
© Copyright 2010

Heap Spray Detection with Heap

Inspector
Aaron LeMasters

MANDIANT

© Copyright 2010

Please complete the Speaker

Feedback Surveys!

© Copyright 2010

 About me

 Purpose of this talk

 Goals

− What is an application storing? How is it storing it?

− Visualization

 Current research

− EMET, STRIDE, Nozzle, HeapLocker

Introduction

© Copyright 2010

 We will focus on two primary use cases:

− Detect/visualize heap sprays

− Search for PII

 Other uses

 Reverse memory structures

 Debug heap anomalies

 Vulnerability research / exploit dev (future)

What can I do with this tool?

© Copyright 2010

 View heap allocations in a spatial arrangement

 View heap contents in an embedded hex viewer

 Search for byte patterns, regexes and strings

 Export heap chunks to use in other tools

 It comes in two forms:

− Command line exe/dll

− C# user interface

Features

© Copyright 2010

 A process has a default heap and one or more private

heaps:

− Heaps are made up of one or more segments

− Segments are made up of one or more chunks

− Chunks have the data you care about

 This is all you need to know to understand Heap

Inspector

− For an in-depth discussion of heap internals, see Chris

Valacek’s talk

Basic Windows Heap Mechanics

© Copyright 2010

 A heap spray is a technique to stage shellcode

 Meant to increase the reliability of exploiting memory

corruption vulnerability

 Most commonly seen in applications that host JIT

engines (flash, java, etc), such as web browsers and

document readers (Adobe, MS Word)

− CVE-2011-0609, CVE-2010-1297, CVE-2010-3973, CVE-

2010-3971, just to name a few

 Heap spraying just allocates the same block of data

hundreds of times

− We use this to our advantage

How does a heap spray work?

© Copyright 2010

Heap Inspector User Interface

© Copyright 2010

 Groups heap chunks across all heaps that have the

same CRC32 (same color = same hash)

 Useful for spotting heap sprays

Visualization of successful heap spray in Adobe Reader (CVE-2010-2883)

The heap hash map
Looking for heap sprays

© Copyright 2010

 Overlay regular expression matches on the heap map

The heap data map
Looking for PII

© Copyright 2010

 String (unicode/ascii), byte and regex searching

 This looks like some sort of data structure…

Searching

© Copyright 2010

 C# application injects a C++ DLL using standard DLL

injection

− Also supported: LdrLoadDll and Reflective Injection [3]

 DLL acts as a server, receives messages from C# app

and sends back data over named pipe

− C#/Interop

− Uses standard Win32 heap walking API’s

− Raw parsing partially implemented

 Why Inject?

− To get access to private heaps!

How does it work?

© Copyright 2010

 DLL injection inherent caveats:
− Instability due to synchronization issues (single-threaded to multi-threaded – thread

safe?)

− Instability due to deadlock conditions: accessing/locking heaps in use

− Upon loading, entry point of every other DLL in process is called (side effects??)

 Sandboxed processes (ahem, Chrome):
− Hooking

− Least-privilege, isolation (job object, different desktop)

− Injection solution: Use Stephen Fewer’s reflective DLL injection technique
 Problem: least privilege token –can’t do anything!

 Other issues
− Injecting into a service

− Session separation introduced in Vista
 Use NtCreateThreadEx

− Universal injection across sessions
 Terminal services (XP), Vista session separation

− Wow64/Stub32

− Access violations: use SEH instead of C++ exception handling

− Smss.exe – doesn’t fully map in kernel32.dll – AV = BSOD!

Caveats and Technical challenges

© Copyright 2010

DEMO: Extracting shellcode from

a successful heap spray

© Copyright 2010

 Debugger

− Requires skillz – OS/heap internals knowledge

 Instrumentation

− Requires code analysis, disassembly, heuristics

− Overhead

− False +/-

 Memory analysis

− Requires OS internals knowledge

− Data explosion

− Smear

− Stale

But I can already do that …

© Copyright 2010

 Real-time detection of heap-spray

 Vulnerability research applications

− Real-time heap modification

− Taint analysis through “heap stalking”

 Memory images as input

− Will take advantage of raw method

Future Direction

© Copyright 2010

 Chris Valasek, Understanding the Low Fragmentation Heap,
http://illmatics.com/Understanding_the_LFH.pdf

 Microsoft, CreateRemoteThread, http://msdn.microsoft.com/en-
us/library/ms682437%28VS.85%29.aspx

 Stephen Fewer, Reflective DLL Injection,
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf

 Didier Stevens, HeapLocker,
http://blog.didierstevens.com/2010/12/06/heaplocker/

 Microsoft Research, Nozzle,
http://research.microsoft.com/apps/pubs/default.aspx?id=76528

 Microsoft Research, Enhanced Mitigation Experience Toolkit v2.0,
http://www.microsoft.com/download/en/details.aspx?id=5419

 Akritidis, et al, STRIDE: Polymorphic Sled Detection Through Instruction
Sequence Analysis,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.5094&rep=rep1&
type=pdf

 Bania, JIT Spraying and Mitigations,
http://www.kryptoslogic.com/download/JIT_Mitigations.pdf

References / Further reading

http://illmatics.com/Understanding_the_LFH.pdf
http://msdn.microsoft.com/en-us/library/ms682437(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682437(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682437(VS.85).aspx
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
http://blog.didierstevens.com/2010/12/06/heaplocker/
http://research.microsoft.com/apps/pubs/default.aspx?id=76528
http://www.microsoft.com/download/en/details.aspx?id=5419
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.5094&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.5094&rep=rep1&type=pdf
http://www.kryptoslogic.com/download/JIT_Mitigations.pdf

© Copyright 2010

MANDIANT is hiring!

© Copyright 2010

Please complete the Speaker

Feedback Surveys!

© Copyright 2010

Questions?

Aaron.LeMasters@Mandiant.com

@lilhoser

mailto:Aaron.LeMasters@Mandiant.com

