OVERCOMING IOS DATA PROTECTION TO RE-ENABLE IPHONE FORENSICS

ANDREY BELENKO ELCOMSOFT

USA + 2011

EMBEDDING SECURITY

AGENDA

- » iPhone Forensics 101
- » Pre-iOS 4 Forensics
- » iOS 4 Data Protection
- » iOS 4 Forensics

iOS FORENSICS 101

GOAL: provided physical access to the device extract as much information as practical

- » iTunes Backups
 - Amount of information varies by firmware
 - Requires passcode or escrow file
 - Backup can be encrypted by the device
- » Filesystem/raw filesystem acquisition
 - Can get all information from the device
 - Passcode and escrow file may be not necessary
 - Requires exploit to boot unsigned ramdisk and kernel
 - Acquired raw image can be encrypted

iOS 3 DISK ENCRYPTION

- » No encryption before iPhone 3GS
- » No data confidentiality protections
 - Encryption is to provide fast wipe, not to protect data
- » Device automatically decrypts data
- » Filesystem/raw filesystem acquisition is not affected

iOS 3 KEYCHAIN

- » All items are encrypted with the same key
 - Key 0x835 = AES_encrypt (uid-key, 0101..01)
- » Key is unique per device and is fixed for the lifetime of the device
- » Key 0x835 can be 'extracted' from the device for offline use
- » All past and future keychain items from the same device can be decrypted with the key

	Encrypted with Key 0x835		
IV	Data	SHA-1 (Data)	
0	16		

NEW IN iOS 4

- » Filesystem images are partially encrypted
 - Filesystem metadata is not encrypted file names and properties are accessible
 - Contents of (almost all) files are encrypted
- » New iTunes Backup format
 - Less of a problem proprietary tools were available since day 0
- » Keychain data is encrypted differently

All these are part of iOS 4 Data Protection

iOS 4 DATA PROTECTION

- » Content is grouped into protection classes based on availability requirements:
 - Available only when device is unlocked
 - Available after first device unlock
 - Always available
- » Separate protection classes for files and keychain items
- » Each protection class uses own master key
- » Class master keys are protected with device key and/or user passcode key
- » Encrypted protection class master keys are stored in system keybag
 - Keys are re-created during device restore

iOS 4 PASSCODE

- » Passcode key is required to unlock all but 3 keys in system keybag
 - Most files can be decrypted without it, most keychain items can't
- » Passcode key computed from user passcode
 - Computation is tied to UID device key => must be computed on the device
- » On-device bruteforce is slow
 - 2.1 p/s on iPhone 3G, 7 p/s on iPad
- » System keybag contain hint on password complexity:
 - 0 = simple passcode, exactly 4 digits
 - 1 = digits-only passcode, length != 4
 - 2 = contains non-digits, any length

iOS 4 ESCROW KEYBAG

- » Usability feature
 - Allows iTunes to unlock the device
- » Contains same keys as system keybag
- » Created when unlocked device is connected to the iTunes
- » Stored on the computer
- » Protected by 256-bit random "passcode"
 - Device stores "passcodes" for all paired computers
- » Having escrow keybag gives same encryption keys as knowing the passcode

iOS 4 KEYCHAIN

- » Available protection classes:
 - kSecAttrAccessibleWhenUnlocked
 - kSecAttrAccessibleAfterFirstUnlock
 - kSecAttrAccessibleAlways
 - ...ThisDeviceOnly do not include in the backup
- » Random key for each item
 - Key wrapped with protection class master key is stored with the item

0	Class	Wrapped Item Key	Encrypted Item
0	4	8	48

iOS 4 DISK ENCRYPTION

- » Available protection classes:
 - NSProtectionNone
 - NSProtectionComplete
- » Filesystem metadata is encrypted with EMF key (similar to the iOS 3)
 - Transparently decrypted by the device
- » File contents are encrypted with per-file random key instead of EMF key
 - Key wrapped with protection class master key is stored in files' extended attribute com.apple.system.cprotect
- » During dd-style imaging iOS decrypts file data using EMF key => garbage
 - To recover file data: encrypt with EMF key, then decrypt with file key

iOS 4 FORENSICS

- » Acquiring disk image is not enough for iOS 4
 - Content protection keys must also be extracted from the device
 - EMF key is also needed to decrypt dd images
- » Passcode or escrow keybag is needed for a complete set of keys
- » In real world it might be better to extract source data and compute protection keys offline

SUMMARY

- » iPhone physical analysis is possible again
- » Physical acquisition requires bootrom/iBoot exploit
- » Passcode is *usually* not a problem
- » Proprietary and open-source tools for iOS 4 forensics available

THANK YOU

QUESTIONS?

USA + 2011

EMBEDDING SECURITY

PLEASE TURN IN YOUR COMPLETED FEEDBACK FORM AT THE REGISTRATION DESK

USA + 2011

EMBEDDING SECURITY