
Apple iOS 4 Security Evaluation
Dino A. Dai Zovi
Trail of Bits LLC

Disclaimers
I have never worked for Apple, but I have a crippling addiction to
buying and tinkering with their products.

I have never received any monetary compensation from Apple,
but they have sent me some free shwag

I have been mistaken by strangers on the street for being an off-
duty Apple Store employee

I hacked a Mac once, but don’t worry, it wasn’t yours.

Charlie Miller and I wrote an entire book on hacking the Mac and
I still have never met Steve Jobs. I blame Charlie.

Acknowledgements
iPhone jailbreak developer community

Chronic Dev Team, Comex for releasing tools with source

The iPhone Wiki for excellent up-to-date documentation

Other security researchers with great iOS research

Jean-Baptiste Bedrune, Jean Sigwald (SOGETI ESEC)

Dion Blazakis

Stefan Esser

Focus of This Talk
What enterprise users need to know about iOS security
features and properties to make informed deployment,
configuration, usage, and procedure decisions

How iOS security compares to competing mobile
platforms

Assorted iOS implementation details and internals

Interesting places for reverse engineers and vulnerability
researchers to look (if they are paying close attention)

Overview

Introduction

ASLR

Code Signing

Sandboxing

Data Encryption

Introduction

Security Concerns
Sensitive data compromise from lost/stolen device

What data can be recovered by attacker?

Malicious Apps

What is the likelihood of DroidDream for iOS?

Remote attacks through web browser, e-mail, etc.

Is that a desktop (aka APT target) in your pocket?

Remote Attack Graph
Malicious

Data
Exploit Memory

Corruption
Vulnerability

Return-
oriented

Execution

Bypass Code
Signing

Enforcement

Sandboxed
Native Code
Execution

Escape
Sandbox

Unprivileged
Native Code
Execution

Exploit
Privilege Escalation

Vulnerability

Privileged Native
Code Execution

Exploit Kernel
Vulnerability

Kernel Mode
Code Execution

Jailbreak
running
kernel

Temporary
Jailbreak

Persistence Attack Graph

Privileged Native
Code Execution

Drop Executable
That Runs at Boot

Obtain
Apple's

Private Key

Boot-time
Binary

Execution
Exploit Incomplete Code

Signing Vulnerability

Return-
oriented

execution
...

Kernel
mode code
execution

Jailbreak
running
kernel

Overwrite
kernelcache

Untethered
Jailbreak

Address Space Layout
Randomization

Security Concerns
How hard is it to remotely exploit built-in or third-
party applications?

Malicious web page in Safari or third-party app
with embedded browser (i.e Facebook, Twitter)

Malicious e-mail message or attachment in Mail

Man-in-the-middle and corrupt network
communication of third-party apps

iOS 4.3 ASLR
ASLR is a common runtime security feature on desktop
and server operating systems and is a good generic
protection against remote exploits

iOS 4.3 introduced ASLR support

iOS 4.3 requires iPhone 3GS and later (ARMv7)

Apps must be compiled with PIE support for full ASLR,
otherwise they only get partial ASLR

iOS 4.3 built-in apps and executables are all PIE

 Executable Heap Stack Libraries Linker
0xd2e48 0x1cd76660 0x2fecf2a8 0x35e3edd1 0x2fed0000

0xaae48 0x1ed68950 0x2fea72a8 0x35e3edd1 0x2fea8000

0xbbe48 0x1cd09370 0x2feb82a8 0x35e3edd1 0x2feb9000

0x46e48 0x1fd36b80 0x2fe432a8 0x35e3edd1 0x2fe44000

0xc1e48 0x1dd81970 0x2febe2a8 0x35e3edd1 0x2febf000

RebootRebootRebootRebootReboot
0x14e48 0x1dd26640 0x2fe112a8 0x36146dd1 0x2fe12000

0x62e48 0x1dd49240 0x2fe112a8 0x36146dd1 0x2fe60000

0x9ee48 0x1d577490 0x2fe9b2a8 0x36146dd1 0x2fe9c000

0xa0e48 0x1e506130 0x2fe9d2a8 0x36146dd1 0x2fe9e000

0xcde48 0x1fd1d130 0x2feca2a8 0x36146dd1 0x2fecb000

ASLR with PIE

 Executable Heap Stack Libraries Linker
0x2e88 0x15ea70 0x2fdff2c0 0x36adadd1 0x2fe00000

0x2e88 0x11cc60 0x2fdff2c0 0x36adadd1 0x2fe00000

0x2e88 0x14e190 0x2fdff2c0 0x36adadd1 0x2fe00000

0x2e88 0x145860 0x2fdff2c0 0x36adadd1 0x2fe00000

0x2e88 0x134440 0x2fdff2c0 0x36adadd1 0x2fe00000

RebootRebootRebootRebootReboot
0x2e88 0x174980 0x2fdff2c0 0x35e3edd1 0x2fe00000

0x2e88 0x13ca60 0x2fdff2c0 0x35e3edd1 0x2fe00000

0x2e88 0x163540 0x2fdff2c0 0x35e3edd1 0x2fe00000

0x2e88 0x136970 0x2fdff2c0 0x35e3edd1 0x2fe00000

0x2e88 0x177e30 0x2fdff2c0 0x35e3edd1 0x2fe00000

ASLR without PIE

Partial vs. Full ASLR

PIE Main
Executable Heap Stack Shared

Libraries Linker

No Fixed
Randomized

per
execution

Fixed
Randomized
per device

boot
Fixed

Yes
Randomized

per
execution

Randomized
per execution

(more
entropy)

Randomized
per

execution

Randomized
per device

boot

Randomized
per

execution

Identifying PIE support
otool -hv <executable>

$ otool -hv MobileSafari

MobileSafari:
Mach header
 magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
 MH_MAGIC ARM V7 0x00 EXECUTE 40 4560 NOUNDEFS DYLDLINK
TWOLEVEL PIE

hexdump

$ hexdump -C MobileSafari | head
00000000 ce fa ed fe 0c 00 00 00 09 00 00 00 02 00 00 00 |................|

00000010 28 00 00 00 d0 11 00 00 85 00 20 00 01 00 00 00 |(.........|

PIE in Real-World Apps?

Top 10 Free Apps
App Version Post Date PIE

Songify 1.0.1 June 29, 2011 No
Happy Theme Park 1.0 June 29, 2011 No
Cave Bowling 1.10 June 21, 2011 No

Movie-Quiz Lite 1.3.2 May 31, 2011 No
Spotify 0.4.14 July 6, 2011 No

Make-Up Girls 1.0 July 5, 2011 No
Racing Penguin, Flying Free 1.2 July 6, 2011 No

ICEE Maker 1.01 June 28, 2011 No
Cracked Screen 1.0 June 24, 2011 No

Facebook 3.4.3 June 29, 2011 No

Bottom Line
All built-in apps in iOS 4.3 have full ASLR with PIE support

Third-party apps are rarely compiled with PIE support and run
with partial ASLR

Static location of dyld facilitates exploitation by providing
known executable material at a known place (code reuse,
return-oriented programming, etc)

Applications using a UIWebView are the highest risk
(embedded browser in Twitter, Facebook, etc)

Code Signing

Security Concerns
Can this application be trusted to run on my
device?

Who (real-world entity) wrote it?

How do we know it’s really them?

Does it have any hidden functionality?

Can it change functionality at run time?

Code Signing
Mandatory Code Signing

Every executable binary or application must have a valid
and trusted signature

Enforced when an application or binary is executed

Code Signing Enforcement

Processes may only execute code that has been signed
with a valid and trusted signature

Enforced at runtime

Mandatory Code Signing

Code Signing security model

Certificates

Provisioning Profiles

Signed Applications

Entitlements

Certificates

Identify the real-world author or publisher of a piece of
software

i.e. Apple verifies individual/company real-world
credentials

Must be issued by and signed by Apple

Developers are assigned unique application identifier
prefixes

Provisioning Profiles
The Provisioning Profile itself must be signed by Apple

Configures an iOS device to trust software signed by
the embedded certificate

Defines which entitlements the developer is
permitted to give to applications they sign

Profile may be tied to one specific device or global

Development vs. Distribution provisioning profiles

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>ApplicationIdentifierPrefix</key>
 <array>
 <string>9ZJJSS7EFV</string>
 </array>
 <key>CreationDate</key>
 <date>2010-08-20T02:55:55Z</date>
 <key>DeveloperCertificates</key>
 <array>
 <data>...</data>
 </array>
 <key>Entitlements</key>
 <dict>
 <key>application-identifier</key>
 <string>9ZJJSS7EFV.*</string>
 <key>get-task-allow</key>
 <true/>
 <key>keychain-access-groups</key>
 <array>
 <string>9ZJJSS7EFV.*</string>
 </array>
 </dict>
[...]

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

[...]
 <key>ExpirationDate</key>
 <date>2010-11-18T02:55:55Z</date>
 <key>Name</key>
 <string>Development</string>
 <key>ProvisionedDevices</key>
 <array>
 <string>e757cfc725783fa29e8b368d2e193577ec67bc91</string>
 </array>
 <key>TimeToLive</key>
 <integer>90</integer>
 <key>UUID</key>
 <string>BDE2CA16-499D-4827-BB70-73886F52D30D</string>
 <key>Version</key>
 <integer>1</integer>
</dict>
</plist>

Distribution Models
On-Device Development allows developers to build and test
applications on their own devices

Ad-Hoc Distribution allows developers to beta test applications
on up to 100 other users’ devices

AppStore Distribution allows developers to publish
applications on the iTunes AppStore

In-House Distribution allows Enterprise Developers to
distribute their custom applications to any device

OTA App Distribution
Ad-Hoc and In-House Provisioning Profiles can be
distributed with the Application in a single archive

Developer must host the application .ipa archive
and manifest plist file on a web server

Link to manifest can be sent via e-mail, SMS, or
other web page

When user clicks the link, iOS displays developer
and application name in a cancel/allow dialog

Code Signing Internals
AppleMobileFileIntegrity kernel extension responsible
for implementing code signing security policy

Installs MAC Framework policy hooks to enforce
Mandatory Code Signing and Code Signing
Enforcement

Dynamic code signing implemented in xnu virtual
memory system (see kernel sources)

Process’ code signing status tracked in proc.csflags

MAC Hook API Description AMFI Usage

mpo_vnode_check_signature

Determine whether the given
code signature or code
directory SHA1 hash are valid.

Checks for the given CDHash
in the trust caches. If it is not
found, the full signature is
validated by performing an
RPC call to the userspace
amfid daemon. If a particular
global flag is set
(amfi_get_out_of_my_way),
then any signature is allowed.

mpo_vnode_check_exec

Determine whether the subject
identified by the credential can
execute the passed vnode.

Sets the code signing
CS_HARD and CS_KILL flags,
indicating that the process
shouldn’t load invalid pages
and that the process should
be killed if it becomes invalid.

mpo_proc_check_get_task

Determine whether the subject
identified by the credential can
get the passed process's task
control port.

Allows if the target process has
the get-task-allow entitlement
and the source task has
task_for_pid-allow entitlement.

MAC Hook API Description AMFI Usage

mpo_proc_check_run_cs_invalid

Determine whether the
process may execute
even though the system
determined that it is
untrusted (unidentified or
modified code)

Allow execution if the
process has the get-task-
allow, run-invalid-allow, or
run-unsigned-code
entitlements or an RPC
call to amfid returns
indicating that
unrestricted debugging
should be allowed.

mpo_proc_check_map_anon

Determine whether the
subject identified by the
credential should be
allowed to obtain
anonymous memory with
the specified flags and
protections.

Allows the process to
allocate anonymous
memory if and only if the
process has the dynamic-
codesigning entitlement.

Normal Code Signature
Executable=/.../9D3A8D85-7EDE-417A-9221-1482D60A40B7/iBooks.app/iBooks
Identifier=com.apple.iBooks
Format=bundle with Mach-O universal (armv6 armv7)
CodeDirectory v=20100 size=14585 flags=0x0(none) hashes=721+5 location=embedded
Hash type=sha1 size=20
CDHash=ac93a95bd6594f04c209fb6bf317d148b99ac4d7
Signature size=3582
Authority=Apple iPhone OS Application Signing
Authority=Apple iPhone Certification Authority
Authority=Apple Root CA
Signed Time=Jun 7, 2011 11:30:58 AM
Info.plist entries=36
Sealed Resources rules=13 files=753
Internal requirements count=2 size=344

Ad-Hoc Code Signature
Executable=/Developer/usr/bin/debugserver
Identifier=com.apple.debugserver
Format=Mach-O universal (armv6 armv7)
CodeDirectory v=20100 size=1070 flags=0x2(adhoc) hashes=45+5 location=embedded
CDHash=6a2a1549829f4bff9797a69a1e483951721ebcbd
Signature=adhoc
Info.plist=not bound
Sealed Resources=none
Internal requirements count=1 size=152

Code Signature
Verification
iOS kernel has a static trust cache of CDHashes

AMFI IOKit UserClient lets root load trust caches into
dynamic trust cache

Trust cache must stored in a signed IMG3

Kernel performs RPC call to usermode daemon to
perform full binary code signature verification

Kernel stores the CDHash of each verified binary in the
MRU trust cache linked list

Code Signing Verification
vnode_check_signature Is CDHash in static

trust cache?
Is CDHash in

dynamic trust cache?

Is CDHash in MRU
trust cache?

Move CDHash
entry to front of
MRU linked list

Add CDHash
entry to front of
MRU linked list

No

Yes

No

RPC call to amfid
verify_code_directory

Failure

Yes

Success

Is
amfi_get_out_of_my_

way true?

Is
amfi_allow_any_signature

true?

No

Deny

Allow

Yes

No

Yes

Yes
No

AMFI Daemon
/usr/libexec/amfid

Message
ID Subroutine Description

1000 verify_code_directory

Verifies the given code directory hash
and signature for the executable at the
given path. This checks whether the
signature is valid and that it should be
trusted based on the built-in Apple
certificates and installed provisioning
profiles (if any).

1001 permit_unrestricted_debugging

Enumerates the installed provisioning
profiles and checks for a special Apple-
internal provisioning profile with the
UDID of the current device that enables
unrestricted debugging on it.

Bypassing Code Signing
Incomplete Code Signing1 Exploits

Manipulate dynamic linker to perform stack pivot
and execute return-oriented payload

Interposition exploit (4.0), Initializers exploit (4.1)

More recent exploits use relocations to dynamically
adjust ROP payloads to compensate for ASLR

iOS 4.3.4 strengthens iOS defenses against these

1http://theiphonewiki.com/wiki/index.php?title=Incomplete_Codesign_Exploit

http://theiphonewiki.com/wiki/index.php?title=Incomplete_Codesign_Exploit
http://theiphonewiki.com/wiki/index.php?title=Incomplete_Codesign_Exploit

Code Signing Enforcement
Ensure that process stays dynamically valid

No introduction of new executable code

Already loaded executable code can’t be
changed

Guarantees that the app code that was reviewed is
what runs on the device

Also just happens to prevent injecting shellcode

csops

System call to interact with a process’ code
signing state

Get code signing status

Set code signing flags (CS_HARD, CS_KILL)

Get executable pathname, code directory hash,
active running slice

int csops(pid_t pid, uint32_t ops, user_addr_t useraddr, user_size_t usersize);

CS Ops
Flag Value Description

CS_OPS_STATUS 0 Return process CS status

CS_OPS_MARKINVALID 1 Invalidate process

CS_OPS_MARKHARD 3 Set CS_HARD flag

CS_OPS_MARKKILL 4 Set CS_KILL flag

CS_OPS_PIDPATH 5 Get executable’s pathname

CS_OPS_CDHASH 6 Get code directory hash

CS_OPS_PIDOFFSET 7 Get offset of active Mach-O slice

CS Status Flags
Flag Value Description

CS_VALID 0x00001 Process is dynamically valid

CS_HARD 0x00100 Process shouldn’t load invalid pages

CS_KILL 0x00200 Process should be killed if it becomes
dynamically invalid

CS_EXEC_SET_HARD 0x01000 Process should set CS_HARD on any
exec’d child

CS_EXEC_SET_KILL 0x02000 Process should set CS_KILL on any exec’d
child

CS_KILLED 0x10000 The process was killed by the kernel for
being dynamically invalid

CS_HARD and CS_KILL
CS_HARD

Enforce W^X (Writable XOR Executable) memory page policy

Do not allow invalid memory pages to be loaded

mprotect(addr, len, ... | PROT_EXEC) => EPERM

CS_KILL

Kill the process if it becomes dynamically invalid

mprotect(text, len, PROT_READ | PROT_WRITE)
... Modify code page ...
mprotect(text, len, PROT_READ | PROT_EXEC) => SIGKILL

iOS 4.3 Adds JavaScript JIT

ldid -e /Applications/MobileSafari.app/MobileSafari
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
	 <key>com.apple.coreaudio.allow-amr-decode</key>
	 <true/>
	 <key>com.apple.coremedia.allow-protected-content-playback</key>
	 <true/>
	 <key>com.apple.managedconfiguration.profiled-access</key>
	 <true/>
	 <key>com.apple.springboard.opensensitiveurl</key>
	 <true/>
	 <key>dynamic-codesigning</key>
	 <true/>
	 <key>keychain-access-groups</key>
	 <array>
	 	 <string>com.apple.cfnetwork</string>
	 	 <string>com.apple.identities</string>
	 	 <string>com.apple.mobilesafari</string>
	 </array>
	 <key>platform-application</key>
	 <true/>
	 <key>seatbelt-profiles</key>
	 <array>
	 	 <string>MobileSafari</string>
	 </array>
</dict>
</plist>

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

MAC Hook API Description AMFI Usage

mpo_proc_check_map_anon

Determine whether the
subject identified by the
credential should be
allowed to obtain
anonymous memory with
the specified flags and
protections.

Allows the process to
allocate anonymous
memory if and only if the
process has the dynamic-
codesigning entitlement.

AMFI MAC Hook

Dynamic Code Signing

The dynamic-codesigning entitlement allows the
process to map anonymous memory with any
specified protections.

Only MobileSafari has this entitlement in iOS 4.3

Necessary for JavaScript native JIT (“Nitro”)

Previously MobileSafari did bytecode JIT

Bottom Line
Mandatory Code Signing in iOS is strong defense against
execution of unauthorized binaries

Requires incomplete code signing exploits to bypass and
obtain return-oriented execution

Code signing forces attackers to develop fully ROP payloads

DEP/NX only require a ROP stage to allocate new
executable memory and copy shellcode into it

JIT support in Safari reduces ROP requirements to a stage

Sandboxing

Security Concerns
Can an exploited app or malicious third-party
app...

Access or modify data belonging to other
applications?

Access or modify potentially sensitive user
information?

Break out of the sandbox and rootkit iOS?

Sandboxing in iOS
Based on same core technologies as Mac OS X sandbox

See Dion’s “The Apple Sandbox” from BHDC 2011 for
more information on internals

Modified his tools to decompile iOS 4.3 profiles

iOS only supports static built-in profiles

Process’ sandbox profile is determined by seatbelt-
profiles entitlement

Sandbox Kernel Extension

Installs MAC Hooks on all secured operations

MAC hooks evaluate a binary decision tree to
make access determination

Sandbox profiles consist of the set of decision
trees defined for each defined operation with
conditional filters based on requested resource

i.e. does file name match this regex?

Built-in Sandbox Profiles

Background daemons: accessoryd, apsd,
dataaccessd, iapd, mDNSResponder, etc.

Built-in Apps: MobileMail, MobileSafari,
MobileSMS, Stocks, YouTube, etc.

Third-party Apps: container and container2
(iBooks)

Third-Party Applications

Assigned a dedicated portion of the file system
(“container” or “application home directory”) each
time it is installed

Can a rogue application escape the sandbox and
read other applications’ data or modify the device
firmware?

App Home Directory
Subdirectory Description

<AppName>.app/ The signed bundle containing the application code and static
data

Documents/ App-specific user-created data files that may be shared with
the user’s desktop through iTunes’s “File Sharing” features

Library/ Application support files

Library/Preferences/ Application-specific preference files

Library/Caches/ App-specific data that should persist across successive
launches of the application but not needed to be backed up

tmp/ Temporary files that do not need to persist across successive
launches of the application

Container Profile
See whitepaper for detailed description and tarball for fully
decompiled profile

Summary:

File access is generally restricted to app’s home directory

Can read media: songs, photos, videos

Can read and write AddressBook

Some IOKit User Clients are allowed

All Mach bootstrap servers are allowed

Mach Bootstrap Servers
All Mach tasks have access to a bootstrap port to
lookup service ports for Mach RPC services

On iOS, this is handled by launchd

141 RPC servers accessible from apps

Risk of being exploited over RPC

May present risk of allowing apps to perform
unauthorized or undesirable actions

Example Servers
com.apple.UIKit.pasteboardd

com.apple.springboard

com.apple.MobileFileIntegrity

com.apple.fairplayd

com.apple.mobile.obliteration

com.apple.iTunesStore.daemon

Bottom Line
Remote exploits are most likely able to break out of sandbox by
exploiting iOS kernel or IOKit UserClients permitted by sandbox
profile

Rogue applications would need to exploit and jailbreak the
kernel to escape sandbox

Could repurpose kernel exploits from Jailbreaks

Apple’s review will likely catch this

OTA app distribution bypasses Apple’s review (target user
interaction required)

Data Encryption

Security Concerns
What sensitive data may be compromised if a
device is lost or stolen?

What data is encrypted?

What data is protected by the passcode?

How hard is it to crack iOS passcodes?

Can they be cracked off the device?

Data Encryption

What you need to know about Data Encryption in
iOS to make informed deployment and
configuration decisions

For more internals and implementation details,
refer to excellent “iPhone Data Protection in
Depth”1 from HITB Amsterdam 2011

1http://esec-lab.sogeti.com/dotclear/public/publications/11-hitbamsterdam-iphonedataprotection.pdf

http://theiphonewiki.com/wiki/index.php?title=Incomplete_Codesign_Exploit
http://theiphonewiki.com/wiki/index.php?title=Incomplete_Codesign_Exploit

Encryption Layers
Entire filesystem is encrypted using block-based encryption with File System
Key

FSK is stored on the flash, encrypted using key derived from UID Key

Each file has a unique encryption key stored in an extended attribute,
protected by Class Key

Class Keys are stored in the System KeyBag

Some Class Keys are protected by a key derived from the user’s passcode
(Passcode Key)

Certain Class Keys are also protected by the device-specific UID Key that is
embedded in hardware and inaccessible to code running on CPU

Data Protection API
Applications must specifically mark files on the
filesystem and Keychain items with a Protection
Class in order for them receive greater protection

Files and Keychain items can be made
inaccessible when the device is locked
(protected by Passcode Key)

Keychain items can be made non-migratable to
other devices (protected by UID Key)

Data Protection
Coverage
In iOS 4, DP is only used by the built-in Mail app

Protects all mail messages, attachments, and indexes

Protects passwords for IMAP, SMTP servers

Protected items are only accessible when device is unlocked

Exchange ActiveSync passwords are accessible always to
preserve remote wipe functionality

DP is also used for automatic UI screenshots generated when
user hits the Home Button.

Attacking Passcode
With knowledge of passcode, you can decrypt the data protected
by iOS Data Protection

Increasing incorrect passcode delay and forced device wipe after
too many incorrect guesses are enforced by UI

Springboard -> MobileKeyBag Framework -> AppleKeyStore
IOKit UserClient -> AppleKeyStore Kernel Extension

On a jailbroken device, you can guess passcodes directly using the
MKB Framework or AppleKeyStore IOKit User Client

Jailbreak device using BootROM exploit, install SSH bundle,
restart, and log in via SSH over USBMUX

Passcode Key
Passcode Key is derived using PBKDF2 using AES
with the Device Key as the hashing function

Cannot derive key off of the device that created
it unless you can extract the UID Key from the
hardware

Iteration count of PBKDF2 is tuned to hardware
speed

Roughly 9.18 guesses/second on iPhone4

Worst-Case Passcode
Guessing Time (iPhone4)

Passcode Length Complexity Time

4 Numeric 18 minutes

4 Alphanumeric 51 hours

6 Alphanumeric 8 years

8 Alphanumeric 13 thousand years

8 Alphanumeric,
Complex 2 million years

Assuming 26 lowercase letters + 10 digits + 34 complex characters = 70 chars

Bottom Line
6-character alphanumeric passcodes are probably sufficient

Unless attacker can extract UID Key from hardware

Lack of thorough Data Protection coverage is a serious issue

Wait to see what iOS 5 covers

Audit third-party apps for Data Protection usage

iPad2 and later have no public Boot ROM exploits, making
attacks on lost devices much more difficult and unlikely

Conclusion

Findings
Third-party applications without PIE support won’t get full ASLR and
are easier to exploit, especially if they have an embedded web browser

In-House Distribution Certificates and Provisioning Profiles allow their
apps to run on all devices, Enterprise Developers should protect them

Attackers could steal them and use OTA distribution and social
engineering to bypass Apple’s AppStore review

As of iOS 4.3, Safari’s dynamic-codesigning entitlement makes
browser exploits require a ROP stage, not full ROP

All 140+ iOS Mach RPC servers are allowed through sandbox profile,
may allow apps to perform undesirable actions

Findings
Although filesystem is encrypted with block-level
encryption, exploiting the device’s BootROM and
booting jailbroken can be used to read the data

In iOS 4, Data Protection only protects Mail
messages and passwords (and screenshots) with
user’s passcode

While passcode must be cracked on-device, default
simple passcodes are brute-force cracked in less
than 20 minutes

iOS vs. Android/BlackBerry

How does iOS security compare to Android and
BlackBerry?

iOS Data Protection not nearly as thorough as
BlackBerry’s Content Protection

BlackBerry’s browser is based on same WebKit as
iOS and Android browsers, but has no sandbox (see
PWN2OWN 2011)

Android has no ASLR or NX, significantly weaker app
isolation, and root can load kernel modules

Unique to iOS

Dynamic Code Signing Enforcement

Stronger defense against remote native code
injection than DEP/NX/W^X

Kernel is secured against user mode code

Even the superuser (root) has to exploit the
kernel in order to run kernel mode code

On Jailbreaking
Modern jailbreaks require multiple exploits to defeat the layered
protections in iOS

1 BootROM exploit required for tethered jailbreak

1 BootROM, 1 Incomplete Code Signing, and 1 Kernel exploit
required for untethered jailbreak

1 Safari, 1 Kernel exploit required for remote temporary jailbreak

1 Safari, 1 Kernel, 1 Incomplete Code Signing exploit for remote
untethered jailbreak (i.e. JailbreakMe)

Jailbreaking essentially reduces iOS security to level of Android

Attacks You Should
Care Most About
Lost/stolen device

How well is iOS and third-party app data protected?

Repurposed jailbreak exploits

JailbreakMe PDF attacks via e-mail or web

Stolen Enterprise In-House Distribution Certificate and
social engineering OTA app links

Apps containing kernel exploit from JB

Hardware Advice
iPhone 3G and earlier shouldn’t be allowed

No longer supported by iOS

No device encryption support

Permanently jailbroken via Boot ROM exploits

iPad 2 has no public Boot ROM exploits, making it
safer than earlier iOS devices

Bottom Line
Should you deploy iOS devices for enterprise use?

Wait for iOS 5, hopefully DP API is more thorough

Audit any apps w/ enterprise data for Data Protection API usage
or poor use of custom cryptography

Prefer iPad2 and to-be-released iPhone because they don’t have
known BootROM exploits

Use an MDM product and apply security policy to all devices

Don’t let users jailbreak the devices or else you may as well just
give them Android devices

One more thing...

One more thing...
hobby

One more thing...
hobby
preview

Google Trends: Mac, iPhone

$99

iOS Fuzz Farm

iOS Fuzz Farm

• 4 x Apple TVs, switch, power strip = ~$500

• Totally headless, only accessible via SSH

• Perfect size for operating out of small NYC
apartments

• Nowhere near operational yet

• Need to write iOS test harness

• Some mechanism for testing GUI iOS apps

Questions?

• Final slides and whitepaper available on blog:
http://blog.trailofbits.com

• @dinodaizovi / ddz@theta44.org

http://blog.trailofbits.com
http://blog.trailofbits.com
mailto:ddz@theta44.org
mailto:ddz@theta44.org

