
OAuth
securing the insecure

Black	
 Hat	
 US	
 2011	
 	

khash kiani
khash@thinksec.com

mailto:hash@thinksec.com
mailto:hash@thinksec.com

2

 roadmap

‣ OAuth flow
‣ malicious sample applications

✴ mobile OAuth google app
✴ web-based OAuth facebook app

‣ insecure implementation
✴ flawed session management
✴ password management
✴ insecure storage of secrets

‣ summary

3

what’s OAuth?

user-centric scheme
user controls authorization

user

AIG
Token

FM
Token

Twitter
Token

Twitter
Token

4

actors:
resource owner (user)
resource consumer (client)
resource provider (server)

tokens:
consumer credentials
request token
access token

5

authorization flow

 1. client app authentication
	

 2. get request token: POST oauth/request_token
	

 3. authenticate user: GET oauth/authorize
	

 4. get access token: POST oauth/access_token
	

6

building malicious OAuth clients
(native and web apps)

7

password theft with Google client
(a native iOS mobile app)

8

OAuthSampleTouch mobile Google app

‣ download
‣ compile
‣ run

‣ edit controller

9

 modify the UIWebViewDelegate’s:
webView:shouldStartLoadWithRequest:navigationType

callback method
to intercept the
login page prior
to sending the
post request

10

OAuth process with
an embedded view

user authenticates and
grants permission

11

output the Google credentials

12

“but it looked so official!”

OAuth provides the user with a false sense
of safety in the authentication workflow

13

recommendations
(mobile apps)

‣ client application developers: keep authentication
 outside the app and inside the browser

‣ users: do not trust clients that do not use a trusted
 neutral application such as safari to manage server auth

‣ protocol designers: stricter policies around
 authenticating clients to server. better browser API support

14

fortune telling facebook app
(a browser-based web application)

a social engineering oauth application to establish user trust

15

lure the victim to use your app
domain apps.facebook.com is trustworthy!

phish

easy!

16

https://apps.facebook.com/redevilfortune/

17

access
scope

https://apps.facebook.com/redevilfortune/
https://apps.facebook.com/redevilfortune/

70%
* source: core impact client-side phishing campaign

18

read the
inbox

messages

query private user messages

19

link to execute
ajax post and
carry our CSRF

build the trap to aid exploitation

20

“but it looked so official!”

OAuth provides the user with a false sense
of safety in the authentication workflow

21

Dear Facebook,
what is the business need for a web

application to read my private messages?

22

Insecure Implementation
23

flawed session management

24

 Avon selects twitterfeed to publish something

25

- Avon is redirected to twitter’s authorization endpoint
- Avon enters his twitter credentials and grants access

26

- Avon is redirected back to complete the feed
- Avon signs out of twitterfeed and walks away

27

what about his twitter
session?

28

29

 risks

‣ unattended session
‣ no session timeout
‣ user remains logged in

30

what can go wrong?

31

32

33

problem, meet solution

‣ invalidate server session
‣ short-lived access token
‣ no auto-processing

34

a better approach

35

can you really change
your password?

36

37

38

change password = old password still works!

39

solution

‣ ensure compromised credentials cannot be used
‣ revoke tokens upon password changes

 - results from facebook access token leakage to 3rd party apps

40

insecure storage of secrets
(consumer credentials)

41

1.	
 	
 	
 public	
 class	
 TwitterClient	
 {	
 	

2.	
 	
 	
 	
 	
 	
 	

3.	
 	
 	
 	
 	
 	
 	
 private	
 static	
 String	
 key	
 =	
 "qSkJuxxxxxxxx76A";	
 	

4.	
 	
 	
 	
 	
 	
 	
 private	
 static	
 String	
 secret	
 =	
 "Bs738xxxxxxxxxxxxxxZe9EhXw";	

42

server-side

‣ isolate the credentials
‣ protect the integrity

43

native clients

‣ native mobile app
‣ desktop apps

44

 “... if twitter uses the client secret in installed applications for
anything other than gathering statistics, well, they should
reconsider.”

“So forget about using the consumer credentials for anything
other than somewhat reliable statistics.”

 - e. hammer lahav

45

how about these use cases:

‣ fulfill specific business requirements
- server must keep track of all clients

‣ prevent phishing attacks

46

popular implementations

(native apps)

 1. omit the client credentials entirely
 2. embed in the client app itself

47

threat
 (with embedded client credentials)

‣ compromised credentials

48

open source clients

‣ source code
‣ resource bundle

49

the not so secret consumer secrets

50

51

closed source clients

‣ binary extraction on android oauth client:
‣ astro file mgr to copy the client app
‣ poke around
‣ classes.dex
‣ “dexdump classes.dex

52

compromised credentials

 impact:

‣ key rotation and kill switch
‣ not meeting business requirements
‣ anonymous publication by competition
‣ susceptible to phishing attacks

53

alternative mitigation

‣ a deviated approach with automated provisioning

54

alternate flow
(mobile)

‣ authenticate user to client’s web server
‣ call home to get device id
‣ store device id locally
‣ proceed with oauth flow to get request token
‣ validate device id to authenticate client
‣ proceed with the flow to grant access token

55

56

conclusion
- defeating password anti-pattern

- trusting native mobile apps
- don’t trust the logo
- don’t trust the domain

- session & pswd management

- client authentication
- consumer credentials

- implementation, not protocol

57

take-away:
use it when it makes sense!

58

please turn in your completed feedback
form at the registration desk

THANK YOU!

khash@thinksec.com

59

mailto:khash@thinksec.com
mailto:khash@thinksec.com

