L &

Recurity Labs

Vulnerability Extrapolation
‘Give me more bugs like that’ ~
Blackhat Briefings 2011

3

"h.x. 4 4 A aa oo ‘ ~ — "“I‘ |‘d‘.d"

Fabian ‘fabs’ Yamaguchi
Recurity Labs GmbH, Germany

Agenda

= Patterns you find when auditing code

= Exploiting these patterns:
Vulnerability Extrapolation

» Using machine learning to get there

= A method to assist iIn manual code audits
based on this idea

* The method in practice
» A detailed showcase

Exploring a new code base

» Like an area of mathematics you don't yet know.

* |t's not completely different from the mathematics
you already know.

= But there are secrets specific to this area:
* Vocabulary

= Reoccurring patterns in argumentation
= Weird tricks used in proofs

» Understanding the specifics of the area makes it
a lot easier to reason about it.

It’s also a lot like DOOM

. ¥ v . . E : ‘ / worew T

J 4 ‘ e

* Dropped into some
code-base, no idea
where you are

= Only a handgun to
begin with

= Secrets of this
particular WAD
matter! 4
= Where do | get et e
weapons around SRS Gul .-
here? ‘ S

» Effective ways of
Killing these
monsters”?

“It’s all the same”-attitude

- » Al l’ J /I' v - 4. /) P " A) L4 ',’ v »

o b

= “|_et’s not be too romantic about what we do:

* Things tend to break in the same way over
and over again.”

» Think of how you automatically stop scrolling
whenever you see sprintf.

» Or those lists of “dangerous functions” used by
old-school tools like RATS, ITS4 and flawfinder.

| Dre

ak for sprintf()

The method employs “heuristics”.

Or think of the success of fuzzers

1.1,,‘| "' L’ J/r . ek & /"'- / o ""‘alnm‘l/." \»)

* Fuzzers use patterns
In input that will get
many targets very
upset. Often very
effective.

* Why? Because
things tend to break
in the same way over
and over again. “Try giving it a lemon.”

... Or Taint Propagation

b a@m P P AU' "‘_,‘-"“ # luu——‘,' w J")A‘MH/I" N

= Example: Monitor flow
of integer from read to
malloc, detect unsafe
operations and monitor
iIf integer is ever
checked.

= APl usage patterns,
we've seen blow up
again and again_ Taint Sinks

Taint Sources

Operations

Overfished

‘1:-‘. w Y L' J/r - e /‘v. b / v -"/\“‘mll/" W,

= These methods are
too generic.

* They find what
people screw up In
most applications.

» And that’s also what
most people have
looked at in the
application.

Specifics matter!

e B TP LY Au"‘w"‘“’ ropss—" SN J’t)4wul" b

* For software that people
actually care about, you
can be sure all the low-
hanging fruit is gone.

= “grep’ing for memcpy”: not
much of a strategy
anymore.

= Why? Because that's what
the last 100 people did
before you came along.

It is no longer optional to learn about the specifics of
the code base!

Which is why manual
audits are so successful

" . '| ‘}0 L’ J/’ pr b A / Aobad / ’ "‘/\““““/"' L)

» Because auditors find
the weak programming
patterns used in this
application.

= Find the interfaces that

are causing trouble in
this application!

= Find the secrets In Seriously, h
. eriously, there was a
this .\WAD! ghostbusters.WAD)

An example
Poppler (CVE-2009-1§607)

: -

static cairo_surface_t *
create_surface_from_thumbnail_data (guchar *data,
gint width,

gint height,
gint rowstride)
{

guchar *cairo_pixels;
cairo_surface_t *surface;

static cairo_user_data_key_t key;
int j;

cairo_pixels = (guchar *)g_malloc (4 * width * height);
surface = cairo_image_surface_create_for_data ((unsigned char *)
cairo_ pixels,
CAIRO_FORMAT_RGB24,
width, height, 4 * width);
cairo_surface_set user_data (surface, &key, cairo_pixels,
(cairo_destroy_func_t)g_free);

[..]

return surface;

by

Do you see the bugs?

- Tew ¥ L} J/’ - —“/a,.. / v ~’6/w“‘_11/""

* The integer overflow is obvious.

* The missing check, not so much. You
need to know the API to see this!

[* This function always returns a valid pointer, but it will return a

* pointer to a "nil" surface in the case of an error such as out of

* memory or an invalid stride value. In case of invalid stride value
* the error status of the returned surface will be

* %CAIRO_STATUS INVALID STRIDE. You can use

* cairo_surface_status() to check for this.

*

Evince Bug, silently fixed.

5 L ’ J, L y

Evince
static cairo_surface_t *

djvu_document_render (EvDocument ~ *document, Simply a document viewer
EvRenderContext *rc)
{
[--]

#ifdef HAVE_CAIRO_FORMAT_STRIDE_FOR_WIDTH
rowstride = cairo_format_stride_for_width (CAIRO_FORMAT_RGB24,
page_width);
#else
rowstride = page_width * 4;
#endif
pixels = (gchar *) g_malloc (page_height * rowstride);
surface = cairo_image_surface_create_for_data ((guchar *)pixels,
CAIRO_FORMAT_RGB24,
page_width,
page_height,
rowstride);
cairo_surface_set_user_data (surface, &key,
pixels, (cairo_destroy_func_t)g_free);
[..]

return surface;

version 2.28.1

A simple case

* This case Is simple, because the API-
symbols, which lead to these two bugs
were exactly the same.

= But does that have to be the case?

Another Example: libTIFF
CVE-2006-3459 | CVE-2010-2067

static int
TIFFFetchShortPair(TIFF* tif, TIFFDirEntry* dir)

{

switch (dir->tdir_type) {

case TIFF_BYTE:

case TIFF_SBYTE:
{
uint8 v[4];
return TIFFFetchByteArray(tif, dir, v)

&& TIFFSetField(tif, dir->tdir_tag, v[0], v[1]1);

}

case TIFF_SHORT:
case TIFF_SSHORT:
{
uintl6 v[2];
return TIFFFetchShortArray(tif, dir, v)
&& TIFFSetField(tif, dir->tdir_tag, v[0], v[1]1);
}

default:
return 0;

Another Example: libTIFF
CVE-2006-3459 | CVE-2010- 2067

static int
TIFFFetchSubjectDistance(TIFE* tif, TIFFDirEntry* dlr\

static int {
TIFFFetchShortPair(TIFF* tif, Tgﬁﬁ@g@qwj]dlir)
{ float v;

switch (dir->tdir _type) %nt ok = 0
case TIFF_HYTE:

case TIFF_9BYTE: . . .
{ if (TIFFFetchData(tif, dir, (char *)I)

uint8 J[41; && cvtRational(tif, dir, I[0], I[1], &V)) {

returr| TIFFFetchByteAtray(tif, dir, v)

&& TIFFSetFiela(Xi: ditupediattagDx I MEEFF; means that we have infinife
¥ * distance. Indicate that with a negative floating point

case TIFF_3HORT: * SubjectDistance value.

case TIFF_3SHORT: «,

{ _ . o .
uintL6|V[21; ok = TIFFSetField(tif, dir->tdir_tag,

return TIFFFetchShortArray(tif, dir, VSI[O] 1= OxFFFFFFFF) 2 v 1 -=v);
&& TIFFSetField(tif, dir=->tdir_tag, v[0], v[1]);
¥

default: return ok;
returr};

LibTIFF: Bug Analysis

!

* TIFFFetchShortArray is actually a wrapper
around TIFFFetchData.

= The two are pretty much synonyms.

» These functions are part of an API local to
ibTIFF.

= Badly designed API: the amount of data to be
copied into the buffer is passed in one of the
fields of the dir-structure and not explicitly!

= Developers missed this in both cases and it's
hard to blame them.

The times of “grep ‘memcpy’ ./*.c” may be
over. But that does not mean patterns of
API| use that lead to vulnerabilities no
longer exist!

Vulnerability Extrapolation

= Given a function known to be vulnerable,
determine functions similar to this one in
terms of application-specific APl usage
patterns.

» Why? Because these are most likely to contain
another incarnation of this bug.

» Why? Because developers tend to make the same
mistakes over and over and over again.

» Especially if motivated by a bad API.
* Vulnerability Extrapolation exploits the

information leak you get every time a
vulnerability is disclosed!

What needs to be done

= \Ve need to be able to determine how
“similar” functions are in terms of these
programming patterns.

* We need to find a way to extract these
programming patterns from a code-base in
the first place.

= How do we do that?

Similarity - A decomposition

u‘.')“‘".}-i JJ"/', ""‘lbhr—v,I

Signal + Noise

1.5

1.0

0.5 |-

0.0 |-

460 500

Decomposition into
shape and rotation:
If rotation is just a
detail, these are
pretty similar.

~ /") L ahbdudd Alll‘ bt

In Face-Recognition,
faces are decomposed

Signal Processing: Decomposition into

components of different frequencies: Noise is
suspected to be of high frequency while the
signal is of lower frequency.

into weighted sums of
commonly found patterns
+ a noise-term.

Signal and Noise

» Checking if two things are similar always
requires a decomposition into

“The big picture” and or
“signal” and

* [n general, if the big picture is the same
and only the detalls differ, things are
pretty similar.

» What's signal and what's noise depends
on the problem you're dealing with.

""-.}~A*“ " J.,’

Decomposing Code

static int
IFFFetchSubjectDistance(TIFF* tif, TIFFDirEntry* dir)

{

4

detail

uint32 I[2];
float v;
int ok = 0O;

if (TIFFFetchData(tif, dir,
&& cvtRational(tif, dir,
/*

—

/

/ Big picture

har *)Il)
[0]1, I[1], &v))

ahd . P4 Sesaa

V. "‘)l‘“,“llll‘ Ty

Function = Dominant Pattern + Noise

* XXX: Numerator OxFEFFFFFF means that we have infinite

* distance. Indicate that with a negative floating point

* SubjectDistance vgue.
*/

ok = TIFFSetField(tif, dir->tdir_tag,

(I[O] '= OxFFFFFFFF) ? v :

>

-Vv);

returnok; ® Once you know a code-base, you start to
decompose automatically:

= Dominant patterns of APl use: Some FetchData-
Function followed by TIFFSetField

= Symbols occurring in this function but not
necessarily in any of the other functions
employing the pattern

Think of it as
‘Zooming out’

| .
“41-)4,&".J4 JJ’/., ""‘wur_,,' » 2P T T jibnad v

Increasing level of detail/frequency

-
+x3

Q

IIFFF:I:‘E‘E;:IIZ::;:DSGnce(TlFF* tif, TIFFDIrEntry* dir) D e c re as i n g d o m i n a n ce of p atte rn
s T Usage +19 Usage +a3
L, Pattern 2| pattern :

Linear approximation of each function by the most dominant APl usage
patterns of the code-base it is contained in!

Extracting dominant patterns

r' v - . " » »
l’ J o X s v e) o Aon 4 ' "

How do we identify the most dominant API
usage patterns of a code-base?

r |

How do other fields identify dominant
patterns in their data?

Principal Component Analysis
in Face Recognition

* Images have a natural
vectorial
representation.

* Each image can be
Interpreted as a
$numberOfPixels-
dimensional vector.

» Directions in this
space correspond to
dependencies among
pixels.

Brightness of first pixel

... of second pixel

... of last pixel

A set of images can
be represented by a
set of vectors.

Images with two pixels

Brightness of Pixel 2

»

Brightness of Pixel 1

The most dominant pattern: Either both pixels light up, or both don't.

As opposed to, for example, either pixel 1 lights up and pixel 2 doesn’t and
vice versa.

Geometrically, this corresponds to the direction where the data varies most.

In other words, if you were to project onto the red vector, you'd best describe
the data with a single dimension.

We can make direct use of this!

» Directions of highest variance correspond
to dominant patterns in the data.

* These correspond to the eigenvectors of
the data covariance matrix.

= A singular value decomposition can be
used to obtain these.

» |_et’'s make use of this to determine
dominant APl usage patterns!

Mapping code to
the vector space

funcl((int) b);

{ char aCuint b) { "

func2(); ..

Code base of (1) Extraction of (2) Embedding in
functions API symbols

vector space

» Describe functions by the APIl-symbols they contain.
= API-symbols are extracted using a fuzzy parser.
» Each APIl-symbol is associated with a dimension.

func1(){
int *ptr = malloc(64);
fetchArray(pb, ptr);
}

malloc
print f

I—} int

fetchArray

()

1)

Approximation of functions by most
dominant APl usage patterns!

PCA implemented by truncated Singular
Value Decomposition.

Directions of

strepyfl 0 1 . 1 \'

foo 0 1 0 T
| S P U/Z vr

w m s 1 () .« o ()

Representation
Strength of pattern of functions in
on diagonal terms of these

dominant

patterns

A closer look at the decomposition

’) ‘»‘ A 4 oy e 4 ;

Data Matrix (Contains all function-vectors)
\ Strength of pattern

X
M=~USVT = /

T
—uy — ocp 0 ... O — v, —

Each column of U /<_u2_>\ /0 oy ... \ (<_,U2%\
is a dominant ,
pattern. : L R :

v \}—um —>) \0 0o ... ad) K<—v\x| —>)
Each row is a representation Representation of functions in terms
of an APIl-symbol in terms of of the most dominant patterns

the most dominant patterns

"“.)4,&".}4 J..”

char aCuint b) {]
funcl((int) b);
func2(); ..

Code base of
functions

In summary

o ""‘ubur—,,'

char |

int |

uint |

func2 I

funcl I

(1) Extraction of

APl symbols

(3) Identification of
APl usage patterns

~ /’t) .‘M4)Hl yva——

int

(2) Embedding in
vector space

Known vulnerability

(o]
© Candidates

(4) Assisted vulnerability

discovery

A toy problem to gain an intuition
Group 1

void guiFuncl(GtkWidget *widget) ‘éOid guiFunc2(GtkWidget *widget)
{ int j; gui_make_window(widget);
14

: . : GtkButton *myButton;
gui_make_window(widget); buttonl = gui_new_bL’Jtton();

GtkButton *_bUttOﬂ; button2 = gui_new_button();
button = gui_new_button(); button3 = gui_new_button();
gui_show_window();
} for(inti = 10; i!=1i; i++)
do_gui_stuff();

Group2

void netFuncl()

{

int fd;

inti =0;

struct sockaddr_in in;

fd = socket(arguments);
recv(fd, moreArguments);

if(condition){

i++;

send(fd, i, arg);
bs
send(fd, i, arg);
close(fd);

void netFunc2()

{

int fd;

struct sockaddr_in in;
hostent host;

fd = socket(arguments);
recv(fd, moreArguments);
gethostbyname(host)

if(condition){

inti =0;

i++;

send(fd, i, arg);
>
close(fd);

Group 3

void listFuncl(int elem)

{

GList myList;

if(! list_check(myList)){
do_list_error_stuff();
return;

}
list_add(myList, elem);

void listFunc2(int elem)
{
GList myList;
if(! list_check(myList))<{
do_list_error_stuff();
return;
>
list_remove(myList, elem);
list_delete(myList);

0.3

@
Core API guiFuncl,
guiFunc2
0.2}
X
_ GtkWidget,
do_gui_stuff, gui_make_window,
gui_show_window GtkButton
01l netFuncl . ’
gui_new_button
® netFunc2 hostent
> gethostbyname
struct sockaddr_in X ik
0.0l socket, recv, X
send, close
01 ><Iist_add
x list_remove,
list_delete
Occurs in this context
-0.2 :
but does not constitute U, ([=l
the pattern do_list_error_stuff
_ | netFunc2 | netFuncl | listFunc2 | listFuncl | guiFuncl guiFuan\
+0.8788 | +0.3468 -0.3156 -0.3256 -0.3428 -0.3428 ® |istFuncl

Table 5.1: Cosine Similarity between function and term hostent.

@® listFunc2

0.4 03 0.2 0.1 0.0

0.1 0.2

0.3

We get a lot more than just a
method to extrapolate!

» \We get a projection of all functions and
APl symbols into a space where...

= ... APl symbols constituting a pattern are
close to one another.

= ... functions using the same pattern are close
to one another.

= .. functions are close to the dominant API
symbols of their most dominant patterns.

= You can browse code in this space.

But visualization isn’t the way to go
bases ;)

for real

Pty a_ieun

AVSubtitle YUV_TO_RGB1

init_pass2 OGGPage

AVStream DVMuxContext

.nst AVOption

GET_UTF16

av_set_string3

av_i2int bytestream_put_bel6

inerge_context_after_encode avpicture_alloc

(pic_found)

AVPacketList w_c

TgqContext .
‘onst AVMetadataTag

st MpegEncCohtext
bs_get_v
°Packed

BFIContext
unsetenyPK3_GET_NEXT_NIBBightBpsContext * const .

flush_buffer D\I’Ext\
AnmCom FilterParams

JargaContext *
—_— S

PHULHRW url_fsize

intSample

PMAXUB

\"
DPRINTF_STARWVInteger edge.filter ver

ff_dcadsp_init get_sbits_long

avcodec_find_encoder avy paasae color

JhreadContext

IVIPicConfig
JMatroskaAttachement

uint8_texpl

ff_sine_window_init AVFilterPicRef

.

® * ,::'avf Iter_draw_slice h7

yvorbis_analysis_wrote NELLY_BUF_LEN

url_is_streamed

DVDSubParse|
N
@f_vorbiscon@ent_w rite

AVFormatParameters

It turns out...

= ... tables don't look as fancy but are a lot
more useful. At least if the visualization
you're doing is as bare-bones as the one
just shown.

» | et’'s browse FFmpeg.

DecodingContexts: Synonyms

'
f

" DeCOderS In FFmpeg ?CSUre EivizgiodeContext
form a group of o e
functions related by o057, | dcincomert
API use. ng gggbzggjtlaerSContext*const

. 0.86, | SgiState * const
= Each decoder has its DT e
own decoding-context. 0.64. | release_buffer
081 BlnkCQntext * const
» They are thus ‘noise’- .55, | 5pen PECConton
0.80, | MsrleContext
terms to be found at a 0.77, | TMVContext
. . 0.77, | DVWWideoContext
similar angle. o || el

0.76, [ff i free buffers
0.75, | VgaContext
0.74, | KmvcContext *const

String-APIl in FFMpeg

Score

Function Name

Symbol Score
char 69.12
const char 46.98
strcmp 33.82
snprintf 19.17
exit 16.78
strtol 15.93
fprintf 12.23
strlen 10.47
get byte 8.28
BytelOContext 7.31
av__strlcpy 6.61
HT TP Context 6.55
enum AVMedia Type 6.11
FF__ARRAY ELEMS 5.55
av_log 5.44
AVFilterGraph 5.13
strncmp 5.05
av_ strilcatf 4.94
ADPCMChannelStatus 476

0.92
0.92
0.92
0.90
0.60
0.89
0.87
0.84
0.84
0.82
0.82
0.80
0.80
0.80
0.80
0.80
0.79
0.79
0.79
0.79
0.79
0.79
0.78
0.78

~ ——

matroskadec.c matroska convert tag
sdp.c sdp get address

avfiltergraph.c avfilter graph get filter
rtsp.c rtsp_parse transport

utils.c find__info _tag

rtsp.c make_setup_request

movenc.c mov__write string metadata
nutdec.c set disposition bits
tests/rotozoom.c init _demo
libavutil/error.c av_ strerror

opt.c hexchar2int

httpauth.c choose qop

pnm.c ff_pnm decode header
ffserver.c socket open listen

rdt.c ff_rdt subscribe rule

ffserver.c http _send too busy reply
audioconvert.c avcodec sample fmt string
sdp.c sdp_write header

ffmpeg.c opt vstats

httpauth.c handle digest update
httpauth.c handle digest params
pnm.c pnm__get

httpauth.c handle basic params

sdp.c sdp _write address

ralal

Functions similar to function -
Vulnerability Extrapolation

= Take a function that used to be vulnerable
as an input.

= Measure distances to other functions to
determine those functions, which are most
similar.

" Let’s try that for FFmpeg.

Original bug: CVE-2010-3429

» L o y)) v

' 4 oy

[static int flic_decode_frame_8BPP(AVCodecContext *avctx,

void *data, int *data_size,
const uint8_t *buf, int buf_size) Decoder-Pattern:
{ [.]

pixels = s->frame.data[0]; [..] Usually a variable of
case FLI_DELTA: [

y_ptr = 0; ‘ ’ type AvCodecContext

compressed_lines = AV_RL16(&buf[stream_ptr]);

stream_ptr += 2; AV_RL*-FU nctions

while (compressed_lines > 0) {
line_packets = AV_RL16(&buf[stream_ptr]); used as sources.

stream_ptr += 2;

if ((line_packets & 0xC000) == 0xC000) { Lot’s of primitive types
I/./ line skip opcode with specified width
ine_packets = =line_packets;
y_ptr += line_packets * s->frame.linesize[0]; used.

} else if ((line_packets & 0xC000) == 0x4000) {
.1 Use of memcpy,

} else if ((line_packets & 0xC000) == 0x8000) {
// "last byte" opcode memset, etc.

pixels[y_ptr + s->frame.linesize[0]-1] = line_packets & 0Oxff;

unchecked index,
— Write to arbitrary
location in memory.

Extrapolation

A

l) ')

* The closest match
contained the same —
vulnerability but it was
fixed when the initial
function was fixed.

* [You cannot expect
this decoder to be the
optimal prototype for
the decoder class, so
yes, it will find non-
decoders.] 0-Bug

0.648321
0.646872
0.641871
0.641642
0.634922

) ey
Score 1 | Function Name
1.000000 | flic_decode frame 8BPP (libavcodec/flicvideo.c)
0.964096 | flic_decode frame 15 16BPP (libavcodec/flicvideo.c)
0.826979 | Iz_unpack (libavcodec/vmdav.c)
0.803331 | decode frame (libavcodec/Icldec.c)
0.79670Q, | raw _encode (libavcodec/rawenc.c)
0.756951 | vmdvideo decode init (libavcodec/vmdav.c)
0723750 }md_decode (libavcodec/vmdav.c)
0.702356 Jaasc decode frame (libavcodec/aasc.c)

flic _decode init (libavcodec/flicvideo.c)

decode format80 (libavcodec/vqavideo.c)
targa_decode rle (libavcodec/targa.c)

adpcm _decode _init (libavcodec/adpcm.c)

decode frame (libavcodec/zmbv.c)

decode frame (libavcodec/8bps.c)
msrle_decode 8 16 24 32 (libavcodec/msrledec.c)
wmavoice _decode init (libavcodec/wmavoice.c)
get quant (libavcodec/nuv.c)

MP3lame _encode frame (libavcodec/libmp3lame.c)
mpegts write section (libavformat/mpegtsenc.c)

tgv_decode frame (libavcodec/eatgv.c)

Decoder-Pattern:

Usually a variable of
type AvCodecContext

AV_RL*-Functions
used as sources.

Lot’s of primitive types
with specified width
used.

Use of memcpy,
memset, etc.

Again an unchecked
index into the pixel-
buffer!

From 0-Bug to O-day

e 8P Ty L DN S J_,’ \ A 4 e B ,’;)..u‘,‘)"‘ i Y

Demonstrate that this...

@ | >‘MPlayer — (% ?E

... can be turned into this.
— @

Q | > ‘ MPlayer
N Shell

Writing a binary exploit in 2011

= TN ey L' , - "‘/J,.. / v "‘/‘otaml'/" W, ,

'

= Writing binary exploits in 2011 is an adventure you
do not want to miss.
» ASLR and DEP have arrived to stay.

* The heap is hardened.

» Every bug is kind of different right now and new generic
techniques are just emerging.

But when you look deep into
the code and use it
creatively, you can get it
done ©

static void vmd_dec

[...]

int frame_x, fram
int frame_width, f
int dp_size;

frame_x = AV_R
frame_y = AV_R!
frame_width =
frame_height =

if ((frame_width
(frame_x || frai

s->x_off = fra
s->y_off = fra
}
frame_x == s=>x_|
frame_y == s=>y_{

if (frame_x || fra
(frame_height !

memcpy(s->fra
s->avctx->h
}

dp_size = s=>fr}
pp = &s->prev
switch (meth)

Our Bug v.s. ASLR

!

= Due to ASLR, the start-

address of the heap will
change from run to run.

= The relative address of ol Heap
the pixel-buffer within the |

heap will not be affected
by ASLR. —> reap
= As long as we choose an
offset that remains within
the boundaries of the
heap, ASLR does not hurt

us yet.

run n run n+1

What this bug gives us

* The ability to write up to 65535 bytes of
data specified by us to a location relative
to the pixel-buffer.

= Constraint: Offsets in the interval
[-65535; -1] cannot be specified.

What do we overwrite?

)
J ') ' , w

static int vmdvideo_decode_frame(AVCodecContext *avctx,
void *data, int *data_size,

AVPacket *avpkt) AVCTX Structure
{

[..]

vmd_decode(s);

/* make the palette available on the way out */ Function Pointer:
memcpy(s->frame.data[1], s->palette, PALETTE_COUNT * 4] release_buffer

/* shuffle frames */
FFSWAP(AVFrame, s->frame, s=>prev_frame);
if (s->frame.data[0])

avctx->release_buffer(avctx, &s->frame); ':/6 Pixel-Buffer
y return buf_size; —— /' Write-Position
Overwrite the release buffer pointer!

Of course, that’s in the interval of offsets we can’'t use ®

The state changing aspect

4

)’ vy l’ J/Il v / 4. /) p g ~) ‘1',”

o Ao

static void vmd_decode(VmdVideoContext *s)

{

sta void imd_decode(VmdVideoContext *s)
{

mtefxrfam x, frame_y;

||;|,t framefmdth frame_height;

rame_width, frame_height;
it dpigtzest;

frame_width = AV_RL16(&s->buf[10]) - frame_x + 1;
frame_height = AV_RL16(&s->buf[12]) - frame_y + 1;

firameanx- »aAthRhl 6(&s >buf[6])p ==

(frame x |Tframe_ y

rame.y = AV_RL16(&s->buf[8]);
ff'am‘ef'aw’rdth = AV_RL16(&s=->buf[10]) - frame_x + 1;
ffﬁ‘émé 2Height = AV_RL16(&s->buf[12]) - frame_y + 1;

if (frame_x || frame_y || (frame_width != s->avctx->width) ||
tframe height 1= s->avctx->heig

n(cgfl;gmgm\g\ggjthedatam s->avctx->width && frame_height == s->avctx->height)

&& s->avctx->height * s->frame.linesize[0]);

ii-(frame_x || frame_y)) {

/* originally UnpackFrame in VAG's
pb = p
meth *pb++;

dp = -? é-datg(ggrame yf!‘:armM;+ frame_x];
dp S _}Zvﬁ?:pﬁ:ﬁ raﬁfam¥;linesize[o] + frame_x];

swntch (meth) {

case 2

frame' <Xremog D Off;

memcpy€dp, pb, frame_wid

framg:; n:ve“.illf:-slz&],>y Off

[+= s->prev_frame.linesize[0];
3]

YO

1

¥
1

First frame

*“J'“""‘r‘u,“”“" b b P o P J“b)aMu"‘mﬂ—-ﬂ‘

* We exploit the bug using two
video frames.

» First frame: Put the decoder
In a state where s->x_off
contains our desired sign-
iInverted offset.

| First frame

State 1:
s->x_off = $offset

l Second frame

State 2:
frame_x = -s->x_off

avctx=“echo ‘PWNED:"
release buffer=%ret

Second frame

= Second frame: Makes the ¢ First frame

decoder set frame_x to —
s>x_off and thus we add a

Bﬁ?fgyve offset to the pixel- l Second frame
= At this negative offset, we f State 2:)
. = -Q->
overwrite avctx: "ame_X___s X_0
* First few 100 bytes: Shell- avctx="echo ‘PWNED:;”
Commands. release buffer=$ret

» | ast 4 byte: Address of
<system>-call.

Now we can overwrite the pointer!

b
'

" SpeCIfy the Slgn-lnverted Write-Position
desired offset in the first —{| AAAAAAAAAAAAAAAAAA
frame’s frame_x and do not AAAAAAAAAAAAAAAAAA
trigger memory corruption. o
The offset will be saved in s- AAAAAAAAAAAAAAAAAA

=z AAAAAAAAAAAAAAAAAA
>x Off. @ AAAAAAAAAAAAAAAAAA
- S AAAAAAAAAAAAAAAAAA

* In the second frame, set O AAAAAAAAAAAAAAAAAA
frame_xto 0 so that frame_x e
will be set to —S->X_Off. AAAA

= Trigger memory corruption realease buffer=AAAA

with this second frame.

: Pixel-Buffer

Now, where do we jump?

= We're in luck: the base image of mplayer
IS not compiled as position-independent
code.

»= A small portion of code will be at constant
addresses despite ASLR!

What about this? ©

0x080cc5c2: mov %eax, (%esp)
0x080cc5ch: call <system@plt>

When shellcode contains

shell-commands

/

When the call is made,
%eax has just been used
as an auxiliary register to
hold a pointer to avctx.

avctx will be interpreted
as a string of commands
for /bin/sh!

Lightly spray the heap
with avctx-structures
accordingly.

Of course, this is not
100% stable but works
remarkably well ©

19510 dAIesaN

4

Write-Position

AVCTX Structure
echo “PWNED”; Is -la;

realease_buffer=0x80cc5c2 | |

AVCTX Structure
echo “PWNED”; Is -la;

realease_buffer=0x80cc5c2

AVCTX Structure
echo “PWNED”; Is -la;

realease_buffer=0x80cc5¢2 | |

AVCTX Structure
echo “PWNED”; Is -la;

realease_buffer=0x80cc5c2 |

N

>| Pixel-Buffer

DEMO

Evaluation: How good does
it work in general?

= Of course, if no further similar bug exists in
the code-base, this will not work.

» Second: We did not look for the same bug
but for the same usage-pattern.

» That does not mean the pattern has to be
used wrong in the cases we find as well.

* We just know the things to look for with
this pattern.

What we can show

* |[f we do API-discovery by hand, we can
check whether the method would have
found these groups as well.

» Manually extracted code from the Linux
kernel and FFmpeg was used to evaluate
the method.

Evaluation

funcl

int

(2) Embedding in
vector space

(3) Identification of
APl usage patterns

Known vulnerability

O Candidates

(4) Assisted vulnerability
discovery

keyboard network decoders

demuxers sound

0

10

20

30

40 |

decoders network keyboard sound

demuxers

sound demuxers

Before PCA

decoders network keyhoard

, 1.0 1.0
»
i 38 :
ad | 0.9 B 0.9
3
.
. . 0.8 pis 0.8
<
\ o
2 0.7
| " w
{ =
0.6
B
3
o 0.5
>
2
0.4
T
103 . 10.3
]
19
0.2 40.2
§
{01 3 {01
£
3
0 10 20 30 40 = 0 10 20 30 40 =0

After PCA

Summary

* There are lots of patterns in your bugs.

* There’s an info-leak when you disclose a
bug: You're providing a sample of what
went wrong in this specific code-base.

» Fixing a bug without performing proper
extrapolation may be contra-productive

* You may be disclosing related 0-day!

Where to go from here

= .. for this method in particular.
= This will probably work well on binaries.

» While PCA was the vanilla algorithm to try
out, there are better representations: NMF
looks a lot more promising.

» We're currently investigating whether
structural features can improve the
method.

Some ideas

= ... and for security in general.

= “earn” context-free grammars from input
to generate fuzzers.

» Cluster fuzz-traces to group input that hits
the same bug.

= More robust OS- and rate-limiter detection
in port-scanning.

» Heap-chunk usage patterns to identify how
APIs interact at runtime?

Final words

Whenever you encounter patterns in
security research or need to make a fuzzy
decision, you may want to give machine
learning a shot.

It can be beneficial and refreshing to find
ways of applying research from other
fields to your problems.

Questions?

i

r | . : /
l' J s A / v 4 Lk

i Fabian Yamaguchi

(/ Vulnerability Researcher
_

fabs@recurity-labs.com
Recurity Lahs

Recurity Labs GmbH, Berlin, Germany
http://www.recurity-labs.com

