauthorized
modifications were made to their production database server which had resulted in erroneous
product shipments and financial loss to the company. Due to the mission critical nature of the
system, it could not be taken off-line unless significant evidence of system misuse could be
identified.

Step 1: Verification

Upon arriving on scene, | was briefed on the situation and learned that the SQL Server
2005 database server contained a single user database which was the foundation of an online-
sales application. The client also informed me that they had received a call from a credit card

company regarding a suspicious transaction that was charged to a client card by their company.

Because the server could not be taken off-line, a live analysis was performed. During a
live analysis volatile and non volatile data is viewed and acquired with the assistance of the live
target operating system®. During a forensic investigation you should utilize binaries on the target

system as little as possible as they may be corrupt or tampered with thus skewing their output.

The incident response CD-Rom used in this investigation contains traditional incident
response tools in addition to SQL utilities and libraries which allow ad-hoc query submission to

SQL Servers using minimal assistance from the un-trusted host.

To begin the incident verification, Windows Forensic Tool v1.0.03 will be used with a
customized configuration file. This configuration file will execute Distributed Management
Views (DMYV), Database Consistency Checker (DBCC) commands and other vendor issued

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

procedures to gather data which can be used to prove or disprove the occurrence of an intrusion.
For more information on the customized Windows Forensic Tool Chest configuration file, refer

to Appendix A of this document.

At precisely 10:02 AM, server time, the client’s system logged into the PRODSQL05
SQL Server interactively under the user context Administrator. Upon logging into the system, it
was observed that the system tray contained no third party application icons and the operating
system appeared to be Windows 2003 Standard Edition. At 10:03 AM, server time, | assumed
command of the console to begin the investigation. My Forensic Response CD was inserted

into the computer and a trusted command shell was launched by issuing the

‘D:\FResponse\cmd.exe “command. Using the full file path in addition to the binary name

ensures that the binary is loaded from the trusted CD. The un-trusted host may contain binaries

with matching names to the binaries contained on my response CD. If these binaries are present
within a directory referenced in the path variable of the target host, the un-trusted binaries can be
loaded in error. To eliminate the possibility of this occurring, the full file location in addition to

the binary name will be used during this investigation.

The outputs from the tools run during this investigation, will be saved on the trusted

forensic workstation as opposed to the un-trusted target host. From the command shell, the

‘D:\FResponse\net use * \\192.168.1.174\$Acquisition “command was issued to map a drive

from the target host to sterile storage media located on my forensic laptop which was connected
to the network under IP Address 192.168.1.174.

The “$Acquisition” share is hidden and password protected to help ensure the integrity of

the data within. It was noted that the drive letter associated with the net use command was

connected as “E:\” on the target host. The ‘D:\FResponse\wft.exe —dst E:\” command was

issued to launch the customized Windows Forensic Toolchest v1.0.03 instance which gathered

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

volatile database and operating system data from the target system and securely stored it on the
forensic workstation.
Once Windows Forensic Toolchest was finished executing, the results were analyzed and

the following notable events were identified.

SQL Server reserves Sessions #50 and lower for internal SQL Server processes, discounting
these, it was identified that two sessions were currently active on the SQL Server. The first
Session ID # 52 which belonged to the instance of WFT executing under the local Administrator
context and the second was Session #51 belonging to an unknown user operating under the login
EASYACCESS. This session had been established at 7:58 AM that morning. Because the login

name was unconventional, it was flagged for client verification.

;I =8
SQL SERVER sa
J =a
DB LISTING o
D EXEC COMMECTIONS 58
DM EXEC SESSIONS M
| EASTACCESS |
EMnggE%mRiQmsTs PRODECQLOSY Administrator

SQL Server 2005 maintains a record of the last SQL statement executed by a given
session. Viewing this history for the connected users led to the identification of a suspicious

transaction.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

[

SOL SERVER
] local tep port text
%COMCHONS 1433 |delete from [orderhistory] where product = 'VOlocano 62 inch Plaswma TV WC2332°0
w Zelect c.session_id, c.connect time, c.net_transport, c.last_read, c.last_write, c.client_net
SQL LOGIMS
DI EXEC RECQUESTS

The audit policy active on the target system was configured to log successful logins only,
and not login failures. However, SQL Server maintains its own log that records database related
service errors in addition to authentication data. The error log was stored within the *“c:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\LOG”” directory of the target system. Review of
the error log identified several hundred failed login attempts in succession against the sa account,
followed by its successful login. This activity is normally attributed to evidence of a successful

brute force attack against the database server.

2007-03-07 07:39:08.460 Logon Login failed for user 'sa’'. [CLIENT: 182.168.1.20]
2007-03-02 07:39:08.80 Logon Error: 18456, Severity: 14, State: 8.

2007-03-02 07:39:08.80 Logaon Login failed for user "sa’'. [CLIEWT: 1592.168.1.20]
2007-03-02 07:39:09.00 Logon Erraor: 184568, severity: 14, state: 5.

2007-03-02 07:39:09.00 Logon Login failed for user 'sa'. [CLIENT: 19%2.168.1.20]
2007-03-02 07:39:09.20 Logon Error: 18456, severity: 14, State: 8.

2007-03-07 07:39:09,20 Logon Login failed for user 'sa’'. [CLIENT: 182.168.1.20]
2007-03-02 07:39:09.40 Logon Error: 18456, Severity: 14, State: 8.

2007-03-02 07:39:09.40 Logaon Login failed for user "sa’'. [CLIEWT: 1592.168.1.20]
2007-03-02 07:39:09.60 Logon Error: 18456, Severity: 14, state: 5.

2007-03-02 07:39:09.60 Logon Login failed for user 'sa'. [CLIENT: 19%2.168.1.20]
2007-03-02 07:39:09.80 Logon Error: 18456, severity: 14, State: 8.

2007-03-07 07:39:09,80 Logon Login failed for user 'sa’'. [CLIENT: 182.168.1.20]
2007-03-02 07:39:10.00 Logon Error: 18456, Severity: 14, State: 8.

2007-03-02 07:39:10.00 Logaon Login failed for user "sa’'. [CLIEWT: 1592.168.1.20]
2007-03-02 07:39:10.20 Logon Error: 18456, Severity: 14, state: 5.

Z007-03-02 07:39:10.20 Logan Login failed for user 'sa’'. [CLIEWT: 15%2.168.1.20]
2007-03-02 07:539:10.40 Logon Error: 18456, sSeverity: 14, State: 8.

2007-03-07 07:39:10.40 Logon Login failed for user 'sa’'. [CLIENT: 182.168.1.20]
2007-03-02 07:39:10.60 Logon Error: 18456, Severity: 14, State: 8.

2007-03-02 07:39:10.60 Logaon Login failed for user "sa’'. [CLIEWT: 1592.168.1.20]
2007-03-02 07:39:10.80 Logon Error: 18456, Severity: 14, state: 5.

Z007-03-02 07:39:10.80 Logan Login failed for user 'sa’'. [CLIEWT: 15%2.168.1.20]
2007-03-02 07:539:11.00 Logon Error: 18456, sSeverity: 14, State: 8.

2007-03-02 07:39:11.00 Logon Login failed for user 'sa’'. [CLIEWT: 192.168.1.20]
2007-03-02 07:39:11.20 Logon Error: 18456, Severity: 14, State: 8.

2007-03-02 07:309:11.20 Logaon Login failed for user "sa’. [CLIEWT: 192.168.1.20]
2007-03-02 07:53:07.3% Logaon Login succeeded for user 'sa’. Connection: non-trusted. [CLIENT: 192.168.1.20]

To further investigate the above findings, the configuration of the SQL Server needed to
be obtained. SQLCMD, a Microsoft issued utility which allows the submission of ad-hoc SQL
statements and scripts to a MS SQL Server will be used from the trusted incident response CD.
The ad-hoc query capabilities of this tool will be used during the remainder of this investigation.

The “D:\FResponse\Sglcmd —S PRODSQLO05 —e —s™*,”””” command was executed from the

trusted command prompt which opened a connection to the SQL Server using the interactive user

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

context. The ““-e”” switch forces SQLCMD to echo our input statements into the SQL result files
and the “-s”,”” switch ensures the outputs are comma delimited which will allow the results to be

imported into another application for deeper analysis.

After logging in, an output file was established to log the SQL statements and their

associated results securely to my forensics workstation.

:out e:\initialconnection.txt

A MD5 hash will be created on each output file to ensure data integrity. When a connection is
made to SQL Server the default database context configured under the user Login Properties will
be used. To ensure the database context was indeed set for the OnlineSales database the

following command was issued:

use OnlineSales
go

Results: initialconnection.txt
SQL Server 2005 can be configured to use either Windows Authentication, which allows
the host operating system to authenticate users, or Mixed Mode authentication, which allows
authentication to occur at either the Operating System or independently within SQL Server®.
There are also various logging options within SQL Server to log successful and/or failed login
attempts. To verify the active configuration settings of the subject server the following

command was run:

xp_loginconfig
Results: xp_loginconfig--onlinesales.txt

The following results were produced and show that the server is set for Mixed Mode

authentication and is configured to log both successful and failed login attempts.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

Hame »configowalue

[Tagin mode JMixed |

default Togin , guest

default domain , ESALECD

l[audit Tevel call |

=2t hosthame ,fTal=se

map _ . domain separator
map § MULL

map # . —

Authorization within SQL Server 2005 is controlled by two gates. The first gate ensures
that users are authenticated at the database instance and the second ensures that users have the
appropriate permissions to access the various databases and database objects. During the
verification step of this investigation we identified that the SQL server login EASY ACCESS was
logged into the server. However because the investigation is on the OnlineSales database the
database permissions will need to be checked to ensure that the EASY ACCESS account has
access to this specific database. The following query was run to gather a list of all database users

within the OnlineSales database:

Select * from sys.database_principals where type = 'S" or type = 'U’ order by create_date,
modify_date

Results: db_principals-onlinesales.txt

This query produced the following results which show that the EASYACCESS user

account does have access to the OnlineSales database:

narne principal id type type desc default_schema name create date modify date

3L 45 S0L USER MULL 35539 J5E39
Lance 5U WiNDOWS_USER dbo 32140 39140
[EASYACCESS | 65 S0l _USER dbo 39143 39143

The Microsoft extended procedure “xp_cmdshell” allows users to execute dos commands
within the underlying host operating system using their SQL client. This can allow an attacker

who compromises the SQL Server to then launch attacks against the underlying host operating

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

system. However, this procedure is disabled by default in SQL Server 2005. To verify its

current state, the following command was executed:

Select * from sys.configurations
Results: sys.configurations.txt

The results showed that this procedure was disabled therefore the assumption is made that

database users are unable to execute operating system level commands on the host.

configuration_id name value minimum maximum value_in_use description
1639E| wp_cmdshell 0 0 1 0| Enable or disable cammand shell
16391 Ad Hoc Distributed Queries 0 0 1 Enable or disable Ad Hoc Distributed Queries

At approximately 10:45 AM, the initial findings were presented to the client who verified
that the EASYACCESS account was an anomaly and not created for any legitimate business
purpose. It was also disclosed that the Online Sales application was down for maintenance
therefore no one should have been logged on to the OnlineSalesdatabase or have executed the

identified delete statement.
At 11:01 AM the client authorized a full forensic investigation to be performed on the
server to determine the scope and impact of the intrusion. At 11:05 AM The SQL Server was

disconnected from the production network and plugged into a 4 port DLINK hub to isolate the

server and prevent further modification by the unknown user.

Step 2: System Description

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

As previously stated in the verification section of this document, upon login to the target
server the default Microsoft background was visible on the server console and there were no
third party applications visible within the system tray. The following system profile was
gathered from information provided by the client as well as investigator findings gathered during

the verification step:

System Name PRODSQLO5

Serial Number us822301223

System Operating System | Microsoft Windows Server 2003 Service Pack 1

Database Version 9.00.1399.06
System Function Function as a backend database to an online order processing system
Physical Description The system contained 3 peripheral network cards, one appeared to be a

video card, and the remaining two appeared to be network cards,
however, only a single network card was actually connected to the
network.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 10

Asset Photographs:

Step 3: Evidence Collection

As time elapses after a security incident, evidence can be overwritten by legitimate and/or
malicious system activity. Databases can contain large data stores which result in a high data
acquisition cost. To help ensure priority is given to the data sources most likely to contain
relevant data to support the investigation, it’s my expert opinion that relevant data sources be
assigned a significance and also a volatility value between 1 -5 with, 5 being of higher

significance and/or volatility. The following values should be used in the following formula to

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 11

determine priority [10 - (significance rating) + (volatility rating) = priority]. Using the above

formula, the data stores relevant in this investigation were prioritized as follows:

Item Importance | Volatility | Priority

SQL Server Connections & Sessions 5 5

Transaction Log(s)

SQL Server Logs

SQL Server Database Files

N Wl ~| O
N[N w| &
o g W| P

System Event Logs

Now that data stores have been identified and prioritized, the actual data acquisition can

take place.
SQL Server connection & session data

Related information was successfully captured via the customized Windows Forensic

Tool chest tool executed during the verification stage of this investigation.

Transaction Logs

The SQL Server transaction log contains a record of all insert, update and delete
statements made within the database. For performance reasons SQL Server does not
immediately write these events to the physical data files. Instead changes are written to the log

file to buffer and later written to the data files.

A single SQL Server database can utilize multiple database files and multiple transaction
logs. The number of files and locations will need to be identified for the OnlineSales database.
Using the trusted SQLCMD session, the following SQL query is executed to gather the database

file information:

sp_helpdb OnlineSales

Results: sp_helpdb-onlinesales.txt

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 12

The below results were returned from the above SQL query and show that the
OnlineSales database is currently using one physical data file ending with the “.mdf” extension
and two transaction log files ending with the *“.1df” extension. These files are contained within

separate Windows file locations.

name fileid filename

OnlineSales 1 C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\OnlineSales.mdf
OnlineSales_log 2 C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\OnlineSales_log.ldf
OnlineSales_log2 3 C:\OtherLogs\OnlineSales_log2.ldf

The following SQL query was then executed to dump the contents of the OnlineSales log
file to the trusted forensic workstation:

dbcc log(OnlineSales)

Results: dbcclog-onlinesales.txt

Although a SQL Server database can use multiple physical transaction logs internally,
SQL Server splits each physical log file into 4-16 Virtual Log Files (VLFs)®. Selected VLFs are
marked active at any given time and used to record transactions. SQL Server periodically
completes a checkpoint process which flushes changes recorded in the log file to the physical
disk file. Once this is complete, SQL Server marks the VLFs containing the fully committed

transactions reusable and will overwrite them as required with new log records.

The following SQL Server command was run from within the OnlineSales context to
view the logical allocation status of the physical transaction log:

dbcc loginfo

Results: dbccloginfo-onlinesales.txt

The results of this command may be helpful later in the investigation when it will be

determined if the physical transaction log file will be split into virtual log files to separate the

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 13

active VLFs from the reusable VLFs which may contain historical data relevant in this
investigation. In order to obtain a true bit-to-bit copy of the transaction log, the SQL Server
service will need to be shutdown in order to release the locks held on the target files. At SQL
Server shutdown and startup the database checkpoint process is automatically triggered® which,
as previously stated before will flush the non committed changes to disk and mark the records as

reusable. The following command was executed to force the shutdown of SQL Server.

Shutdown
Results: shutdown.txt

After the SQL SERVER processes were shutdown, the physical log files were acquired
using the dcfldd disk imaging tool which also generated MD5 hashes for the acquired data.
These hashes were compared to the hashes of the on disk files to ensure the data was not altered

during duplication.

Database files

Using the database file locations retrieved from the results of the “sp_helpdb
OnlineSales” command executed earlier in the investigation, the OnlineSales database file was

also acquired using the dcfldd tool.

Default SQL Server Trace File

The default configuration of SQL server runs a trace which captures limited activity
within the database. This configuration is enabled by default, but can be disabled by a user with
sufficient privileges. Using the SQL Server configuration gathered earlier in this investigation,

the default trace was confirmed to be enabled.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 14

configuration_id [name |value [minimum | maximum [value_in_use |description
1567 ft crawl bandwidth (max) 100 0 32767 100 Max number of full-text crawl buffers
1568 default trace enabled 1 0 1 1 Enable or disable the default trace
1569 blocked process threshold 0 0 56400 0 Blocked process reporting threshald

During review of the SQL Server installation directory several trace files using the
default Microsoft trace naming convention “log_##" were identified. These log files were

acquired using the dcfldd tool as they may contain information relevant in this investigation.

SQL Server Error Logs

In addition to the current error log used by SQL Server, historical log data is also
maintained. Each time the SQL Server service is restarted, a new error log is created and the
existing log is backed up. SQL Server maintains the current error log in addition to 6 log
backups. All 7 error logs were acquired using the dcfldd tool. Once all data had been acquired
the SQL Server services were restarted.

Step 4: Timeline Creation

Constructing an initial timeline will map out the notable digital events which have been
identified thus far and establish an investigation scope which will be used during the Media
Analysis phase. Review of the SQL Server error logs obtained during the Evidence Collection

step show that the SQL Server instance was restarted on March 01, 2007.

2007-03-01 07:26:22.53 server 5oL server s now ready for client commections. This is an informational message...

This will be the first entry in the timeline. As discovered during the verification step of
this investigation on March 2", 2007 several hundred failed SQL Server login attempts were
recorded within the error log between 7:01 AM to 7:39 AM from IP address 192.168.1.20.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 15

Following these failed login attempts were successful logins by the SA account at 7:54 AM and
the EASYACCESS account at 8:09 AM from the same IP address.

2007-03-02 07:39:11.00
2007-03-02 07:39:11.00
2007-03-02 07:39:11.20
2007-03-02 07:39:11.20
2007-03-02 07:53:07.39
2007-03-02 08:09:37.60

Logon
Logon
Logon
Logon
Logon
Logon

Erraor: 18458, Severity: 14, State: B.

Login failed for user

Error: 18456, Severity: 14, State: 8.

Login failed for user

"sa'. [CLIENT: 152.168.1.20]

'sa'. [CLIENT: 192.168.1.20]
Login succeeded for user 'sa’. Connection: non-trusted. [CLIENT: 192.168.1.20]

Login succeeded for user 'EASYACCESS'. Connection: non-trusted. [CLIENT: 192.168.1.20]

These events will be added to the timeline in addition to the associated Server Process Identifier

(SPID). A SPID is a unique number used by SQL Server to track a given session within the

database server?. The trace files obtained during the evidence collection phase of this

investigation were imported into MS SQL Profiler on my forensic workstation for analysis.

During review, the following notable events were identified:

(1) Creation of EASYACCESS account
(2) EASYACCESS account is granted access to OnlineSales database

(3) EASYACCESS account is added to ONLINESALES db_owner role
(4-6) Unknown transactions are executed by EASYACCESS account which required

tempdb usage. Often DML operations require tempdb usage? therefore it is likely

that SPID 51 issued DML operations which required object or interim result

storage.

Loginkame I SPID I StartTime EventSublClazs [atabazet ame TrangzactionlD | Targetlogintame FioleM ame

sa 51:2007-03-02 07:33:10.200 ! mas ter

54 51 2007-03-02 07:39:10.400 mas ter

54 51 2007-03-02 07:359:10.£00 mas ter

5a 51 2007-03-02 07:39:10.500 mas ter

5a 51 2007-03-02 07:39:11.003 mas ter

54 51 2007-03-02 07:39:11.203 mas ter
\‘>| 54 51 2007-03-02 07:54:07.130 1 - add mas ter 3559 EASYACCESS

54 51 2007-03-02 07:54:34.030 1 - Commit tempdb 3615

5a 51 2007-03-02 07:54:35.740 mas ter 7ez

54 51 2007-03-02 07:54:35.903 0 - Begin tempdb 3757
M~y 52 51 2007-03-02 07:54:35.913 1 - Commit tempdhb 3757

‘|5a 1 2007-03-02 O7:55:52.783 3 - Grant database access 0Onlinesales 4126 EASYACCESS
/Jsa £1 2007-03-02 O7:56:18.440 1 - Add onTinesales 4171 EASYACCESS db_aowner |
/ |EASYACCESS £1 2007-03-02 08:059:33.773 1 - cCommit tempdh 4560 | —
2 2007-03-02 08:13:2%9.350 1 - Increase

|EASYACCESS 51 2007-03-02 05:13:31.433 1 - Commit rempdhb SE51 |<\

EASTACCESS 1 2007-03-02 08:13:32.667 1 - Commit tempdb CE45

Immmmstrator TZ Z007-03-02 10:17:38.283 T - Ccommit Tempdb 12166 ‘V\

PRODSOLOSYAdministrator 52 2007-03-02 11:05:24.943 1 - commit tempdb 14983

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

16

Based on the events identified thus far in the investigation, the following timeline was

constructed:

Time User SPID | Action

March 1, 2007

7:26 AM UNKNOWN N/A | SQL Server instance is restarted

March 2, 2007

7:01 AM — | UNKNOWN 51 SQL Server Brute Force attack launched against

7:39 AM PRODSQLO5 server

7:54 AM SA 51 SA SQL Server user account logs into PRODSQLO05
server

7:54 AM SA 51 EASYACCESS account created

7:55 AM SA 51 EASYACCESS account granted access to OnlineSales
database

7:56 AM SA 51 EASYACCESS account added to OnlineSales
db _owner role

8:09 AM EASYACCESS 51 EASYACCESS SQL Server account logs into
PRODSQLOS5 server

8:09 AM EASYACCESS 51 EASYACCESS account executes unknown transaction
within ONLINESALES db

8:13 AM EASYACCESS 51 EASYACCESS account executes unknown transaction
within OnlineSales database

8:13 AM EASYACCESS 51 EASYACCESS account executes unknown transaction
within OnlineSales database

10:17 AM | Administrator 52 Start of Forensic Investigation of database server

11:05 AM | Administrator N/A PRODSQLO5 server removed from network

11:16 AM | Administrator 52 SQL Server instance shutdown

The application connected to SPID 51 was recorded by SQL Server as “OSQL-32".

Performing a Google™ search on this name identified the application as a legacy Microsoft

command line query tool called OSQL. This will be noted as it may be relevant in the future if

an investigation is performed on the unauthorized user’s computer.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

17

squelda 1.0 ca £1 2007-03-02 0F:39:1l.003 o o
squelda 1.0 ca 51 2007-03-02 0F:39:1l.203 o o
osqL-32 za TUUEY 2007-03-02 07:54:07.180 1 - add 1 oxol o
osaL-3z sa 51 |z007-03-02 07:54:34.030 1 - Commit 01 o
osqL-3z sa 51 |2007-03-02 OF:54:35.740 %01 o
osqL-3z ca 1 |2z007-03-02 O7:54:35.903 0 - Begin o0l o
osqL-3z ca 51 |2007-03-02 0F:54:36.913 1 - Commit 001 o
osQL-32 sa 51 |2007-03-02 07:55:52.783 3 - Grant ... 1 oxo1 o
osqL-32 sa 51 |2007-03-02 OF:56:18.440 1 - add 1 oxol o
osqL-3z EASYACCESS 51 |z007-03-02 08:09:33.773 1 - Commit OXESED. . . o

z | zo07-03-02 DE:13:zs.I50 1 - Increase o
osqL-3z EASYACCESS 51 |2007-03-02 08:13:31.433 1 - Commit OXESD. . . o
osqL-32 EASYACCESS 51 |z007-03-02 08:13:32.667 1 - Commit OXESS. . o
_sqLcwo FRODSOLOS Administrator 52 2007-03-02 10:17i35.283 1 - Commit 0X0L10. .. o

Step 5: Media Analysis

The timeline established in the previous step will now be used to set boundaries on the
scope of media analysis. Using the timeline, the focus of the investigation will be on activities
executed by SPID 51 between 7:54 AM March 1%, 2007 when the unauthorized access was
gained to SQL Server and later in the day at 11:05 AM when the system was isolated from the

production network.

Before looking at any of the raw SQL Data files, the data types in use within the
OnlineSalesdatabase will need to be identified. Unicode is a standard method of mapping SQL
Server byte representations (code points) to ASCII characters. The Unicode standard is inclusive
of characters which map to all languages throughout the world. SQL Server uses various data
types which store Unicode data, however there are some data types used by SQL Server (char(n),
varchar(n) & text) which store non-Unicode values®. When non-Unicode values are stored
within SQL Server, they are converted to a supported data type using the collation setting of the
respective table column®. If this data is viewed by a computer using a code page which does not
cover the range of characters used within the collation setting of the database, data loss can occur
which can skew the results®. To determine if non-Unicode data was being used by the Order

table and the collation setting in place, the following procedure was run:

sp_tablecollations ‘order’

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 18

Results: sp_tablecollations-onlinesales.txt

The results below show that both Unicode and non-Unicode data is stored within the Order

table. The columns storing non-Unicode data are using the SQL_Latin1_General CP1_Cl_AS

collation setting.

calid name tds_collation collation

1 OrderlD MULL MULL

2 Firsthlame 0x0304000034 |S0L Latinl_General CP1_ClAS
3 LastMame 0x0304000034 |50 Latind_General _CP1_Cl_AS
4 Address 0x0304000034 |S0AL Latinl_General CP1_ClAS
A City 0x0904000034 |SAL Latinl_General CP1_ClI_AS
6 State 0x0904000034 |S0L Latinl_General_CP1_Cl_AS
7 7P 0x0904000034 |SAL Latinl_General CP1_Cl1AS
g CCType 0x0904000034 |S0L Latinl_General_CP1_Cl_AS
9 CCMumber 0x0904000034 |SCOL_Latinl_General CP1_Cl_AS
11 ShipStatuslD MULL MULL

12 OrderDate HULL MIULL

13 Product 0x0304000034 | S0L Latind_General _CP1_Cl_AS
14 Price 0x0904000034 | S0L Latinl_General CP1_Cl AS

This collation setting was researched on SQL Server 2005 Books Online which showed

that this collation maps to code page 1252*. To verify the code page in use on my forensic

workstation, the regional and language options application within control panel on my forensic

workstation was viewed. This identified that the forensic workstation was using a compliant

code page in order to correctly translate the code points used by SQL Server.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

19

Regional and Language Options 2| x|

Hegionaletions' Languages Advanced |

r— Language for non-Unicode programs

Thig spstem =etting enables non-Unicode programs to display menus
and dialogs in their native language. |t does not affect Unicode
programs, but it does apply to all uzers of this computer.

Select a language to match the language version of the non-Unicode
progranms you want o use:

English [United States)

— Code page conwversion tables

1250 [AMS] - Central Europe] ﬂ
1251 [ANSI - Cyrillic) i
1252 [ANSI - Latin |

1253 [ANSI - Greek)
1254 [AMSI] - Turkish)
1255 [AMS] - Hebrew) ;l

r— Default user account settings

[Apply all settings to the curent user account and to the default
uzer profile

ak. I Cancel Apply

The transaction log acquired during the evidence collection phase was imported into

Microsoft Excel using code page 1252. A SQL Server 2005 transaction log contains over 100

columns however only a few columns will contain relevant data based on the scope of this

investigation. The following table outlines target columns and their function within this

investigation.

Column Description

Operation The type of operation which was performed

PagelD The data page affected by the transaction

SlotID The row within the data page affected by the transaction

Offset in Row The first position within the data row affected by the transaction
SPID The Server Process ldentifier

Begin Time Indicates the transaction start time (server time)

Transaction Name Classification of the active transaction

End Time Indicates the transaction end time (server time)
RowLogContents0 The value which was updated by the transaction (Insert, Update statements)
RowLogContents1 The value which was written to disk (Insert, Update statements)

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 20

For a listing of all columns within the transaction log, please see Appendix B of this document.

The imported data set was filtered to display only records which were executed by SPID 51 and

between the date/time ranges captured in the timeline. The first two transactions identified, were

associated with the creation and permission augmentation of the EASY ACCESS account which

was identified during the trace file review.

Server UID UID SPID Beginlog Status :Begin Time Transaction Name Transaction SID End Time Transaction Begin

NULL MULL MULL NULL MULL MULL MULL MULL NULL
MULL LIUILL B T IIWIN| UL MULL MULL NULL
-1 51 0x01000000 20070302 07:55:52:813 CREATE USER 001 MNULL NULL
NULL MULL MULL NULL MULL MULL MULL MULL NULL
NULL MULL MULL NULL NULL MULL MULL MNULL NULL
NULL MULL MULL NULL MNULL MULL MULL NULL NULL
MNULL MULL MULL NULL MULL MULL MULL MNULL MNULL
NULL MULL MULL NULL NULL MULL MULL MNULL NULL
NULL MULL MULL NULL NULL MULL MULL MNULL NULL
MNULL MULL MULL NULL MULL MULL MULL MNULL MNULL
NULL MULL MULL NULL MULL MULL MULL MULL NULL
MNULL MULL MULL NULL NULL HULL MULL BULL MULL

MNULL MULL MULL MULL MULL MULL MULL 20070302 07:55:52:833 00000010:00000e1 ¢:0001
Dl -1 51 0x01000000 2007/03/02 07:56:18:440 user_transaction 'lem FNUOLCC MULL
NULL MU NUCLNOCT NLUTE MULC MULL MNULL NULL
MNULL MULL MULL NULL MULL MULL MULL MULL MNULL
NULL MULL MULL NULL MULL MULL MULL MULL NULL
NULL MULL MULL NULL NULL MULL MULL BULL MULL

NULL MULL MULL NULL MNULL MULL MULL 2007 03702 07:56:18:450 {00000010:00000e1£.0001

The third transaction executed by SPID 51 was an update statement. The transaction log details

show that a database transaction 1D 0000:0000032e which was an update statement affecting 3

records within 3 separate data pages within the database.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

21

Marks the beginning

Data Page identifier

Unique transaction

for row containing the

of a transaction identifier updated record
Operation Context Transaction ID Page ID Slot ID . Offset in Row
LOP BEGIN XACT | Lk _MULL 0000:0000032e | MWULL y MULL .. MULL
LOFP_MODIFY_COLUMMS [LCX_CLUSTERED |0000:0000032e | (0001:000000d3 201 a0
LOP_MODIFY_COLUMMS [LCK_CLUSTERED |0000:0000032e | (0001:0000013c 13(... a0
LOF MODIFY COLUMMS [LCX CLUSTERED |0000:0000032e
LOP_COMMIT XACT | Lk MULL 0000:0000032.

00010000006 7. an
NOLL /\IVULL NOLL

Marks the end of a
transaction

On data page row
location of record

Type of transaction
performed

In row data offset
of modification

A SQL Server data page is an 8192 byte structure which stores database data’. A data page can
contain multiple rows and each database contains multiple data pages. Data pages are organized
into logical groups of 8 called extents®. Using the transaction log dump, the first update
statement was analyzed, identifying a record on row 20 of Data Page 0001:000000d3. Both the
Page ID and Transaction ID values are stored in hex and when converted to decimal produce the

following values:

Identifier Hex Decimal
Transaction ID 0000:0000032¢ | 0:814
Data Page 0001:000000d3 | 1:211

In order to view the raw data pages, the OnlineSales database was attached within SQL
Server Management Studio (SSMS) version 9.00.1399.00 on my forensic workstation. Within
the newly added OnlineSales database, Microsoft-issued commands and procedures will be used

to examine the raw data pages which have been modified.

The following command was issued from within the OnlineSales database context

dbcc page (OnlineSales, 1, 211, 1)

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 99

The above command dumped data page 211 which contained the row which had been modified.

The header of the table was examined to identify the base table to which the data page belonged.

PAGE HEADEER:

Page @0x04304000

m pageld = (1:Z11} m headerVerszion = 1 m type = 1
m_typeFlagBits = 0x0 m lewel = 0O m_flagBits = 0Ox0

m objld (AllocUnitId. idokjy = 27 m indexId (LllocTnitcId. idInd) = EZEE

Metadata: AllocUnitId = FEO0ETES40436Z9E568

Metadata: ParticionId = TE057524033500300 Hetadata: IndexId = 1
Metadata: 0ObjectId = GEIETTEERL n_prevPage = (l:31l4) m hextPage = (1:315)
poinlen = 108 m_slotlnt = 2Z m_freeCnt = 3263
w_freelData = E318 w_reservedint = 0O w lsn = (l6:3686:Z)

m xactBeserved = 0 m xdesId = (0:0) m_ ghostRecCnt = 0

m tornBits = -1731484635

Allocation Status

GAM (1:2) ALLOCATED SFAM (l:3) = NOT ALLOCATED
PFS (1:1) Ox&0 MIXED EXT ALLOCATED 0_PCT_FULL DIFF (l:&5) = CHANGED
ML (1:7) = NOT MIN LOGGELD

Obijectid 629577281 was used as an argument in the following query which was run to resolve

the name of the object.

Select * from sysobjects where id = 629577281

This produced the following output which confirmed that the data page belonged to the Order
table.

narmme id wtype uid info status base_schereplinfo parent_obj crdate

|Order 829577281| L 1 a a 0 a 1 202607 4:08 PM ..

The method used by SQL Server to store data depends on the data types in use, the size of each
column and the order in which the columns were specified when the table was created. Before
the raw data pages were examined, the table schema was first gathered by executing the

following command:

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 23

SELECT sc.colorder, sc.name, st.name as ‘datatype’, sc.length FROM syscolumns sc,
systypes st

WHERE sc.xusertype = st.xusertype and sc.id = 629577281

ORDER BY colorder

The following output was produced which illustrates the schema of the Order table:

colorder |name datatype |length
1 OrderlD int 4
2 FirstMame varchar 20
3 LastMame varchar 20
4 Address varchar]
A City nchar 40
B State hchar 4
7P hchar 10
g3 CCType varchar 15
9 CCMumber warchar 20
11 ShipStatuslD Jint 4
12 OrderDate datetime a
13 Product rvarchar 100
14 Price nchar a0

Using slotID: 20 and rowoffset 80 which were obtained previously from the transaction log, the

specific point within the data row was identified in which the transaction began.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 24

Zlot 20 Offszet 0x147f Length 237
Record Type = PRIMARY RECOERD Pecord Attributes = NULL_BITHAP VARIAELE COLTUMNS

Memory Dump @0xZF2aD47F

ooooooon: F000&c00 &£000000 52007000 72006200 +0.1.o.. S5.p.r._i.
oooooolo: 2006700 4c006100 eb0O0OEE00 Z0002000 fn.g.L.a k. e.
oooooozn: ZO000Z000 z2000Z000 20002000 Zooozooo + . o o o . o o .
oooooo:30: 241005a00 31003400 34003100 I0000a00 tA.Z.1.4.4.1.0. .
oooooo40: Qoo0o01l00 00000000 oo00ed3s IIIEIEIEIS 4 PR o T et 3.
ooooooso: 2el0z500 30002000 20002000 Zooozoo0o +..5.00 0 . o . .
oooooosn: ZO00EZ000 2000Z000 2000z000 Qe0000cO + 0 O o 0 . oo ..
ooooaa7o: 05002400 22002200 2d400ad00 ed00416e +. ..o An
oooooosn: Sf726fEe 4L6dE96c 3P2AZZ0LE3 74617266 tosonEmil7E Starf
oooooosn: ELEcEoZ0 44776976 6LELEE97E £134393]1 tell DriveVWisadil
ooooooan: JEIEIE3IT F8343033 28323330 F0OEE006f TEEE3IS4038Z300W.o0
000000ED: 006c0063 00&1006e O0GEf0O0Z0 00360032 t.1l.c.an.o. 6.2
ooooooco: 00z0006% 006e0063 00680020 0050006c +. .in.c.h. _P.1
oooooopo: Q0el0073 00ed00el 00z00054 00560020 t.a.s.m.a. .T.VW.
000000ED: 005&0043 0032Z0033 00323200322 00t+t++++++. W.C.2 3.3 E.

Using the table schema obtained earlier, the data type within this row offset is the Price column
which contains a 30-byte nchar data type. From the transaction log, the hexadecimal value from

the Rowlog0 and Rowlogl columns were extracted and converted to decimal representation.

RowLog0
Hex 35 | 00 | 30 | 00 | 30 | OO | 2E | 00 | 30 | 00 | 30
ASCIl | 5 0 0 : 0 0
RowLogl

Hex 2E 00 35 00 30 00 20 00 20 00 20
ASCII . 5 0 SP SP SP

Mapping the data page determined that the offset for the price column is 0x4f (79), as identified,
the update statement began at offset 80. This was done so SQL Server did not have to overwrite
a value in which it would need to rewrite as part of the transaction. Therefore the offset was
augmented by SQL Server from 79 to 80 to compensate. Taking this into consideration, the

statement executed under transaction 0000:0000032¢e (0:814) was to update the price column

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation o5

from *3500.00” to “3.50”:

Slot 20 Offszet 0x147f Length 237
Becord Type = PRIMARY RECORD Becord Attributes = NULL_BITMAP WARTABLE COLTIMNS

Memory Dunp @0xZF3AD47F

QOO00DOD0: 30006c00 &£000000 53007000 72006500 +0.l.o0...8.p.r.i.
00O000l0: 6e006700 40006100 EbO0S500 ZOOODZO00 tn.g.L.a.k.e.

00000020: 20002000 20002000 20002000 20002000 +

O00000Z0: 41005a00 21003400 24003100 20000200 +A.Z.1.4.4.1.0...

00000040: 00000l00 00000000 0000452 OO0 Eﬁr ______________ 7| Startoftrn.
QOOD0DS0: ZeO03E00 20002000 20002000 [zZ000ZOOO +..5.0.

QOO00DED: ZOO0Z000 ZOOOZOO0O0 20002000 (0000020 +

QOODD070: 06008400 S5009900 59d00ad00 |ed00dlée +. in

OOODDDS0: Gf736f6e 456d696c S7322053 74617266 tosonEmil7z Starf

000000S0: G56cEcz0 44726976 GEEE6573 61343931 tell DriweVisadsl

O0OOODAD: 36383833 35343022 28323330 |2056006f +68S38403823007. o

ODOOODED: 006c0082 OO0E1006e ODS£0020 (00260022 +.1.c.a.n.o. .6.%2

QOODOOCO: 00200069 O06e0063 00620020 |00E000Es +. .i.m.c.h. .P.1

Q0O00ODO: 00610073 00640061 00200054 |00EE00Z0 +.a.z.m.a. .T.W.

OOODDDED: O0ES004% 00220033 O033003Z |00t+tttttt.W.C.2. 3.3 2.

Start of col.

Using the same steps outlined above, the remaining 2 records updated during this transaction
were identified.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

Slot 13,

Becord Type

Offzet Oxl4L0,

= PRIMAPRY RECOERD

Memory Dump @0xZF7AL4E0

Becord Attributes

Length 239, DunpStyle BEYTE

oooooooo: Z000&cO0 08010000 E3007000 7EO0O&300 +0O.1..... Bp.r.i.
ooooooLo: el0&700 4c006100 &bO0E5S00 EZ000zZ000 +n.g.L.a k.e 3
Qoo0o0ED: 20002000 Z000zZ000 Z000z000 Z000z000 + A =
ooooooz0: 41005200 31003700 20003000 23000100 +A E.1.7.0.0.3. ..
oooooo40: 00000100 00000000 d000e428 Q0003300 +. 3.
ooooooso: Ze003500 30002000 EZ000zZ000 Z000z000 +..5.00 o g
ooooo0en: Z000Z000 Z000zZ000 EZ000z000 OedO000cO + Ry TR
oooQoo70: 05003400 3a00%b00 2E£00af00 efO0d436f +.. Co
oooooos0: Tz79cege 4607760 SEVZIT3E E0E3V4Eel tryvinmFowler7Z Sta
oo0aa020: TZEEEEEc GoZ0447E &G976E6EEE &373613E8 +trfell DriwveVWisal
Ooooo0aD: 25313835 332303030 20303030 203203058 +518530000000000%W
Ooooo0ED: O0sf008c 00630081 OO06e0O0&f OOZOO0O038 t.o.l.c.a.n.o. .6
ooooooco: 00320020 006900&e QO0G6300&5 OQOzO00050 +.2. .in.c.h. P
ooooooDno: 00gcOOsl 00730084 00610020 Q0540058 f.l.a.s.m.a. .T.V
oooo0o0ED: O0Z000&8e 004300328 003300332 003zo00++++. W C_2.3.3.Z2.
RowLog0
Hex 35 | 00 | 30 | 00 | 30 | 00O | 2E | OO | 30 | 00 | 30
ASCIl | 5 0 0 0
RowLogl
Hex 2E | 00 | 35 | 00 | 30 | 00 | 20 | 00 | 20 | OO | 20
ASCII 0 SP SP SP

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

NULL _EITHAP WARIAELE COLUHMES

27

glot 7,

Offset Oxllcéd,

Length

Pecord Type = PRIMARY RECOPD

Memory Dump A0xZFzZaD1CE

240, DIampStyle BYTE

Becord Attributes

NULL EITHAP VARIAELE COLTIHEHE

oooooooo: 20006200 46010000 52007000 7z00&200 +t0_1.F. . 5. p.r._i.
oooooolo: Sel0&700 4c008100 sbO00&E00 Z000Z000 th.g.L.a k.e.

000000 E0: 20002000 EQO0O0zZO000 Z000Z000 2000Z000 + g

0000a030: 410058200 31003400 340032100 20000&00 tA_Z2.1.4.4.1.0.._.
ooooo040: 00000100 00000000 O000ed438 00003300 +. B
00ooa0s0: £e003E500 3I000z000 Z000Z000 2000Z000 +..5.0

ooooo0&0: Z000Z000 EZQO00zZ000 Z000z000 Qe0OO0e0 + - o o o
o0oooo7o: 0&008200 2b009c00 add0bOoO00 fO00416F +. Al
oooooog0: E955a0d4f EY4etbEl GocécZ03? FEEODERT4 tie 0'MNeill 7E St
oooooos0: 1726668 Godoz044 TEEIYEEE EEg97361 tarfell DriveWisa
000000AD: 24393136 3IB3BI030 I03032030 F03I030320 +491&220000000000
o0ooa0Eo: Ee00e£00 &o006300 sl006e00 &£f00Z000 tW.o.l.c.a.n. o,
ooooooco: FE003Z200 Z0006900 geld0&300 &200Z000 t&_Z. in.c h.
oooooono: EO00&cO0 &1l007300 sd00&l00 z0O00&5400 +tP.l.a.s.m.a. .T.
000000 ED: Ee00zZ000 Ee004300 FEQ0ZZ00 II0O0IE00 +W. . W.C.Z.3.3.Z.
RowLog0

Hex 35 | 00 | 30 | 00 | 30 | OO | 2E | 00 | 30 | 00 | 30
ASCIl | 5 0 0 0 0
RowLogl

Hex 2E | 00 | 35 | 00 | 30 | 00 | 20 | 00 | 20 | 0O | 20
ASCII 5 0 SP SP SP

It is noted that all 3 records updated during this transaction were associated with the “Volcano 62

inch Plasma TV VC2332” product.

The fourth transaction executed by SPID 51 was another update statement. The

transaction log details show that transaction 1D: 0000:0000032f was an update statement

affecting 2 records located on 2 separate data pages.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

28

Operation Context Transaction ID Page ID Slot ID . Offset in Row
LOP_BEGIM_®ACT LCH_MULL 0000:0000032F MULL MLULL MIULL
LOP_MODIFY_ROWY LCx_CLUSTERED 0000:0000032f 0001:000000d3 20 66
LOFP MODIFY ROWW LC¥ CLUSTERED 0000:0000032f 0001:000000d6 7 65
LOP_COMMIT XACT LC¥_MULL 0000:0000032f MULL MULL MULL

The same process used previously was followed to identify the affected records. The row offset

and page ID values obtained from the transaction log were used to identify the specific value

updated within the following records:

Elot 7 Oifset 0x1ZBE Length 243
Pecord Type = PRIMARY RECORD

Memory Dump @A0x0E&4DZEES

Record Attributes

NULL _EITHAP WVARTAELE COLUMHNZ

00000000: 20006c00 46010000 42006500 &c006c00 +0.1.F.. .B.e.l.1.
00000010: 65007600 75006500 ZOOOZOO00 Z000ZO0OO te.v.u.e
000000Z0: 20002000 Z0O0Z000 Z000ZOOO Z0OO0ZOOO + . . .

00000030: 43005400 32003100 30003600 37000a00 +C.T.Z.1.0.6.7
00000040: 0QU00Z00 _00p00000 00002398 00003300 +to............. 3
00000050: 35003000 30002e00 30003000 20002000 +5.0.0...0.0
00000060: 20002000 20002000 20002000 0e0000cO0 +
00000070: 06008200 ShO0S£00 a300b300 £3004162 +.............. ik
00000020: E965a04f Z74e6E5E9 ScEcZ03Z 32I7Z0E7 tie. 0'Neill 227 W
00000030: 49424445 4156454e ZO535452 45455456 +INDHAVEN STREETV
000000A0: 69736134 39313638 38303030 30303030 tisad?le880000000
0OOOOOEO: 30303056 D06£006e 00630061 006e006f t000W.o.l.c.a.n.o
000000CO: 00200036 00320020 O063006e OOE30068 +. .6.Z. .i.n.c.h
000000D0: 00200050 006c0061 00730064 00610020 +. .P.l.a.s.m.a.
000000EQ: 00540056 00Z000EE 0043003F 00320033 +.T.V. .V.C.2.3.3
000000F0: 003Z00ttttttttttttttttttttttttttttttt.z.

The data type within this offset of the row is the ShipStatusID which is a 4-byte integer value.

RowLog0
Hex 00 | 01 | 00 | 00
ASCIl| 00 | 01 | 00 | OO

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

29

RowLogl

Hex 00 02 00 00

ASCIlI | 00 02 00 00

Blot 20 0Offset OxlE&c Length Z38
Becord Type = PRIMARY RECORL Becord Attributes = HNULL _EITMAP VARIABLE COLUMHS

Memory Dump @0x0ESCDESC

00000000: 20006c00 ££000000 E7006800 £9007400 +0.1.o.. W h.i.t.
0O00000LD: EZ007S00 0002000 ZO000ZO000 Z000ZO000 +b.y.
000000Z0: 20002000 20002000 ZOOOZOOO ZOOOZOOO +
OO000030: 46004000 33003200 37003000 31000800 +F.L.3.2.7.0.1...
00000040: 00000Z00 00000000 00008e58 00003300 +... 3.
OO00O0ED: 3E003000 3000Ze00 20003000 Z000ZO0O00 +5.0.0...0.0. . .
00000050: 20002000 Z000Z000 ZOOOZO0OO 0e0000cO +
00000070: OE008400 820095200 9e00ael0 ee004lée in
00000080: Ef736f6e 456deS6c 37342048 65726963 tosonEmil74 Heric
00000030: Eb736f6e 20445249 EE45EE69 73613439 thson DRIVEWisadd
OOO0O0AD: SL3E3E38 3333430 33383233 30305600 +16883840382300V.
0000OCBOD: Ef006c00 62006100 £e008£00 ZOOD2E00 to.l.c.an.o. .6.
OO0000CO: 3Z002000 69006e00 £3008800 ZOO0D5000 +2. .i.n.c.h. .P.
000000D0: EcO006l00 72006400 £100Z000 E4005600 tl.a.=.m.a. .T.V.
OOO0O0ED: Z0005600 43003200 23003300 2200++++t+t V. C.Z.3.3.Z2.

RowLog0

Hex 00 01 00 00

ASCIlI | 00 01 00 00

RowLogl

Hex 00 02 00 00

ASCIlI | 00 02 00 00

It is noted that after querying the ShipStatus table the ShipStatusID value of 1 indicates that an
order has been shipped and a value of 2 indicates that the order has yet to be shipped. It is the
investigator’s belief that the value was updated from 2 to 1 in an attempt to have the customer

repeat shipment of the referenced product to the designated address.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

The fifth transaction executed by SPID 51 was an insert statement. The transaction log

details show that a database transaction 0000:00000330 affected a single row.

Operation Context Transaction ID | Page ID Slot 1D . Offsetin Row
LOP BEGIN XACT LC¥ MULL 0000:00000330 MULL MULL MULL
[LOP_INSERT ROWS| LC¥ CLUSTERED 0000:00000330 0001:00000138] MULL
LOP_COMMIT HACT LC¥_MULL 0000:00000330 MULL MULL MULL

The same procedure used to map the previous update statements to a data pages was followed to

identify the inserted record:

Blot 2 0ffset Oxcfe Length 182

Pecord Type = PRIMARY RECORD

Memory Dump A0x0ES4CCFE

oooooono:
oooooolo:
ooo000z0:
ooooo03z0:
ooooo040:
oooooos0:
Qoooo0en:
oooooa70:
ooooo0a0:
ooooo020:
ooo000AD:
0o0o000Eo:

2000&c00
cel0&s700
Z000Z000
41005=00
Z3fb0Oz00
Zeld:3000
Z00oZooon
o&002200
et fdZEo
GogoZ044
353332020
4 f005200

aldlooon
40006100
Z00ozoon
3looz400
goooooon
3000z000
Z0oozoon
27002200
E1lE63Ekh37
TEEITEEE
2032020320
Z000z300

Fecord Attributes = NULL EITHAP WVARIAELE COLUMHNE

E3007ao0a
ebO00&500
Z000zao00
34003100
0o00e498
Z000za00
ZO00zaon
Sc00acOo
FZEZ0E374
EEE97361
20303030
F&003000

FzOo0&300
Z000Z000
Z000Z000
20008272
oooo3400
20002000
Qel000ecz
bolddess
El7EEEEE
2L32L3138
Laood4zoo

trnoEBlack?Z Starfe
t11l DriwveWisabEls
+5230000000000X_E.

T+ttt 0. . (2. 6.0

Querying the remainder of the transactions showed that no future modifications were made to
this slot within the data page 0000:00000330 therefore the data currently residing on the data

page remains unchanged from its state as inserted during this transaction. The values contained

within this record are as follows:

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

31

OrderID =417 CCType = Visa

FirstName = Nino CCNumber = 5518530000000000
LastName = Black ShipStatusID =2

Address = 72 Starfell Drive OrderDate = March 1, 2007 12:00AM
City = SpringLake Product = XBOX 360

State = AZ Price = 4.00

ZIP =14410

The price associated with this item seems inaccurate, and will be flagged for review by the client.
It was also noted that the credit card number used in this insert statement was also associated

with one of the records updated during transaction 815.

The sixth transaction executed by SPID 51was transaction 0000:00000331 an update

statement affecting 3 records.

Operation Context Transaction ID Page ID Slot ID ... Offset in Row
LOP BEGIN xACT L MULL 0000:00000331 MULL MULL MULL
LOP_MODIFY_ROWY LCx_CLUSTERED 0000:00000331 0001:000000d3 20 74
LOP_MODIFY_ROWY LCx _CLUSTERED 0000:00000331 0001:0000013c 13 74
LOP_MODIFY _ROWY LC¥ CLUSTERED 0000:00000331 0001:000000d6 7 74
LOP_COMMIT XACT L MULL 0000:00000331 MULL MULL MULL

The same procedure used earlier to map the previous update statements to a data pages was
followed here and resolved to the Order table. Using the table schema obtained earlier, the data
type within this row offset is the OrderDate column which contains an 8-byte datetime data type.
The first record updated during this transaction was located on data page 211, slot 20 and the

updated column began at offset 74.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 32

Slot Z0 Off=et 0Ox147f Length 237

Pecord Type = PRIMARY RECORD

Becord Attributes

Memory Dump @0x0ECLD47F| OrderDate Column

NULL EITHAP VARIAELE COLUMNHNE

ooooooon: F000&c00 & £000000| 52007000 22006900 0. 1.0, . 5. .p.r._i.
ooooo0L0: gell&700 4c00&100|6b00&500 20002000 th.g.L.a k..
0oo0o00z0: 20002000 2000Z000| 20002000 20002000 + &%

oooo0030: 41005a00 31003400W34003100 30000a00 tA. 2.1.4.4.1.0
Qooooo40: ooooolon DdDDDDDD 0000edl 8 OOIDO3300 +. . ..ot 3
oooo00s0: Zel02500 2000Z000 2000Z0001 Z000z000 +..5.0

oooo00en: EOOQZ000 zOOOQE000 2000Z000| Qe0000cO + O O o . o oo ..
ooooo070: 0&002400 22002200 2d400ad00(ed0041ée +o 000 oo oL An
oooooos0: f736f6e 4Ledel6c 3F7AZEZ0LZ | 74617266 tosonEmil7E Starf
ooooo020: ELEcECZ0 44726378 ELRLEERTE| 61343331 tell DriveWisadil
Ooo000AD: 36383833 38343033 38323330|3056006f T6853540332300V._ o
Oo0000ED: 00&cO063 0061006e OOGEfO0Z0|00360032 t.1l. c.an.o. 6.2
Qoooooco: 00200082 00cel0&3 QOO0SS00Z0|0050006c +. .in.c.h. .P.1
oooo00m0: 00&10072 00640081 00zZ000&84 (0O5S00Z0 t.a. s m.a. _T.W.
Ooo000ED: 005&0042 00Z2Z0033 0032003E |00t+++++++ . W.C. 2 23_32.E.

Updated Value

The method in which computers store multiple-byte values vary, some use little-endian ordering
(LEO) and others use big-endian ordering (BEO)’. With little-endian ordering, the most

significant byte of the number is placed in the first storage byte; big-endian does the reverse and

stores the least significant byte in the first storage byte. Microsoft operating systems use little-

endian ordering’, which is also true in the way SQL Server stores numeric values.

From the transaction log the hexadecimal values from the Rowlog0 and Rowlogl columns were

extracted, switched into LEO and converted to decimal representation.

RowLog0
Hex (BEO) 0x0000000000BD9800
Hex (LEO) 0x000000000098BD00
Decimal 39101

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

33

RowLogl

Hex (BEO) 0x0000000000E49800
Hex (LEO) 0x000000000098E400
Decimal 39140

The datetime data type within SQL Server breaks an 8-byte date value into 2 fragments, the first

being the number of days before or after January 1%, 1900 and the second being the number of

clock computer ticks after midnight with a tick occurring every 3.33 milliseconds®. Applications

using the datetime data type to store date values only, will have a default time value of

00:00:00:000 which represents midnight>. The decimal representation of the RowLog1 column
is 39140 which when added in days to January 1%, 1900 gives us the date of March 01, 2007. The

order date of this record was updated from January 21, 2007 to March 01, 2007.

This procedure was used to identify the remaining two values which were updated within

transaction 0000:00000331.

5lot 13 Offset 0Ox1450 Length 233

Record Type = PRIMARY RECORD

Memory Dump @0x0ESDD4E0

ooooooon:
oooooolo:
oooooozn:
oooooo:sn:
oooooo40:
oooooosn:
oooooa&sn:
oooooozo:
ooooooso:
oooooosn:
ooooooan:
0000oo0ED:
ooooooco:
0000oano:
000000EQ:

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

2000&c00
gal0&700
20002000
41005a00
Qoooolon
Zel03&500
Z000Z000
o&o0o2400
TEZ7Ge6e
TEEEEEERD
353138358
o0& fo0ae
Q0320020
O0&c006l
O0z0o00&e

Pecord Attributes = NULL EITHAP VARIAELE COLUMNNEZ

OrderDate Column

02010000| 52007000 72006500 +0.1.. ... S.p.or.i
4c005100|5b00ES0A0 20002000 tn.g.L.a.k.e
Z000Z000| 20002000 20002000 + . . .
31003700w30003000 33000100 tA.Z.1.7.0.0.3
annnnnn ooo 9498.DDPDSSDD . 3
20002000 Z000Z000TZ0002000 +..5.0

20002000 20002000|0e0000c0 +
£a005b00 9f00af00|ef004368 +.. Co
46EE776C G5723732| 20537461 trymnmFowler7Z Sta
ECcZ04477 59766566 | 69736135 trfell DriwelVisal
33303030 30303030|30303056 1518530000000000%
00630061 006e00Sf|00Z00036 t.o.l.c.a n.o. .6
0069006 00630062 (00200050 +.2. .i.n.c.h. _P
00730064 00610020 |00540056 +.1l.a.=.m.a. .T.¥
00430032 00320033 [002z00++++. _w.c.z.3.3.2.

Updated Value

34

RowLog0 (on disk value prior to transaction)

Hex (BEO) 0x0000000000BD9800
Hex (LEO) 0x000000000098BD00
Decimal 39101

RowLogl (committed transaction value)

Hex (BEO) 0x0000000000E49800
Hex (LEO) 0x000000000098E400
Decimal 39140

Blot 7 0Offset Oxllcé Length 240

RBacord Type

Memory Dnamp AO0xO0E74D1CE

ooooooon:
ooooonlo:
Qooooonzo:
ooooo0320:
ooooo040:
ooooookEo:
ooooon&en:
oooooo7o:
ooooooen:
oooooo20:
oooo0oan:
Qoo00oED:
ooooooco:
oooooona:
OO0000ED:

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

= PRIMARY RECORD

Lecord Attributes = NULL BITMAP VARTARLE COLTIMNS

OrderDate Column

30006c00 46010000(53007000 72006300
geld0&?00 4c006100|6b00&500 20002000
Z000Z000 Z000Z000| 20002000 20002000
41005a00 31003400w34003100 30000200

ooooolan DqDDDDDD 0000e458) OO0O02200

Eed02E500 2000Z000 2000Z000] 2000z000
EQOOZ000 zZOOOEQOQOD 2000Z000| 0=0000c0
0002200 ShO03c00 a000bO00(£fO000416E
E365a0df Z74effEd EcEcZ03T| 322205374
G6l7Z6665 GcEcZl4d FEE3TEES5| 56697361
34393136 38383030 30303030)30303030
Se00s£00 &cOD&300 £100ce00 | e£002000
6002200 zZOO0&200 Se00&300|&200z2000
E000&c00 S1007300 &d400&100 (20005400
Le00Z000 E&004300 32003300 (323003200

Updated Value

FOu LR B pilrods
thn.g.L.a k.e. .

oo sr &0 s oty L&
tEIZ01 A 4L 1 0.

tie . 0'Neill 72 =5t
tarfell DriwveWisa
t43163530000000000
twW.o.l.c.a.n.o.

g1 T (s Tl

tP.l. a.=.m.a. .T.
tw. W.C.E.3.3.Z2.

35

RowLogO0 (on disk value prior to transaction)

Hex (BEO) 0x0000000000CE9800

Hex (LEO) 0x000000000098CE00

Decimal 39118

RowLogl (committed transaction value)

Hex (BEO) 0x0000000000E49800

Hex (LEO) 0x000000000098E400

Decimal 39140

The seventh transaction executed by SPID 51 was transaction 0000:00000332, a delete statement

affecting a single record.

Operation Context Transaction ID Page ID Slot ID ... | Offset in Row
LOP_BEGIMN_®ACT LCH MULL 0000:00000332 WULL HULL -
|LOP_DELETE_HDWS LCK_MARK_AS GHOST |EIDEIEI:EIEIE|00332 0001:00000158 24

LOP_SET_BITS LC¥ FFS 0000:00000000 000100000001 1]

LOP COMMIT XACT LCH MULL 0000:00000332 WULL HULL

This record will be further examined during the data recovery stage of this investigation.

Step 6: Data Recovery

The seventh transaction executed by SPID 51was transaction 0000:00000332, a delete
statement affecting a single record. When a record is deleted within SQL Server, it is marked as
a ghost®, which tells the database engine to hide it from future query results even though the
underlying data still resides within the data page. A garbage clean-up process runs periodically
within SQL Server to physically remove the ghost records within the data pages so the space can
be reused. Ghost records contained within a data page are flagged within the page header.
Examining the header of the page 0001:0000000158 (1:344) containing the deleted row showed

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 36

that the m_ghostRecCnt value was set at 0 indicating that the ghost records had already been
physically removed from the data page.

Page @0x043D0000

n_pageld = (1:344) n_headerVersion = 1 m type = 1
n_typeFlagBits = 0O=xd n_level = 0 m_flagBits = 0x5200
m_obild (AllocUnitId.id0biy = 78 n_indexId (AllocUnitId. idInd) = ZE&

Metadata: AllocUnicId = 7EZ057534043039744

Metadata: PartitionId = 72057534032204Z042 Metadata: IndexId = 1
Metadata: ObjectId = 245575313 m_prevPage = (1:120) m_next.Page = (1:121)
puinlen = 102 m slotCnt = Z7 m freeCnt = Z876
m_freeData = FE93 m_reservedl:nt. =0 m_lsn = (l&:3626:1)
n xactPReserved = 0 m xdesId = (0:818) |m ghostRecCnt = 0 |
m_tornBits = -l037833574

Using the same procedure used earlier in this document to map a data page to the owning
table identified that the data page associated in this transaction mapped to the OrderHistory table.
This table had an identical schema to that of the Order table. Within the transaction log, the

following value was obtained from the RowLog0 column of the delete statement:

“0x30006C009F0000005000610079006500740074006500200020002000200020002000
200020002000200020002000200046004C003100360036003000320001000000000000003A980
00033003500300030002E0030003000200020002000200020002000200020000E0000C0060082
00860098009C00AD00CD004275727443617665323237205374617267656C6C2044726976655
66973613635393033343030333433323233323030566F6C63616E6F20363220696E636820506
C61736D6120545620564332333332”

The data above is the actual data row deleted from the data page during the transaction.
To determine exactly what customer data had been deleted, it was necessary to reconstruct the
data row. SQL Server uses two different data row structures, one for rows which contain fixed
length columns only, and another for rows containing variable length columns and/or fixed
length columns. Based on the schema obtained earlier in this investigation we know that the
Order table contains both fixed and variable length data types. The data row structure for a

variable length row is as follows:

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 37

I 1 I 2 | 3 | Fixed length columns | 4 | 5 I 6 | 7 |

Variable length columns

Source: Inside SQL Server 2005 The Storage Engine®

Legend

Item Storage Allocation Description

1 1 byte StatusBits A contains data row properties5

2 1 byte Unused in SQL Server 2005°

3 2 bytes Row offset to in row location containing the
number of columns in the data row’

Fixed length Fixed column length for Location of in row fixed length data columns®

columns all fixed columns

4 2 bytes Total number of columns in data row”

5 1 bit for each row column | Null Bitmap5

6 2 bytes Number of variable length columns within
data row’

7 2 bytes for each variable | Row offset marking the end of each variable

length column

length column’®

Variable length
columns

Used length of all
variable length columns

Location of in row variable length data
columns®

Using the above row structure, and the data obtained from the RowLog0 column of the

transaction log, the data row was reconstructed.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

38

| Unused | | OrderID col. City col.

Pos. to

: find #
StatusBits A of cols.

V+ A
0x30006C0J9F0000005000610079006500740074006500200020002000200)
(0200020002000200020002000200020002000/46004C00B1003600360030003200

T

City col. contd. State col. ZIP col.

ShipStatusID
col. OrderDate col. Price col.

v

102000000000000003A98000033003500300030002E003000300020002000200020|
10020002000200020000E/0000C006/008200860098009C00AD0O0CDH
A t

Price col. contd. # of cols. # of Positions where var cols. 1-6 end
variable
Null bitmap cols.

FirstName LastName

col. col. | Address col. | CCTvoe col.

1004275727443617665323237205374617267656C6C20447269766556697361

—13635393033343030333433323233323030566F6C63616E6F20363220696E63682]

|0506C61736D6120545620564332333332/«——{ Product col. —T

CCNumber col.

Switching the appropriate hex values into LEO, and converting the values to decimal/ASCI|I

representation produced the following.

OrderID: 159
FirstName: Burt

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 39

LastName: Cave

Address: 227 Stargell Drive

City: Payette
State: FL
ZIP: 16602

CCType: Visa
CCNumber: 65903400343223200
ShipStatusiD: 1

OrderDate: September 11", 2006

Product: Volcano 62 inch Plasma TV VC2332
Price: 3500.00

Now that all of the executed transactions have been identified, the timeline was updated to reflect

the notable discoveries.

Time User SPID | Action

March 1, 2007

7:26 AM UNKNOWN N/A | SQL Server instance is restarted

March 2, 2007

7:01 AM — | UNKNOWN 51 SQL Server Brute Force attack launched against

7:39 AM PRODSQLOS5 server from IP 192.168.1.20

7:54 AM SA 51 SA SQL Server user account logs into PRODSQLO05
server from IP address 192.168.1.20 using
OSQL.exe

7:54 AM SA 51 EASYACCESS account is created

7:55 AM SA 51 EASYACCESS account is granted access to
OnlineSales database

7:56 AM SA 51 EASYACCESS account added to OnlineSales
db_owner role

8:09 AM EASYACCESS 51 SQL Server account logs into PRODSQLOS5 server
from IP address 192.168.1.20

8:17 AM EASYACCESS 51 Transaction 814 is executed which updates the price
of 3 Volcano Plasma TV orders from $3500.00 to
$3.50

8:20 AM EASYACCESS 51 Transaction 815 is executed which updates the
shippingstatusID column on Volcano Plasma TV

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

40

orders from 1 (product shipped) to 2 (product not
shipped)

8:31 AM EASYACCESS 51 Transaction 816 is executed which inserts an order
for an XBOX 360 billed to the credit card of another
database customer.

8:37 AM EASYACCESS 51 Transaction 817 is executed which sets the
orderdate on Plasma TV orders to February 28, 2007
8:38 AM EASYACCESS 51 Transaction 818 is executed which deletes a previous

order from the OrderHistory table for a Volcano
Plasma TV at a price of $3500.00

10:17 AM | Administrator 52 Start of Forensic Investigation of database server
11:05 AM | Administrator N/A PRODSQLO5 server removed from network
11:16 AM | Administrator 52 SQL Server instance shutdown

Step 7: String Search

As stated previously in this report, a single physical transaction log file is logically partitioned
and split into 4-16 Virtual Log Files (VLFs) by SQL Server. Only a subset of these VLFs will be
active at any one point. It is possible that the inactive VLFs at one point in time were active and
may contain past transaction data which is relevant within this investigation. Review of the
active transaction log file used throughout this investigation identified that the earliest log entry
was 7:26 AM March 1%, 2007 and the latest was 11:16 AM March 2", 2007. This date range is
inclusive of the scope of the investigation therefore further review of VVLFs is not required.

The published Microsoft tools which interpret transaction logs support only active VLFs.
Further investigation into transactions which occurred outside of the scope of this investigation
will require sting searches to be performed on the inactive areas of the transaction log to identify

rows for reconstruction.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 41

Investigation Summary

In conclusion, after gathering and analyzing all evidence, it is in the investigator’s expert
opinion that on the Morning of March 1%, 2007, an unauthorized user connecting from IP
192.168.1.20 executed a successful brute force attack against the PRODSQLO5 server. Once
access was gained to the database, a connection was made using the Microsoft OSQL client to
create a backdoor account named EASYACCESS. This account was used by the user to
fraudulently insert an erroneous product order for an XBOX 360 with the incorrect price of
$4.00. This order was billed to Visa card number 5518530000000000 which belongs to another
customer within the database. It is noted that the mailing addresses used within the fraudulent

order differs from the address of the compromised user and may belong to the unauthorized user.

In addition to inserting a fraudulent order, the unauthorized user performed the following
updates to existing Volcano 62 inch Plasma TV VC2332 orders within the Order table.
= Order dates were set to February 28", 2007
= Prices were updated from $3500.00 to $3.50

= The shippingstatusID column was updated from 2 to 1

A single record was also deleted from the Order table for a past VVolcano 62 inch Plasma TV
VC2332 by the user.

The unauthorized user is believed to have had a general understanding of Transact-SQL
(TSQL) syntax in order to have been capable of executing the database transactions via the

OSQL command line interface and moderate knowledge of the OnlineSales database schema.

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 42

Appendix A

The following was text was added to WFT configuration file

HEHHHHH R
SQL SERVER
HEHBHHRHR R
M NA NA NA NA SQL SERVER NA

\% SQLCMD.RLL 341369b133a26556d963427384ca89ba NA NA NA
Required by sglcmd.exe

EVH SQLCMD.exe28731c04b854cc1570dbdacc89a6c3f2 %s -E -Q "sp_helpdb" >
%5%5%S sp_helpdb DB LISTING SP_HELPDB SQL SERVER

EH SQLCMD.exe28731c04b854cc1570dbdacc89a6c3f2 %s -E -Q "select c.session_id,
c.connect_time, c.net_transport, c.last_read, c.last_write, c.client_net_address, c.local_tcp_port,
s.text from sys.dm_exec_connections ¢ cross apply sys.dm_exec_sql_text
(c.most_recent_sql_handle) s" > %s%s%s dm_exec_connections
DM_EXEC_CONNECTIONS DM_EXEC_CONNECTIONS SQL SERVER

EH SQLCMD.exe28731c04b854cc1570dbdacc89a6c3f2 %s -E -Q "select * from
sys.dm_exec_sessions™ > %s%s%s dm_exec_sessions DM_EXEC_SESSIONS
DM_EXEC SESSIONS SQL SERVER

EH SQLCMD.exe28731c04b854cc1570dbdacc89a6c3f2 %s -E -Q "select name,
type_desc, create_date, modify_date from sys.sqgl_logins order by create_date, modify_date" >
%5%5%sS sgl_logins SQL_LOGINS SQL_LOGINS

SQL SERVER

EH SQLCMD.exe28731c04b854cc1570dbdacc89a6c3f2 %s -E -Q "select * from
sys.dm_exec_requests " > %s%s%s dm_exec_requests DM _EXEC REQUESTS
DM_EXEC_REQUESTS SQL SERVER

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 43

Appendix B

Transaction Log Column listing:

© 00 N o o A W DN B

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

CurrentLSN
Operation

Context
Transaction 1D
Tag Bits

Log Record Fixed Length
Log Record Length
PreviousLSN

Flag Bits
AllocUnitID
AllocUnitName
Page ID

Slot ID

Previous Page LSN
PartionID
RowFlags

Num Elements
Offset in Row
Checkpoint Begin

CHKPT Begin DB Version

MaxXDESID

Num Transactions
Checkpoint End

CHKPT End DB Version
Minimum LSN

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45

46

47

49

Dirty Pages

Oldest Replicated Begin
LSN

Next Replicated End LSN
Last Distributed End LSN
Server UID

UID

SPID

BeginLogStatus

Begin Time

Transaction Name
Transaction SID

End Time

Transaction Begin
Replicated Records
Oldest Active LSN
Server Name

Database Name

Mark Name

Master XDESID

Master DBID
PrepLogBegin LSN
PrepareTime

Virtual Clock

Previous Savepoint

50

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Savepoint Name
Rowbits First Bit
Rowhbits Bit Count
Rowbits Bit Value
Number of Locks
Lock Information
LSN Before Writes
Pages Written
Data Pages Delta
Reserved Pages Delta
Used Pages Delta
Data Rows Delta
Command Type
Publication ID
Article ID

Partial Status
Command

Byte Offset

New Value

Old Value

New Split Page
Rows Deleted
Bytes Freed

Cl Table ID

Cl Index ID

44

75
76
77
78
79
80
81
82
83
84

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation

NewAllocationUnitID
FllegrouplD

Meta Status

File Status

File ID

Physical Name
Logical Name

Format LSN
RowsetID

TextPtr

85
86
87
88
89
90
91
92
93
94

Column Offset
Flags

Text Size
Offset

Old Size

New Size

Description

95
96
97
98
99
100

Bulk allocated extent count 101

Bulk rowinsertiD

Bulk allocationunitlD

Bulk allocation first IAM
Page ID

Bulk allocated extent ids
RowLog Contents 0
RowLog Contents 1
RowLog Contents 2
RowLog Contents 3
RowLog Contents 4

45

References

! Keith J. Jones, Richard Bejtlich, Curtis W. Rose. Real Digital Forensics, Addison-
Wesley, 2006

2 «“MSDN Blog Pages” http://blogs.msdn.com/sqlserverstorageengine/default.aspx

® Microsoft Developer Network “MSDN” http://msdn2.microsoft.com/en-us/default.aspx

* SQL Server 2005 Books Online, http://msdn2.microsoft.com/en-
us/library/ms130214.aspx

® Kalen Delaney. Inside SQL Server 2005 The Storage Engine, Microsoft Press, 2007

® Kalen Delaney and Jim Gray. Inside SQL Server 2000. Microsoft Press, 2001

" Brian Carrier. File System Forensic Analysis. Addison-Wesley, 2005

A Real World Scenario of a SQL Server 2005 Database Forensics Investigation 46

