
Linux Memory Analysis Workshop – Session 1

Andrew Case

Who Am I?

• Security Analyst at Digital Forensics Solutions

 Also perform wide ranging forensics investigations

• Volatility Developer

• Former Blackhat, SOURCE, and DFRWS speaker

• Computer Science degree from UNO

• GIAC Certified Forensics Analyst (GCFA)

2

Format of this Workshop

• I will be presenting the Linux kernel memory
analysis capabilities of Volatility

• Along the way we will be seeing numerous
examples of Linux kernel source code as well
as Volatility’s plugins source code

• Following along with me while I use Volatility
to recover data will get you the most out of
this workshop

3

Setting up Your Environment

4

Agenda for Today’s Workshop
1. Recovering Vital Runtime Information

2. Investigating Live CDs (Memory Analysis)

3. Detecting Kernel Rootkits

5

Agenda for This Hour

• Memory Forensics Introduction

• Recovering Runtime Information

– Will discuss kernel internals necessary to recover
processes, memory maps, loaded modules, etc

– Will discuss how these are useful/relevant to
forensics & IR

– We will be recovering data with Volatility as we go

• Q&A / Comments

6

7

Memory Forensics Introduction

Introduction

• Memory analysis is the process of taking a
memory capture (a copy of RAM) and
producing higher-level objects that are useful
for an investigation

• A memory capture has the entire state of the
operating system as well as running
applications

– Including all the related data structures, variables,
etc

8

The Goal of Memory Analysis

• The higher level objects we are interested in
are in-memory representations of C
structures, custom data structures, and other
variables used by the operating system

• With these we can recover processes listings,
filesystem information, networking data, etc

• This is what we will be talking about
throughout the workshop

9

Information Needed for Analysis

• The ability to:

1. Locate needed data structures in memory

2. Model those data structures offline

3. Report their contents

10

Locating Data Structures
• To locate static data structures, we use the

System.map file

– Contains the name and address of every static
data structure used in the kernel

– Created in the kernel build process by using nm on
the compiled vmlinux file

11

Model Data Structures

• The parts of the Linux kernel we care about
are written in C

• All data structures boil down to C structures

• These have a very simple in-memory
representation (next slide)

12

C Structures in Memory

• Source Code:

struct blah {

int i;

char c;

short s; };

struct blah *b =
malloc(…);

13

• In Memory:

 Lets say we have an
instance of ‘b’ at 0x0

 Then:

b->i goes from 0x0 to 0x4

b->c goes from 0x4 to 0x5

b->s goes from 0x5 to 0x7

Modeling Structures
• During analysis we want to automatically model

each C structure of interest

• To do this, we use Volatility’s dwarfparse.py:
 Builds a profile of C structures along with members,

types, and byte offsets

 Records offsets of global variables

• Example structure definition
'ClassObject': [0xa0, { Class name and size

'obj': [0x0, ['Object']], member name, offset,
and type

14

15

Introducing Volatility

Volatility
• Most popular memory analysis framework

– Written in Python

– Open Source

– Supports Windows {XP, Vista, 7, 2003, 2008}

– Support Linux 2.6.9 to 2.6.3x on Intel and ARM

• Allows for analysis plugins to be easily written

• Used daily in real forensics investigations

• Will be the framework used in this workshop

16

Volatility Object Manager

• Once we have a model of a kernel’s data
structures (profiles) we can then just rely on
Volatility

• Its object manager takes care of parsing the
struct definitions, including types, and then
providing them as requested

– Example on next slide

17

Example Plugin Code

• Accessing a structure is as simple as knowing
the type and offset

intval = obj.Object(“int”, offset=intOffset, ..)

• Volatility code to access ‘descriptor’ of an
‘Object’:

o = obj.Object("Object", offset=objectAddress, ..)

c = obj.Object("ClassObject", offset=o.clazz, …)

desc = linux_common.get_string(c.descriptor)

18

Volatility Address Spaces

• Address spaces are used to translate virtual
addresses to offsets within a memory capture

– Same process used to translate to physical
addresses on a running OS

• Plugin developers simply need to pass the
given address space to functions that need it

– Manual change only required to access userland
(will see an example in a bit)

19

Current Address Spaces

• x86 / x64

• Arm (Android)

• Firewire

• Windows Hibernation Files

• Crash Dumps

• EWF Files

20

21

Recovering Runtime Information

Runtime Information

• This rest of this session is focused on orderly
recovery of data that was active at the time of
the memory capture

• We will be discussing how to find key pieces of
information and then use Volatility to recover
them

22

Information to be Recovered

• Processes

• Memory Maps

• Open Files

• Network Connections

• Network Data

• Loaded Kernel Modules

23

Recovering Process Information

• Each process is represented by a task_struct

• Once a task_struct is located, all information
about a process can be quickly retrieved

– Possible to do it through other methods, but
much more convoluted

24

Locating Processes – Method 1
• init_task is the symbol for the task_struct of

“swapper”, the PID 0 process

– Statically initialized, will be useful in a few slides

• task_struct->tasks holds a linked list of all
active processes

– NOT threads! (more on this later)

– Simply walking the list gives us a process listing

25

Locating Processes – Method 2

• pid_hash

26

Wanted Per-Process Information

• Name and Command Line Arguments

• UID/GID/PID

• Starting/Running Time

• Parent & Child Processes

• Memory Maps & Executable File

• Open Files

• Networking Information

27

Needed task_struct Members
• Name

– char comm[TASK_COMM_LEN]; // 16

– Command line arguments in later slides

• User ID / Group ID

– Before 2.6.29

• uid and gid

– Since 2.6.29

• struct cred *cred;

• cred->uid and cred->gid

28

task_struct Members Cont.

• Parent Process

– struct task_struct *real_parent;

• Child processes

– struct list_head children; /* list of my children */

• Process times

– FIX THIS - utime, stime, start_time, real_starttm

29

Recovery with Volatility

• Option 1:

– In: volatility/plugins/linux_task_list_ps.py

– Walks the task_struct->tasks list

• Option 2:

– In: volatility/plugins/linux_task_list_psaux.py

– Reads command line invocation from userland

• Will cover algorithm after discussing memory
management structures

30

Process Gathering Demo/Hands On
• Will be using:

– linux_task_list_ps

– linux_task_list_psaux

– linux_pid_cache

31

Process Memory Maps

• Viewed on a running system within
/proc/<pid>/maps

• Lists all mappings within a process including:

– Mapped file, if any

– Address range

– Permissions

32

Accessing the Mappings

• Each mapping is stored as a vm_area_struct

• Stored in two places:

– task_struct->mm->mm_rb

 Red black tree of mappings

– task_struct->mm->mmap

 List of mappings ordered by starting address

33

Needed Members of vm_area_struct

• unsigned long vm_start, vm_end

– The starting and ending addresses of the mapping

• vm_area_struct vm_next

– The next vma for the process (linked list from
mm->mmap)

• struct file vm_file

– If not NULL, points to the mapped file (shared
library, open file, main executable, etc)

34

Recovery with Volatility
• Listing mappings implemented in

volatility/plugins/linux_proc_maps.py

• Analyzing specific mappings implemented in
volatility/plugins/linux_dump_maps.py

– Can specify by PID or address

35

Using ->mm to get **argv
switch pgd

tmp_dtb = self.addr_space.vtop(task.mm.pgd)

create new address space

proc_as =
self.addr_space.__class__(self.addr_space.base,
self.addr_space.get_config(), dtb = tmp_dtb)

read in command line argument buffer

argv = proc_as.read(task.mm.arg_start,
task.mm.arg_end - task.mm.arg_start)

36

Gathering Open Files
• Want to emulate /proc/<pid>/fd

• task_struct->files->fdt->fd is array of file
structures

• Each array index is the file descriptor number

• If an index is non-NULL then it holds an open
file

• Use max_fds of the fdt table to determine
array size

37

Information Per-File

• Path information stored in the f_dentry and
f_vfsmnt members
– To get full path, need to emulate __d_path

function

• Inode information stored in f_dentry structure
– Contains size, owner, MAC times, and other

metadata

• Recovering file contents in-memory requires
use of the f_mapping member
– Come back for session 2!

38

Memory Maps and Open Files Demo

• Memory Maps

– Listing process mappings

– Acquiring the stack and heap from interesting
processes

• Open Files

– Lists open files with their file descriptor number

39

Networking Information

• The kernel contains a wealth of useful
information related to network activity

• This info is immensely helpful in a number of
forensics and incident response scenarios

40

Netstat Plugin

• Used to emulate the netstat command

• This information is found on a running
machine found in these /proc/net/ files:

– tcp/tcp6

– udp/udp6

– unix

41

Volatility’s linux_netstat.py
openfiles = lof.linux_list_open_files.calculate(self)

for every open file
for (task, filp, _i, _addr_space) in openfiles:

d = filp.get_dentry() # the files dentry

if filp.f_op == self.smap["socket_file_ops"] or
filp.d.d_op == self.smap["sockfs_dentry_operations"]:

it is a socket, can get the protocol information
iaddr = d.d_inode
skt = self.SOCKET_I(iaddr)
inet_sock = obj.Object("inet_sock", offset = skt.sk, …)

42

ARP Cache

• Emulates arp -a

• The ARP cache stores recently discovered IP
and MAC address pairs

– It is what facilities ARP poisoning

• Recovery of this cache provides information
on other machines the target machine was
communicating with

43

Recovering the ARP Cache

• Implemented in linux_arp.py

• This code walks the neigh_tables and their
respective hash_buckets to recover neighbor
structures

• These contain the device name, mac address,
and corresponding IP address for each entry

44

Routing Table

• Emulates route -n

• The routing table stores routing information
for every known gateway device and its
corresponding subnet

• The linux_route plugin recovers this
information

45

Routing Cache
• Emulates route –C

• This cache stores recently determined source
IP and gateway stores

• A great resource to determine recent network
activity on a computer

46

Network Recovery Demo/Hands On

• Many plugins!

47

Dmesg
• The simplest plugin in all of Volatility

• Simply locates and prints the kernel debug
buffer

48

Dmesg Plugin Code
ptr_addr = self.smap["log_buf"]

the buffer
log_buf_addr = obj.Object("long", offset = ptr_addr, vm =

self.addr_space)

its length
log_buf_len = obj.Object("int", self.smap["log_buf_len"], vm =

self.addr_space)

read in the buffer
yield linux_common.get_string(log_buf_addr, self.addr_space,

log_buf_len)

49

Loaded Kernel Modules

• Want to emulate the lsmod command

• Each module is represented by a struct
module

• Each active module is kept in the modules list

• We can simply walk the list to recover all
needed information

50

Information Per Module
• char name[MODULE_NAME_LEN]

– The name of the module

• void module_init
– .text + .data of init functions

• void module_core
– .text + .data of core functions

• symtab/strtab
– Symbol and string tables

• struct list_head list
– Entry within the list of loaded modules

51

Recovery with Volatility
• In: volatility/plugins/linux_lsmod.py

• Volatility code:

mods_addr = self.smap["modules"]

modules = obj.Object("list_head",offset=mods_addr,)

for module in

linux_common.walk_list_head("module", "list",
modules, …):

yield module

52

Questions/Comments?

• Please fill out the feedback forms!

• Contact:

– andrew@digdeeply.com

– @attrc

53

Linux Memory Analysis Workshop – Session 2

Andrew Case

Who Am I?

• Security Analyst at Digital Forensics Solutions

 Also perform wide ranging forensics investigations

• Volatility Developer

• Former Blackhat, SOURCE, and DFRWS speaker

• Computer Science degree from UNO

• GIAC Certified Forensics Analyst (GCFA)

55

Format of this Workshop

• I will be presenting the Linux kernel memory
analysis capabilities of Volatility

• Along the way we will be seeing numerous
examples of Linux kernel source code as well
as Volatility’s plugins source code

• Following along with me while I use Volatility
to recover data will get you the most out of
this workshop

56

Setting up Your Environment

57

Agenda for Today’s Workshop
1. Recovering Vital Runtime Information

2. Investigating Live CDs Through Memory
Analysis

3. Detecting Kernel Rootkits

58

Agenda for This Hour

• Discuss Live CDs and how they disrupt the
normal forensics process

• Present research that enables traditional
investigative techniques against live CDs

• We will be recovering files and data as we go
along

• Q&A / Comments

59

60

Live CD Introduction

Normal Forensics Process

Acquire Disk Image

Verify Image

Process Image

Perform Investigation

Obtain Hard Drive

61

Traditional Analysis Techniques

• Timelining of activity based on MAC times

• Hashing of files

• Indexing and searching of files and
unallocated space

• Recovery of deleted files

• Application specific analysis

– Web activity from cache, history, and cookies

– E-mail activity from local stores (PST, Mbox, …)

62

Problem of Live CDs

• Live CDs allow users to run an operating
system and all applications entirely in RAM

• This makes traditional digital forensics
(examination of disk images) impossible

• All the previously listed analysis techniques
cannot be performed

63

The Problem Illustrated

Acquire Disk Image

Verify Image

Process Image

Perform Investigation

Obtain Hard Drive

64

No Disks or Files, Now What?
• All we can obtain is a memory capture

• With this, an investigator is left with very
limited and crude analysis techniques

• Can still search, but can’t map to files or dates

– No context, hard to present coherently

• File carving becomes useless

– Next slide

• Good luck in court

65

People Have Caught On…
• The Amnesic Incognito Live System (TAILS) [1]

– “No trace is left on local storage devices unless
explicitly asked.”

– “All outgoing connections to the Internet are
forced to go through the Tor network”

• Backtrack [2]

– “ability to perform assessments in a purely native
environment dedicated to hacking.”

66

What It Really Means…

• Investigators without deep kernel internals
knowledge and programming skill are basically
hopeless

• It is well known that the use of live CDs is
going to defeat most investigations

– Main motivation for this work

– Plenty anecdotal evidence of this can be found
through Google searches

67

What is the Solution?

• Memory Analysis!

• It is the only method we have available…

• This Analysis gives us:

– The complete file system structure including
file contents and metadata

–Deleted Files (Maybe)

–Userland process memory and file system
information

68

69

Recovering the Filesystem

• Steps needed to achieve this goal:

1. Understand the in-memory filesystem

2. Develop an algorithm that can enumerate
directory and files

3. Recover metadata to enable timelining and
other investigative techniques

70

Goal 1: Recovering the File System

The In-Memory Filesystem
• AUFS (AnotherUnionFS)

– http://aufs.sourceforge.net/

– Used by TAILS, Backtrack, Ubuntu 10.04 installer,
and a number of other Live CDs

– Not included in the vanilla kernel, loaded as an
external module

71

http://aufs.sourceforge.net/

AUFS Internals
• Stackable filesystem

• Presents a multilayer filesystem as a single one to users

• This allows for files created after system boot to be
transparently merged on top of read only CD

• Each layer is termed a branch

• In the live CD case, one branch for the CD, and one for all
other files made or changed since boot

72

• Look on running system?

73

AUFS Userland View of TAILS

cat /proc/mounts
aufs / aufs rw,relatime,si=4ef94245,noxino

/dev/loop0 /filesystem.squashfs squashfs

tmpfs /live/cow tmpfs

tmpfs /live tmpfs rw,relatime

cat /sys/fs/aufs/si_4ef94245/br0

/live/cow=rw

cat /sys/fs/aufs/si_4ef94245/br1

/filesystem.squashfs=rr

74

Mount
points
relevant
to AUFS

The
mount
point of
each
AUFS
branch

Forensics Approach

• No real need to copy files from the read-only
branch

– Just image the CD

• On the other hand, the writable branch
contains every file that was created or
modified since boot

– Including metadata

– No deleted ones though, more on that later

75

76

Linux Internals

Needed Structures
• struct dentry

– Represents a directory entry (directory, file, …)

– Contains the name of the directory entry and a
pointer to its inode structure

• struct inode
– FS generic, in-memory representation of a disk inode

– Contains address_space structure that links an inode
to its file’s pages

• struct address_space
– Links physical pages together into something useful

– Holds the search tree of pages for a file

77

Linux Internals Overview II

• Page Cache

– Used to store struct page structures that
correspond to physical pages

– address_space structures contain linkage into the
page cache that allows for ordered enumeration
of all physical pages pertaining to an inode

• Tmpfs

– In-memory filesystem

– Used by TAILS to hold the writable branch

78

Enumerating Directories

• Once we can enumerate directories, we can
recover the whole filesystem

• Not as simple as recursively walking the
children of the file system’s root directory

• AUFS creates hidden dentrys and inodes in
order to mask branches of the stacked
filesystem

• Need to carefully interact between AUFS and
tmpfs structures

79

Directory Enumeration Algorithm
1) Walk the super blocks list until the “aufs”

filesystem is found
• This contains a pointer to the root dentry

2) For each child dentry, test if it represents a
directory

If the child is a directory:
• Obtain the hidden directory entry (next slide)

• Record metadata and recurse into directory

If the child is a regular file:
• Obtain the hidden inode and record metadata

80

Obtaining a Hidden Directory

struct dentry
{

d_inode
d_name
d_subdirs
d_fsdata

}

struct au_dinfo
{

au_hdentry
}

Branch

0

1 Pointer

Pointer

Dentry

81

• Each kernel dentry stores a pointer to an au_dinfo
structure inside its d_fsdata member

• The di_hdentry member of au_dinfo is an array of
au_hdentry structures that embed regular kernel
dentrys

Obtaining Metadata

• All useful metadata such as MAC times, file
size, file owner, etc is contained in the hidden
inode

• This information is used to fill the stat
command and istat functionality of the
Sleuthkit

• Timelining becomes possible again

82

Obtaining a Hidden Inode

struct aufs_icntnr
{

iinfo
inode

}

struct au_iinfo
{

ii_hinode
}

Branch

0

1 Pointer

Pointer

struct inode

83

• Each aufs controlled inode gets embedded in an
aufs_icntnr

• This structure also embeds an array of au_hinode
structures which can be indexed by branch number to
find the hidden inode of an exposed inode

Goal 2: Recovering File Contents

• The size of a file is kept in its inode’s i_size
member

• An inode’s page_tree member is the root of
the radix tree of its physical pages

• In order to recover file contents this tree
needs to be searched for each page of a file

• The lookup function returns a struct page
which leads to the backing physical page

84

Recovering File Contents Cont.
• Indexing the tree in order and gathering of

each page will lead to accurate recovery of a
whole file

• This algorithm assumes that swap isn’t being
used

– Using swap would defeat much of the purpose of
anonymous live CDs

• Tmpfs analysis is useful for every distribution

– Many distros mount /tmp using tmpfs, shmem,
etc

85

• Discussion:

1. Formulate Approach

2. Discuss the kmem_cache and how it relates
to recovery

3. Attempt to recover previously deleted file
and directory names, metadata, and file
contents

86

Goal 3: Recovering Deleted Info

Approach

• We want orderly recovery

• To accomplish this, information about deleted
files and directories needs to be found in a
non-standard way

– All regular lists, hash tables, and so on lose track
of structures as they are deleted

• Need a way to gather these structures in an
orderly manner
— kmem_cache analysis to the rescue!

87

Recovery though kmem_cache analysis

• A kmem_cache holds all structures of the
same type in an organized manner

– Allows for instant allocations & deallocations

– Used for handling of process, memory mappings,
open files, and many other structures

• Implementation controlled by allocator in use

– SLAB and SLUB are the two main ones

88

kmem_cache Internals
• Both allocators keep track of allocated and

previously de-allocated objects on three lists:

– full, in which all objects are allocated

– partial, a mix of allocated and de-allocated objects

– free, previously freed objects*

• The free lists are cleared in an allocator
dependent manner

– SLAB leaves free lists in-tact for long periods of
time

– SLUB is more aggressive

89

kmem_cache Illustrated
• /proc/slabinfo contains information about

each current kmem_cache

• Example output:

name <active_objs> <num_objs>

task_struct 101 154

mm_struct 76 99

filp 901 1420

90

The difference
between
num_objs and
active_objs is
how many free
objects are being
tracked by the
kernel

Recovery Using kmem_cache Analysis

• Enumeration of the lists with free entries
reveals previous objects still being tracked by
the kernel

– The kernel does not clear the memory of these
objects

• Our previous work has demonstrated that
much previously de-allocated, forensically
interesting information can be leveraged from
these caches [4]

91

Recovering Deleted Filesystem Structure

• Both Linux kernel and aufs directory entries
are backed by the kmem_cache

• Recovery of these structures reveals names of
previous files and directories

– If d_parent member is still in-tact, can place
entries within file system

92

Recovering Previous Metadata

• Inodes are also backed by the kmem_cache

• Recovery means we can timeline again

• Also, the dentry list of the AUFS inodes still
have entries (strange)

– This allows us to link inodes and dentrys together

– Now we can reconstruct previously deleted file
information with not only file names & paths, but
also MAC times, sizes, inode numbers, and more

93

Recovering File Contents – Bad News
• Again, inodes are kept in the kmem_cache

• Unfortunately, page cache entries are
removed upon deallocation, making lookup
impossible
– A large number of pointers would need to stay in-

tact for this to work

• This removes the ability to recover file
contents in an orderly manner

• Other ways may be possible, but will require
more research

94

Summary of File System Analysis

• Can completely recover the in-memory
filesystem, its associated metadata, and all file
contents

• Ordered, partial recovery of deleted file
names and their metadata is also possible

• Traditional forensics techniques can be made
possible against live CDs

– Making such analysis accessible to all investigators

95

Implementation
• Recovery code was originally written as

loadable kernel modules
– Allowed for rapid development and testing of

ideas

– 2nd implementation was developed for Volatility

• Vmware workstation snapshots were used to
avoid rebooting of the live CD and
reinstallation of software
– TAILs doesn’t include development tools/headers

– This saved days of research time

96

Testing

• Output was compared to known data sets
– Directories and files with scripted contents

– Metadata was compared to the stat command

– File contents were compared to scripted contents

• Deleted information was analyzed through
previously allocated structures
– While a file was still allocated, its dentry, inode, etc

pointers were saved

– File was deleted and these addresses were
examined for previous data

97

Questions/Comments?

• Please fill out the feedback forms!

• Contact:

– andrew@digdeeply.com

– @attrc

98

Linux Memory Analysis Workshop – Session 3

Andrew Case

Who Am I?

• Security Analyst at Digital Forensics Solutions

 Also perform wide ranging forensics investigations

• Volatility Developer

• Former Blackhat, SOURCE, and DFRWS speaker

• Computer Science degree from UNO

• GIAC Certified Forensics Analyst (GCFA)

100

Format of this Workshop

• I will be presenting the Linux kernel memory
analysis capabilities of Volatility

• Along the way we will be seeing numerous
examples of Linux kernel source code as well
as Volatility’s plugins source code

• Following along with me while I use Volatility
to recover data will get you the most out of
this workshop

101

Setting up Your Environment

102

Agenda for Today’s Workshop
1. Recovering Vital Runtime Information

2. Investigating Live CDs Through Memory
Analysis

3. Detecting Kernel Rootkits

103

Agenda for This Hour

• This session will be a walkthrough of kernel-
mode rootkits under Linux

• We will discussing the techniques used by
rootkits to stay hidden and how the Volatility
modules uncover them

• I will also be presenting previously never
disclosed rootkit techniques developed for
this workshop

• Q&A / Comments

104

105

Linux Kernel-Mode Rootkits

Introduction

• I promise not to bore you with information
from ~2002 Phrack articles…

• Rootkits target two types of data:

1. Static

 Easy to implement and easy to detect

2. Dynamic

 Harder to implement and harder to detect

106

Static-Data Altering Rootkits

• These rootkits target data structures that are
easy to modify, but are also effective at hiding
activity

• Common technique types include:

– Directly overwriting instructions in memory (.text)

– Overwriting the system call & interrupt descriptor
tables

– Overwriting members of global data structures

107

Type 1: Overwriting .text

• Very popular as its easy to implement and
makes hiding data easy

• Rootkits alter running instructions for a few
reasons:

– To gain control flow

– To filter data (add, modify, delete) to stay hidden

– To implement “triggers” so that userland code can
make requests

108

Detecting Code Overwrites

• The compiled code of the kernel is static
– One exception is covered next

• The compiled kernel (vmlinux) is an ELF file
– All functions, including their name, instructions,

and size can be gathered from debug information

• This information can then be compared to
what is in memory

• Any alteration points to malicious (or broken)
software

109

SMP Alternatives
• There is one circumstance when runtime

modifications happen in the Linux kernel

• When the computer first boots and only one
processor is active, all multi-core
synchronization primitives are NOP’ed out

• When more than one CPU comes online, the
kernel then has to rewrite these instructions
with their SMP-safe counterparts to maintain
concurrency

110

SMP Alts. Cont.

• These alternative instructions are kept for
performance reasons

– No reason to get, set, and check SMP locks if only
one CPU is active

• The alternative instructions and their target
location are stored within the vmlinux file

• We can gather this information and use it for
accurate .text modification checking

111

Type 2: System Call & IDT Overwriting

• To avoid being detected when overwriting
.text, rootkits started modifying the tables
used to service system calls and interrupts

• This allows for a rootkit’s code to easily filter
the data received and returned by native
kernel functions

112

Attack Examples

• Overwrite the read system call and filter out
the rootkit’s logging data unless a specific
register contains a magic value

• Overwrite the stat system call to hide files
from userland anti-rootkit applications

• Many more possibilities…

113

Detecting These Attacks

• The IDT and the system call table are simply C
arrays

• They can be copied from the clean vmlinux file
and then compared to the values in memory

• Will easily detect that the table has been
altered and which entries were modified

114

Type 3: Overwriting Data Structures

• Popularized by the adore[1] rootkit, this attack
overwrites function pointers of global data
structures to filter information

• Adore overwrites the readdir member of the
file_operations structure for the proc and root
filesystems

– The replacement function filters out files on a
pattern used by the rootkit, effectively hiding
them from userland

115

Other Common Attacks
• Overwriting structure members used to

display information through /proc

– Info files in /proc use the seq_operations interface

– Hijacking the show member of this structure
allows for trivial filtering of information

• Possible targets

– Loaded modules list

– Networking connections (netstat)

– Open files (lsof)

116

Detecting these Attacks

• We take a generic approach

• During the profile creation stage, we filter for
a number of commonly targeted structure
types

– For variables found, we then copy the statically set
values of each member that may be hijacked

• This ensures that all instances of those
structures are checked for malicious
tampering

117

Targeted Structure Types

• UPDATE THIS

118

Hands On

• We will look at a memory image infected with
a rootkit that uses a number of static-data
altering techniques

• Volatility will show us the exact data
structures infected

119

Dynamic-Data Modification Rootkits

• Rootkits that modify dynamic data are much
more interesting than those that alter static
data

– Require more skill on part of the rootkit developer

– Require more complicated analysis and detection
capabilities on the detector

• Cannot be detected by using System.map or
vmlinux

– Need deep parsing of in-kernel data structures

120

Attacks & Defenses

• The rest of this session will cover attacks and
defense related to dynamic data altering

– Most of these attacks are new (developed for this
workshop) to highlight the stealth ability of these
types of attacks

• But first, we need to learn about the
kmem_cache

– Will be used extensively by our detection
mechanims

121

The kmem_cache

• The kmem_cache is a facility that provides a
consistent and fast interface to allocate/de-
allocate objects (C structures) of the same size

• The implementation of each cache is provided
by the system allocator

– SLAB and SLUB are the two main ones

122

kmem_cache Internals
• Both allocators keep track of allocated and

previously de-allocated objects on three lists:

– full, in which all objects are allocated

– partial, a mix of allocated and de-allocated objects

– free, previously freed objects*

• The free lists are cleared in an allocator
dependent manner

– SLAB leaves free lists in-tact for long periods of
time

– SLUB is more aggressive

123

kmem_cache Illustrated
• /proc/slabinfo contains information about

each current kmem_cache

• Example output:

name <active_objs> <num_objs>

task_struct 101 154

mm_struct 76 99

filp 901 1420

124

The difference
between
num_objs and
active_objs is
how many free
objects are being
tracked by the
kernel

Utilizing the kmem_cache

• All of the allocated objects backed by a
particular cache can be found on the full and
partial lists

– The one caveat is SLUB without debugging on

– Every distro checked enables SLUB debugging

– Might be possible to find all references even with
debugging off

125

The Idea Behind the Detection
• Dynamic-data rootkit methods work by

removing structures from lists, hash tables,
and other data structures

• To detect this tampering, we can take a
particular cache instance and use this as a
cross-reference to other stores

• Any structure in the kmem_cache list, but not
in another, is hidden

– Inverse holds as well

Why the Detection Works
• All instances of a structure must be backed by

the caches

• These caches work similar to an immutable
store:

– Structures of the specific type cannot be hidden
from it

• A few possible attack scenarios exist, but will
not work undetected

Detection Subversion Scenarios
1. Allocating outside the cache

• Will be detected by the inverse comparisons

2. Allocating in the cache and then removing
from it
• Very difficult to do and will result in detection as

with scenario #1

3. Allocating in the cache and then setting the
entry as free
• The structure will be overwritten on next

allocation

Our First New Attack
• The first developed attack was hiding

processes from /proc

• A number of rootkit detection systems work
by trying to enumerate /proc/[1-65535] and
then compare the output to ps

• The numbered proc directories are backed by
their respective PID namespace and number

129

Process Background

• !!!

• Task_struct_cachep

130

The Attack

• As simple as removing from the namespace

• Code, where p is the task_struct we want to hide:

pid = p->pids[PIDTYPE_PID].pid; // get the pid ref

detach_pid(p, PIDTYPE_PID); // take out of PID
// group

• The process will no longer show up in
/proc/<pid> lookups

131

Detection

• We gather processes from a number of places
before comparing to those in the cache
– Implemented in XXXXYYYYY

1) Each task_struct holds a pointer into the
tasks list

2) The run queue, where scheduled processes
wait to execute

3) The PID cache, where we just removed our
process from

132

Hands-on/Demo

• We will now investigate hidden processes and
look at the corresponding Volatility detection
code

133

Next Attack: Memory Maps

• The next attack hides memory maps from
/proc/<pid>/maps

– This file is used to list every mapped address
range in a process

• Each mapping is represented by a
vm_area_struct and they are kept in two
places:

– The mmap list of the processes’ mm_struct

– The mm_rb tree of the mm_struct

134

MM BG

• !!

135

The Attack

• Inspection of a maps file makes attacks such
as shared library injection very noticeable

– The full path of the mapped binary plus its data
and code sections will be visible

• To hide maps, we need to:

– Remove the vma from the mm_rb and mmap lists

– Fixup the structures that account for paging

• This will hide the map and allow for the
targeted process to exit cleanly

136

Detection

• Implemented in:

• The first step is to gather all active VMAs for a
process so they can be compared against
those in the cache

• The problem is that the VMAs are anonymous

– No immediate linkage to a specific process

137

Detection Cont.

• To work around this, we rely on the fact that
vmas keep a back pointer to their owning
mm_struct in the vm_mm member

• Using this, we can gather all the vmas for a
specific process and then compare against the
cache

• Can you think of a bypass in this detection?

138

Preventing Malware Tampering

• Since we rely on vm_mm, malware could try
to avoid this detection by changing vm_mm

• Possible attempts:

1. Set vm_mm to some invalid value (NULL, etc)

2. Set vm_mm to another processes’s mm_struct

• Will still be detected:

• All mm_structs are also in a kmem_cache

• Comparing the list of vm_mm values to this
cache will reveal avoidance attempts

139

Next Attack: Open files
• The /proc/<pid>/fd directory contains a

symlink per open file

– The symlink name is the file descriptor number

• Used by a number of utilities (lsof) and anti-
rootkit applications to detect files being
accessed

• To remain stealthy, this directory listing needs
to be filtered

140

The Attack
• A processes’ file descriptors are stored in an

array of file structures indexed by file
descriptor number

• All non-null indexes are treated as open files

– NULL entries are skipped

141

The Hiding Code

idx = loop_counter; // the file desc to test

file = p->files->fdt->fd[idx]; // the file struct

if (file)

{

fn = d_path(…); // get the full path of file

if(!IS_ERR(fn) &&
strcmp(fn,"/tmp/hidefile.txt"))

fdt->fd[i] = NULL;

}

142

Detection

• As with the process detection algo, finding all
open files requires gathering from a number
of sources:

– The (non-hidden) open files per-process

– The vm_file structures used to memory map files

– All swap files

• We then compare these against the
filp_cachep kmem_cache

143

Next Attack: Netfilter NAT Table

• Netfilter is used to implement NAT on Linux
systems

• It keeps a table of active translations and
these are shown in the
/proc/net/nf_conntrack file

• This is obviously a good source of forensics
information

144

The Attack

• Netfilter stores the connection tuple in the
nf_conntrack_hash data structure

• Attack code works by enumerating the hash
table nodes and removing entries related to
the rootkit

145

Detection
• Connection information is stored in the

nf_conntrack_cachep kmem_cache

• We walk this cache and compare against those
in the nf_conntrack_hash structure

• Attackers cannot remove the connection from
the cache complete or Netfilter will stop
tracking it

– Breaking the NAT translation

146

Demo

147

Questions/Comments?

• Please fill out the feedback forms!

• Contact:

– andrew@digdeeply.com

– @attrc

148

References

[1] http://lwn.net/Articles/75991/

149

