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Who Am I?

• Security Analyst at Digital Forensics Solutions

 Also perform wide ranging forensics investigations

• Volatility Developer

• Former Blackhat, SOURCE, and DFRWS speaker

• Computer Science degree from UNO

• GIAC Certified Forensics Analyst (GCFA)
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Format of this Workshop

• I will be presenting the Linux kernel memory 
analysis capabilities of Volatility

• Along the way we will be seeing numerous 
examples of Linux kernel source code as well 
as Volatility’s plugins source code

• Following along with me while I use Volatility 
to recover data will get you the most out of 
this workshop
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Setting up Your Environment
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Agenda for Today’s Workshop
1. Recovering Vital Runtime Information

2. Investigating Live CDs (Memory Analysis)

3. Detecting Kernel Rootkits
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Agenda for This Hour

• Memory Forensics Introduction

• Recovering Runtime Information

– Will discuss kernel internals necessary to recover 
processes, memory maps, loaded modules, etc

– Will discuss how these are useful/relevant to 
forensics & IR

– We will be recovering data with Volatility as we go

• Q&A / Comments

6



7

Memory Forensics Introduction



Introduction

• Memory analysis is the process of taking a 
memory capture (a copy of RAM) and 
producing higher-level objects that are useful 
for an investigation

• A memory capture has the entire state of the 
operating system as well as running 
applications

– Including all the related data structures, variables, 
etc
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The Goal of Memory Analysis

• The higher level objects we are interested in 
are in-memory representations of C 
structures, custom data structures, and other 
variables used by the operating system

• With these we can recover processes listings, 
filesystem information, networking data, etc

• This is what we will be talking about 
throughout the workshop

9



Information Needed for Analysis

• The ability to:

1. Locate needed data structures in memory

2. Model those data structures offline

3. Report their contents
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Locating Data Structures
• To locate static data structures, we use the 

System.map file

– Contains the name and address of every static 
data structure used in the kernel

– Created in the kernel build process by using nm on 
the compiled vmlinux file
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Model Data Structures

• The parts of the Linux kernel we care about 
are written in C

• All data structures boil down to C structures

• These have a very simple in-memory 
representation (next slide)
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C Structures in Memory

• Source Code:

struct blah {

int i;

char c;

short s; };

struct blah *b = 
malloc(…);
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• In Memory:

 Lets say we have an 
instance of ‘b’ at 0x0

 Then:

b->i goes from 0x0 to 0x4

b->c goes from 0x4 to 0x5

b->s goes from 0x5 to 0x7



Modeling Structures
• During analysis we want to automatically model 

each C structure of interest 

• To do this, we use Volatility’s dwarfparse.py:
 Builds a profile of C structures along with members, 

types, and byte offsets

 Records offsets of global variables

• Example structure definition
'ClassObject': [ 0xa0, { Class name and size

'obj': [0x0, ['Object']], member name, offset, 
and type
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Introducing Volatility



Volatility
• Most popular memory analysis framework

– Written in Python

– Open Source

– Supports Windows {XP, Vista, 7, 2003, 2008}

– Support Linux 2.6.9 to 2.6.3x on Intel and ARM

• Allows for analysis plugins to be easily written

• Used daily in real forensics investigations

• Will be the framework used in this workshop
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Volatility Object Manager

• Once we have a model of a kernel’s data 
structures (profiles) we can then just rely on 
Volatility

• Its object manager takes care of parsing the 
struct definitions, including types, and then 
providing them as requested

– Example on next slide
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Example Plugin Code

• Accessing a structure is as simple as knowing     
the type and offset 

intval = obj.Object(“int”, offset=intOffset, ..)

• Volatility code to access ‘descriptor’ of an 
‘Object’:

o = obj.Object("Object", offset=objectAddress, ..)

c = obj.Object("ClassObject", offset=o.clazz, …)

desc = linux_common.get_string(c.descriptor)

18



Volatility Address Spaces

• Address spaces are used to translate virtual 
addresses to offsets within a memory capture 

– Same process used to translate to physical 
addresses on a running OS

• Plugin developers simply need to pass the 
given address space to functions that need it 

– Manual change only required to access userland
(will see an example in a bit)
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Current Address Spaces

• x86 / x64

• Arm (Android)

• Firewire

• Windows Hibernation Files

• Crash Dumps

• EWF Files
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Recovering Runtime Information



Runtime Information

• This rest of this session is focused on orderly 
recovery of data that was active at the time of 
the memory capture

• We will be discussing how to find key pieces of 
information and then use Volatility to recover 
them
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Information to be Recovered

• Processes

• Memory Maps

• Open Files

• Network Connections

• Network Data

• Loaded Kernel Modules
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Recovering Process Information

• Each process is represented by a task_struct

• Once a task_struct is located, all information 
about a process can be quickly retrieved

– Possible to do it through other methods, but 
much more convoluted
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Locating Processes – Method 1
• init_task is the symbol for the task_struct of 

“swapper”, the PID 0 process

– Statically initialized, will be useful in a few slides

• task_struct->tasks holds a linked list of all 
active processes

– NOT threads! (more on this later)

– Simply walking the list gives us a process listing
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Locating Processes – Method 2

• pid_hash
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Wanted Per-Process Information

• Name and Command Line Arguments

• UID/GID/PID

• Starting/Running Time

• Parent & Child Processes

• Memory Maps & Executable File

• Open Files

• Networking Information
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Needed task_struct Members
• Name

– char comm[TASK_COMM_LEN];  // 16 

– Command line arguments in later slides

• User ID / Group ID

– Before 2.6.29

• uid and gid

– Since 2.6.29

• struct cred *cred;

• cred->uid and cred->gid
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task_struct Members Cont.

• Parent Process

– struct task_struct *real_parent;

• Child processes

– struct list_head children;   /* list of my children */

• Process times

– FIX THIS - utime, stime, start_time, real_starttm
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Recovery with Volatility

• Option 1:

– In: volatility/plugins/linux_task_list_ps.py

– Walks the task_struct->tasks list

• Option 2:

– In: volatility/plugins/linux_task_list_psaux.py

– Reads command line invocation from userland

• Will cover algorithm after discussing memory 
management structures
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Process Gathering Demo/Hands On
• Will be using:

– linux_task_list_ps

– linux_task_list_psaux

– linux_pid_cache
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Process Memory Maps

• Viewed on a running system within 
/proc/<pid>/maps

• Lists all mappings within a process including:

– Mapped file, if any

– Address range

– Permissions
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Accessing the Mappings

• Each mapping is stored as a vm_area_struct

• Stored in two places:

– task_struct->mm->mm_rb

 Red black tree of mappings

– task_struct->mm->mmap

 List of mappings ordered by starting address
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Needed Members of vm_area_struct

• unsigned long vm_start, vm_end

– The starting and ending addresses of the mapping

• vm_area_struct vm_next

– The next vma for the process (linked list from   
mm->mmap)

• struct file vm_file

– If not NULL, points to the mapped file (shared 
library, open file, main executable, etc)
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Recovery with Volatility
• Listing mappings implemented in 

volatility/plugins/linux_proc_maps.py

• Analyzing specific mappings implemented in 
volatility/plugins/linux_dump_maps.py

– Can specify by PID or address 
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Using ->mm to get **argv
# switch pgd

tmp_dtb = self.addr_space.vtop(task.mm.pgd)

# create new address space

proc_as = 
self.addr_space.__class__(self.addr_space.base, 
self.addr_space.get_config(), dtb = tmp_dtb)

# read in command line argument buffer

argv = proc_as.read(task.mm.arg_start, 
task.mm.arg_end - task.mm.arg_start)
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Gathering Open Files
• Want to emulate /proc/<pid>/fd

• task_struct->files->fdt->fd is array of file 
structures

• Each array index is the file descriptor number

• If an index is non-NULL then it holds an open 
file

• Use max_fds of the fdt table to determine 
array size
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Information Per-File

• Path information stored in the f_dentry and 
f_vfsmnt members
– To get full path, need to emulate __d_path

function

• Inode information stored in f_dentry structure
– Contains size, owner, MAC times, and other 

metadata

• Recovering file contents in-memory requires 
use of the f_mapping member
– Come back for session 2!
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Memory Maps and Open Files Demo

• Memory Maps

– Listing process mappings

– Acquiring the stack and heap from interesting 
processes

• Open Files

– Lists open files with their file descriptor number
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Networking Information

• The kernel contains a wealth of useful 
information related to network activity

• This info is immensely helpful in a number of 
forensics and incident response scenarios

40



Netstat Plugin

• Used to emulate the netstat command

• This information is found on a running 
machine found in these /proc/net/ files:

– tcp/tcp6

– udp/udp6

– unix
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Volatility’s linux_netstat.py
openfiles = lof.linux_list_open_files.calculate(self)

# for every open file
for (task, filp, _i, _addr_space) in openfiles:

d = filp.get_dentry() # the files dentry

if filp.f_op == self.smap["socket_file_ops"] or 
filp.d.d_op == self.smap["sockfs_dentry_operations"]:

# it is a socket, can get the protocol information
iaddr = d.d_inode
skt = self.SOCKET_I(iaddr)
inet_sock = obj.Object("inet_sock", offset = skt.sk, …)

42



ARP Cache

• Emulates arp -a

• The ARP cache stores recently discovered IP 
and MAC address pairs

– It is what facilities ARP poisoning

• Recovery of this cache provides information 
on other machines the target machine was 
communicating with
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Recovering the ARP Cache

• Implemented in linux_arp.py

• This code walks the neigh_tables and their 
respective hash_buckets to recover neighbor 
structures

• These contain the device name, mac address, 
and corresponding IP address for each entry
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Routing Table

• Emulates route -n

• The routing table stores routing information 
for every known gateway device and its 
corresponding subnet

• The linux_route plugin recovers this 
information
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Routing Cache
• Emulates route –C

• This cache stores recently determined source 
IP and gateway stores

• A great resource to determine recent network 
activity on a computer
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Network Recovery Demo/Hands On

• Many plugins!
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Dmesg
• The simplest plugin in all of Volatility

• Simply locates and prints the kernel debug 
buffer
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Dmesg Plugin Code
ptr_addr = self.smap["log_buf"] 

# the buffer
log_buf_addr = obj.Object("long", offset = ptr_addr, vm = 

self.addr_space)

# its length
log_buf_len = obj.Object("int", self.smap["log_buf_len"], vm = 

self.addr_space)

# read in the buffer
yield linux_common.get_string(log_buf_addr, self.addr_space, 

log_buf_len)
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Loaded Kernel Modules

• Want to emulate the lsmod command

• Each module is represented by a struct
module

• Each active module is kept in the modules list

• We can simply walk the list to recover all 
needed information
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Information Per Module
• char name[MODULE_NAME_LEN]

– The name of the module

• void module_init
– .text + .data of init functions

• void module_core
– .text + .data of core functions

• symtab/strtab
– Symbol and string tables

• struct list_head list
– Entry within the list of loaded modules
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Recovery with Volatility
• In: volatility/plugins/linux_lsmod.py 

• Volatility code:

mods_addr = self.smap["modules"] 

modules =  obj.Object("list_head",offset=mods_addr,)

for module in 

linux_common.walk_list_head("module", "list", 
modules, …): 

yield module 
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Questions/Comments?

• Please fill out the feedback forms!

• Contact:

– andrew@digdeeply.com

– @attrc

53



Linux Memory Analysis Workshop – Session 2

Andrew Case



Who Am I?

• Security Analyst at Digital Forensics Solutions

 Also perform wide ranging forensics investigations

• Volatility Developer

• Former Blackhat, SOURCE, and DFRWS speaker

• Computer Science degree from UNO

• GIAC Certified Forensics Analyst (GCFA)
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Format of this Workshop

• I will be presenting the Linux kernel memory 
analysis capabilities of Volatility

• Along the way we will be seeing numerous 
examples of Linux kernel source code as well 
as Volatility’s plugins source code

• Following along with me while I use Volatility 
to recover data will get you the most out of 
this workshop
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Setting up Your Environment
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Agenda for Today’s Workshop
1. Recovering Vital Runtime Information

2. Investigating Live CDs Through Memory 
Analysis

3. Detecting Kernel Rootkits
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Agenda for This Hour

• Discuss Live CDs and how they disrupt the 
normal forensics process

• Present research that enables traditional 
investigative techniques against live CDs

• We will be recovering files and data as we go 
along

• Q&A / Comments
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Live CD Introduction



Normal Forensics Process

Acquire Disk Image

Verify Image

Process Image

Perform Investigation

Obtain Hard Drive
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Traditional Analysis Techniques

• Timelining of activity based on MAC times 

• Hashing of files

• Indexing and searching of files and 
unallocated space

• Recovery of deleted files

• Application specific analysis

– Web activity from cache, history, and cookies

– E-mail activity from local stores (PST, Mbox, …)
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Problem of Live CDs

• Live CDs allow users to run an operating 
system and all applications entirely in RAM

• This makes traditional digital forensics 
(examination of disk images) impossible

• All the previously listed analysis techniques 
cannot be performed
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The Problem Illustrated

Acquire Disk Image

Verify Image

Process Image

Perform Investigation

Obtain Hard Drive
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No Disks or Files, Now What?
• All we can obtain is a memory capture

• With this, an investigator is left with very 
limited and crude analysis techniques

• Can still search, but can’t map to files or dates

– No context, hard to present coherently

• File carving becomes useless

– Next slide

• Good luck in court
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People Have Caught On…
• The Amnesic Incognito Live System (TAILS) [1]

– “No trace is left on local storage devices unless 
explicitly asked.”

– “All outgoing connections to the Internet are 
forced to go through the Tor network”

• Backtrack [2]

– “ability to perform assessments in a purely native 
environment dedicated to hacking.”
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What It Really Means…

• Investigators without deep kernel internals 
knowledge and programming skill are basically 
hopeless

• It is well known that the use of live CDs is 
going to defeat most investigations

– Main motivation for this work

– Plenty anecdotal evidence of this can be found 
through Google searches
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What is the Solution?

• Memory Analysis!

• It is the only method we have available…

• This Analysis gives us:

– The complete file system structure including 
file contents and metadata

–Deleted Files (Maybe)

–Userland process memory and file system 
information
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Recovering the Filesystem



• Steps needed to achieve this goal:

1. Understand the in-memory filesystem

2. Develop an algorithm that can enumerate 
directory and files

3. Recover metadata to enable timelining and 
other investigative techniques
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Goal 1: Recovering the File System



The In-Memory Filesystem
• AUFS (AnotherUnionFS)

– http://aufs.sourceforge.net/

– Used by TAILS, Backtrack, Ubuntu 10.04 installer, 
and a number of other Live CDs

– Not included in the vanilla kernel, loaded as an 
external module
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AUFS Internals
• Stackable filesystem

• Presents a multilayer filesystem as a single one to users

• This allows for files created after system boot to be 
transparently merged on top of read only CD

• Each layer is termed a branch

• In the live CD case, one branch for the CD, and one for all 
other files made or changed since boot
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• Look on running system?
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AUFS Userland View of TAILS

# cat /proc/mounts
aufs / aufs rw,relatime,si=4ef94245,noxino

/dev/loop0 /filesystem.squashfs squashfs

tmpfs /live/cow tmpfs

tmpfs /live tmpfs rw,relatime

# cat /sys/fs/aufs/si_4ef94245/br0

/live/cow=rw

# cat /sys/fs/aufs/si_4ef94245/br1

/filesystem.squashfs=rr
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Mount 
points 
relevant 
to AUFS

The 
mount 
point of 
each 
AUFS 
branch



Forensics Approach

• No real need to copy files from the read-only 
branch

– Just image the CD

• On the other hand, the writable branch 
contains every file that was created or 
modified since boot

– Including metadata

– No deleted ones though, more on that later

75



76

Linux Internals



Needed Structures
• struct dentry 

– Represents a directory entry (directory, file, …)

– Contains the name of the directory entry and a 
pointer to its inode structure

• struct inode
– FS generic, in-memory representation of a disk inode

– Contains  address_space structure that links an inode
to its file’s pages

• struct address_space
– Links physical pages together into something useful

– Holds the search tree of pages for a file
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Linux Internals Overview II

• Page Cache

– Used to store struct page structures that 
correspond to physical pages

– address_space structures contain linkage into the 
page cache that allows for ordered enumeration 
of all physical pages pertaining to an inode

• Tmpfs

– In-memory filesystem

– Used by TAILS to hold the writable branch
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Enumerating Directories

• Once we can enumerate directories, we can 
recover the whole filesystem

• Not as simple as recursively walking the 
children of the file system’s root directory

• AUFS creates hidden dentrys and inodes in 
order to mask branches of the stacked 
filesystem

• Need to carefully interact between AUFS and 
tmpfs structures
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Directory Enumeration Algorithm
1) Walk the super blocks list until the “aufs” 

filesystem is found
• This contains a pointer to the root dentry

2) For each child dentry, test if it represents a 
directory

If the child is a directory:
• Obtain the hidden directory entry (next slide)

• Record metadata and recurse into directory

If the child is a regular file:
• Obtain the hidden inode and record metadata
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Obtaining a Hidden Directory

struct dentry
{

d_inode
d_name
d_subdirs
d_fsdata

}

struct au_dinfo
{

au_hdentry
}

Branch

0

1 Pointer

Pointer

Dentry 
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• Each kernel dentry stores a pointer to an au_dinfo
structure inside its d_fsdata member

• The di_hdentry member of au_dinfo is an array of 
au_hdentry structures that embed regular kernel 
dentrys



Obtaining Metadata

• All useful metadata such as MAC times, file 
size,  file owner, etc is contained in the hidden 
inode

• This information is used to fill the stat 
command and istat functionality of the 
Sleuthkit

• Timelining becomes possible again
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Obtaining a Hidden Inode

struct aufs_icntnr
{

iinfo
inode

}

struct au_iinfo
{

ii_hinode
}

Branch

0

1 Pointer

Pointer

struct  inode
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• Each aufs controlled inode gets embedded in an 
aufs_icntnr

• This structure also embeds an array of au_hinode
structures which can be indexed by branch number to 
find the hidden inode of an exposed inode



Goal 2: Recovering File Contents 

• The size of a file is kept in its inode’s i_size 
member

• An inode’s page_tree member is the root of 
the radix tree of its physical pages

• In order to recover file contents this tree 
needs to be searched for each page of a file

• The lookup function returns a struct page
which leads to the backing physical page
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Recovering File Contents Cont.
• Indexing the tree in order and gathering of 

each page will lead to accurate recovery of a 
whole file

• This algorithm assumes that swap isn’t being 
used

– Using swap would defeat much of the purpose of 
anonymous live CDs

• Tmpfs analysis is useful for every distribution

– Many distros mount /tmp using tmpfs, shmem, 
etc
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• Discussion:

1. Formulate Approach

2. Discuss the kmem_cache and how it relates 
to recovery

3. Attempt to recover previously deleted file 
and directory names, metadata, and file 
contents
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Approach

• We want orderly recovery

• To accomplish this, information about deleted 
files and directories needs to be found in a 
non-standard way

– All regular lists, hash tables, and so on lose track 
of structures as they are deleted

• Need a way to gather these structures in an 
orderly manner
— kmem_cache analysis to the rescue!
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Recovery though kmem_cache analysis

• A kmem_cache holds all structures of the 
same type in an organized manner

– Allows for instant allocations & deallocations

– Used for handling of process, memory mappings, 
open files, and many other structures

• Implementation controlled by allocator in use

– SLAB and SLUB are the two main ones
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kmem_cache Internals
• Both allocators keep track of allocated and 

previously de-allocated objects on three lists:

– full, in which all objects are allocated

– partial, a mix of allocated and de-allocated objects

– free, previously freed objects*

• The free lists are cleared in an allocator 
dependent manner

– SLAB leaves free lists in-tact for long periods of 
time

– SLUB is more aggressive
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kmem_cache Illustrated
• /proc/slabinfo contains information about 

each current kmem_cache

• Example output:

# name     <active_objs> <num_objs>

task_struct      101               154

mm_struct         76                99                  

filp                    901            1420                  
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The difference 
between 
num_objs and 
active_objs is 
how many free 
objects are being 
tracked by the 
kernel



Recovery Using kmem_cache Analysis

• Enumeration of the lists with free entries 
reveals previous objects still being tracked by 
the kernel

– The kernel does not clear the memory of these 
objects

• Our previous work has demonstrated that 
much previously de-allocated, forensically 
interesting information can be leveraged from 
these caches [4]
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Recovering Deleted Filesystem Structure

• Both Linux kernel and aufs directory entries 
are backed by the kmem_cache

• Recovery of these structures reveals names of 
previous files and directories

– If d_parent member is still in-tact, can place 
entries within file system
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Recovering Previous Metadata

• Inodes are also backed by the kmem_cache

• Recovery means we can timeline again

• Also, the dentry list of the AUFS inodes still 
have entries (strange)

– This allows us to link inodes and dentrys together

– Now we can reconstruct previously deleted file 
information with not only file names & paths, but 
also MAC times, sizes, inode numbers, and more
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Recovering File Contents – Bad News
• Again, inodes are kept in the kmem_cache

• Unfortunately, page cache entries are 
removed upon deallocation, making lookup 
impossible
– A large number of pointers would need to stay in-

tact for this to work

• This removes the ability to recover file 
contents in an orderly manner

• Other ways may be possible, but will require 
more research
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Summary of File System Analysis

• Can completely recover the in-memory 
filesystem, its associated metadata, and all file 
contents

• Ordered, partial recovery of deleted file 
names and their metadata is also possible

• Traditional forensics techniques can be made 
possible against live CDs

– Making such analysis accessible to all investigators
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Implementation
• Recovery code was originally written as 

loadable kernel modules
– Allowed for rapid development and testing of 

ideas

– 2nd implementation was developed for Volatility

• Vmware workstation snapshots were used to 
avoid rebooting of the live CD and 
reinstallation of software
– TAILs doesn’t include development tools/headers

– This saved days of research time
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Testing

• Output was compared to known data sets
– Directories and files with scripted contents

– Metadata was compared to the stat command

– File contents were compared to scripted contents

• Deleted information was analyzed through 
previously allocated structures
– While a file was still allocated, its dentry, inode, etc 

pointers were saved

– File was deleted and these addresses were 
examined for previous data
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Questions/Comments?

• Please fill out the feedback forms!

• Contact:

– andrew@digdeeply.com

– @attrc
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Who Am I?

• Security Analyst at Digital Forensics Solutions

 Also perform wide ranging forensics investigations

• Volatility Developer

• Former Blackhat, SOURCE, and DFRWS speaker

• Computer Science degree from UNO

• GIAC Certified Forensics Analyst (GCFA)
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Format of this Workshop

• I will be presenting the Linux kernel memory 
analysis capabilities of Volatility

• Along the way we will be seeing numerous 
examples of Linux kernel source code as well 
as Volatility’s plugins source code

• Following along with me while I use Volatility 
to recover data will get you the most out of 
this workshop
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Setting up Your Environment
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Agenda for Today’s Workshop
1. Recovering Vital Runtime Information

2. Investigating Live CDs Through Memory 
Analysis

3. Detecting Kernel Rootkits
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Agenda for This Hour

• This session will be a walkthrough of kernel-
mode rootkits under Linux

• We will discussing the techniques used by 
rootkits to stay hidden and how the Volatility 
modules uncover them

• I will also be presenting previously never 
disclosed rootkit techniques developed for 
this workshop

• Q&A / Comments
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Linux Kernel-Mode Rootkits



Introduction

• I promise not to bore you with information 
from ~2002 Phrack articles…

• Rootkits target two types of data:

1. Static

 Easy to implement and easy to detect

2. Dynamic

 Harder to implement and harder to detect
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Static-Data Altering Rootkits

• These rootkits target data structures that are 
easy to modify, but are also effective at hiding 
activity

• Common technique types include:

– Directly overwriting instructions in memory (.text)

– Overwriting the system call & interrupt descriptor 
tables

– Overwriting members of global data structures
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Type 1: Overwriting .text

• Very popular as its easy to implement and 
makes hiding data easy

• Rootkits alter running instructions for a few 
reasons:

– To gain control flow

– To filter data (add, modify, delete) to stay hidden

– To implement “triggers” so that userland code can 
make requests
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Detecting Code Overwrites

• The compiled code of the kernel is static
– One exception is covered next

• The compiled kernel (vmlinux) is an ELF file
– All functions, including their name, instructions, 

and size can be gathered from debug information

• This information can then be compared to 
what is in memory

• Any alteration points to malicious (or broken) 
software
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SMP Alternatives
• There is one circumstance when runtime 

modifications happen in the Linux kernel

• When the computer first boots and only one 
processor is active, all multi-core 
synchronization primitives are NOP’ed out

• When more than one CPU comes online, the 
kernel then has to rewrite these instructions 
with their SMP-safe counterparts to maintain 
concurrency
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SMP Alts. Cont.

• These alternative instructions are kept for 
performance reasons

– No reason to get, set, and check SMP locks if only 
one CPU is active

• The alternative instructions and their target 
location are stored within the vmlinux file

• We can gather this information and use it for 
accurate .text modification checking
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Type 2: System Call & IDT Overwriting

• To avoid being detected when overwriting 
.text, rootkits started modifying the tables 
used to service system calls and interrupts

• This allows for a rootkit’s code to easily filter 
the data received and returned by native 
kernel functions
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Attack Examples

• Overwrite the read system call and filter out 
the rootkit’s logging data unless a specific 
register contains a magic value

• Overwrite the stat system call to hide files 
from userland anti-rootkit applications

• Many more possibilities… 
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Detecting These Attacks

• The IDT and the system call table are simply C 
arrays

• They can be copied from the clean vmlinux file 
and then compared to the values in memory

• Will easily detect that the table has been 
altered and which entries were modified
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Type 3: Overwriting Data Structures

• Popularized by the adore[1] rootkit, this attack 
overwrites function pointers of global data 
structures to filter information

• Adore overwrites the readdir member of the 
file_operations structure for the proc and root
filesystems

– The replacement function filters out files on a 
pattern used by the rootkit, effectively hiding 
them from userland
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Other Common Attacks
• Overwriting structure members used to 

display information through /proc

– Info files in /proc use the seq_operations interface

– Hijacking the show member of this structure 
allows for trivial filtering of information

• Possible targets

– Loaded modules list

– Networking connections (netstat)

– Open files (lsof)
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Detecting these Attacks

• We take a generic approach

• During the profile creation stage, we filter for 
a number of commonly targeted structure 
types

– For variables found, we then copy the statically set 
values of each member that may be hijacked

• This ensures that all instances of those 
structures are checked for malicious 
tampering
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Targeted Structure Types

• UPDATE THIS
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Hands On

• We will look at a memory image infected with 
a rootkit that uses a number of static-data 
altering techniques

• Volatility will show us the exact data 
structures infected
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Dynamic-Data Modification Rootkits

• Rootkits that modify dynamic data are much 
more interesting than those that alter static 
data

– Require more skill on part of the rootkit developer

– Require more complicated analysis and detection 
capabilities on the detector 

• Cannot be detected by using System.map or 
vmlinux

– Need deep parsing of in-kernel data structures
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Attacks & Defenses

• The rest of this session will cover attacks and 
defense related to dynamic data altering

– Most of these attacks are new (developed for this 
workshop) to highlight the stealth ability of these 
types of attacks

• But first, we need to learn about the 
kmem_cache

– Will be used extensively by our detection 
mechanims
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The kmem_cache

• The kmem_cache is a facility that provides a 
consistent and fast interface to allocate/de-
allocate objects (C structures) of the same size

• The implementation of each cache is provided 
by the system allocator

– SLAB and SLUB are the two main ones
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kmem_cache Internals
• Both allocators keep track of allocated and 

previously de-allocated objects on three lists:

– full, in which all objects are allocated

– partial, a mix of allocated and de-allocated objects

– free, previously freed objects*

• The free lists are cleared in an allocator 
dependent manner

– SLAB leaves free lists in-tact for long periods of 
time

– SLUB is more aggressive
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kmem_cache Illustrated
• /proc/slabinfo contains information about 

each current kmem_cache

• Example output:

# name     <active_objs> <num_objs>

task_struct      101               154

mm_struct         76                99                  

filp                    901            1420                  
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num_objs and 
active_objs is 
how many free 
objects are being 
tracked by the 
kernel



Utilizing the kmem_cache

• All of the allocated objects backed by a 
particular cache can be found on the full and 
partial lists

– The one caveat is SLUB without debugging on

– Every distro checked enables SLUB debugging

– Might be possible to find all references even with 
debugging off
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The Idea Behind the Detection
• Dynamic-data rootkit methods work by 

removing structures from lists, hash tables, 
and other data structures

• To detect this tampering, we can take a 
particular cache instance and use this as a 
cross-reference to other stores

• Any structure in the kmem_cache list, but not 
in another, is hidden

– Inverse holds as well



Why the Detection Works
• All instances of a structure must be backed by 

the caches

• These caches work similar to an immutable 
store:

– Structures of the specific type cannot be hidden 
from it

• A few possible attack scenarios exist, but will 
not work undetected



Detection Subversion Scenarios
1. Allocating outside the cache

• Will be detected by the inverse comparisons

2. Allocating in the cache and then removing 
from it
• Very difficult to do and will result in detection as 

with scenario #1 

3. Allocating in the cache and then setting the 
entry as free
• The structure will be overwritten on next 

allocation



Our First New Attack
• The first developed attack was hiding 

processes from /proc

• A number of rootkit detection systems work 
by trying to enumerate /proc/[1-65535] and 
then compare the output to ps

• The numbered proc directories are backed by 
their respective PID namespace and number
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Process Background

• !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

• Task_struct_cachep
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The Attack

• As simple as removing from the namespace

• Code, where p is the task_struct we want to hide:

pid = p->pids[PIDTYPE_PID].pid; // get the pid ref

detach_pid(p, PIDTYPE_PID);      // take out of PID 
//  group

• The process will no longer show up in 
/proc/<pid> lookups
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Detection

• We gather processes from a number of places 
before comparing to those in the cache
– Implemented in XXXXYYYYY

1) Each task_struct holds a pointer into the 
tasks list

2) The run queue, where scheduled processes 
wait to execute

3) The PID cache, where we just removed our 
process from
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Hands-on/Demo

• We will now investigate hidden processes and 
look at the corresponding Volatility detection 
code 

133



Next Attack: Memory Maps

• The next attack hides memory maps from 
/proc/<pid>/maps

– This file is used to list every mapped address 
range in a process

• Each mapping is represented by a 
vm_area_struct and they are kept in two 
places:

– The mmap list of the processes’ mm_struct

– The mm_rb tree of the mm_struct
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MM BG

• !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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The Attack

• Inspection of a maps file makes attacks such 
as shared library injection very noticeable

– The full path of the mapped binary plus its data 
and code sections will be visible

• To hide maps, we need to:

– Remove the vma from the mm_rb and mmap lists

– Fixup the structures that account for paging

• This will hide the map and allow for the 
targeted process to exit cleanly
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Detection

• Implemented in: 

• The first step is to gather all active VMAs for a 
process so they can be compared against 
those in the cache

• The problem is that the VMAs are anonymous

– No immediate linkage to a specific process
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Detection Cont.

• To work around this, we rely on the fact that 
vmas keep a back pointer to their owning 
mm_struct in the vm_mm member

• Using this, we can gather all the vmas for a 
specific process and then compare against the 
cache

• Can you think of a bypass in this detection?
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Preventing Malware Tampering

• Since we rely on vm_mm, malware could try 
to avoid this detection by changing vm_mm

• Possible attempts:

1. Set vm_mm to some invalid value (NULL, etc)

2. Set vm_mm to another processes’s mm_struct

• Will still be detected:

• All mm_structs are also in a kmem_cache

• Comparing the list of vm_mm values to this 
cache will reveal avoidance attempts
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Next Attack: Open files
• The /proc/<pid>/fd directory contains a 

symlink per open file

– The symlink name is the file descriptor number

• Used by a number of utilities (lsof) and anti-
rootkit applications to detect files being 
accessed

• To remain stealthy, this directory listing needs 
to be filtered
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The Attack
• A processes’ file descriptors are stored in an 

array of file structures indexed by file 
descriptor number

• All non-null indexes are treated as open files

– NULL entries are skipped
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The Hiding Code

idx = loop_counter; // the file desc to test

file = p->files->fdt->fd[idx]; // the file struct

if (file) 

{

fn = d_path(…); // get the full path of file

if(!IS_ERR(fn) && 
strcmp(fn,"/tmp/hidefile.txt"))

fdt->fd[i] = NULL;                      

}
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Detection

• As with the process detection algo, finding all 
open files requires gathering from a number 
of sources:

– The (non-hidden) open files per-process

– The vm_file structures used to memory map files

– All swap files

• We then compare these against the 
filp_cachep kmem_cache
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Next Attack: Netfilter NAT Table

• Netfilter is used to implement NAT on Linux 
systems

• It keeps a table of active translations and 
these are shown in the 
/proc/net/nf_conntrack file

• This is obviously a good source of forensics 
information
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The Attack

• Netfilter stores the connection tuple in the 
nf_conntrack_hash data structure

• Attack code works by enumerating the hash 
table nodes and removing entries related to 
the rootkit
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Detection
• Connection information is stored in the 

nf_conntrack_cachep kmem_cache

• We walk this cache and compare against those 
in the nf_conntrack_hash structure

• Attackers cannot remove the connection from 
the cache complete or Netfilter will stop 
tracking it

– Breaking the NAT translation
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Demo
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Questions/Comments?

• Please fill out the feedback forms!

• Contact:

– andrew@digdeeply.com

– @attrc
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