
Vulnerability Extrapolation
‘Give me more bugs like that’

Blackhat Briefings 2011

Fabian ‘fabs’ Yamaguchi
Recurity Labs GmbH, Germany

Agenda

§  Patterns you find when auditing code
§  Exploiting these patterns:

 Vulnerability Extrapolation
§  Using machine learning to get there
§  A method to assist in manual code audits

based on this idea
§  The method in practice
§  A detailed showcase

Exploring a new code base

§  Like an area of mathematics you don’t yet know.
§  It’s not completely different from the mathematics

you already know.
§  But there are secrets specific to this area:

§  Vocabulary
§  Reoccurring patterns in argumentation
§  Weird tricks used in proofs

§  Understanding the specifics of the area makes it
a lot easier to reason about it.

It’s also a lot like DOOM

§  Dropped into some
code-base, no idea
where you are

§  Only a handgun to
begin with

§  Secrets of this
particular .WAD
matter!
§  Where do I get

weapons around
here?

§  Effective ways of
killing these
monsters?

“It’s all the same”-attitude

§  “Let’s not be too romantic about what we do:
§  Things tend to break in the same way over

and over again.”
§  Think of how you automatically stop scrolling

whenever you see sprintf.
§  Or those lists of “dangerous functions” used by

old-school tools like RATS, ITS4 and flawfinder.

The method employs “heuristics”.

Or think of the success of fuzzers

§  Fuzzers use patterns
in input that will get
many targets very
upset. Often very
effective.

§  Why? Because
things tend to break
in the same way over
and over again. “Try giving it a lemon.”

… or Taint Propagation

§  Example: Monitor flow
of integer from read to
malloc, detect unsafe
operations and monitor
if integer is ever
checked.

§  API usage patterns,
we’ve seen blow up
again and again.

Taint Sources

Taint Sinks

Operations

Overfished

§  These methods are
too generic.

§  They find what
people screw up in
most applications.

§  And that’s also what
most people have
looked at in the
application.

Specifics matter!

§  For software that people
actually care about, you
can be sure all the low-
hanging fruit is gone.

§  “grep’ing for memcpy”: not
much of a strategy
anymore.

§  Why? Because that’s what
the last 100 people did
before you came along.

It is no longer optional to learn about the specifics of
the code base!

Which is why manual
audits are so successful

§  Because auditors find
the weak programming
patterns used in this
application.

§  Find the interfaces that
are causing trouble in
this application!

§  Find the secrets in
this .WAD! (Seriously, there was a

ghostbusters.WAD)

An example
Poppler (CVE-2009-3607)

static cairo_surface_t *
create_surface_from_thumbnail_data (guchar *data,
 gint width,
 gint height,
 gint rowstride)
{
 guchar *cairo_pixels;
 cairo_surface_t *surface;
 static cairo_user_data_key_t key;
 int j;

 cairo_pixels = (guchar *)g_malloc (4 * width * height);
 surface = cairo_image_surface_create_for_data ((unsigned char *)
cairo_pixels,
 CAIRO_FORMAT_RGB24,
 width, height, 4 * width);
 cairo_surface_set_user_data (surface, &key, cairo_pixels,
(cairo_destroy_func_t)g_free);

 [..]
 return surface;
}

Do you see the bugs?

§  The integer overflow is obvious.
§  The missing check, not so much. You

need to know the API to see this!

/* This function always returns a valid pointer, but it will return a
 * pointer to a "nil" surface in the case of an error such as out of
 * memory or an invalid stride value. In case of invalid stride value
 * the error status of the returned surface will be
 * %CAIRO_STATUS_INVALID_STRIDE. You can use
 * cairo_surface_status() to check for this.
 */

Evince Bug, silently fixed.

static cairo_surface_t *
djvu_document_render (EvDocument *document,
 EvRenderContext *rc)
{
 [..]
#ifdef HAVE_CAIRO_FORMAT_STRIDE_FOR_WIDTH
 rowstride = cairo_format_stride_for_width (CAIRO_FORMAT_RGB24,
page_width);
#else
 rowstride = page_width * 4;
#endif
 pixels = (gchar *) g_malloc (page_height * rowstride);
 surface = cairo_image_surface_create_for_data ((guchar *)pixels,
 CAIRO_FORMAT_RGB24,
 page_width,
 page_height,
 rowstride);
 cairo_surface_set_user_data (surface, &key,
 pixels, (cairo_destroy_func_t)g_free);
 [..]
 return surface;
} version 2.28.1

A simple case

§  This case is simple, because the API-
symbols, which lead to these two bugs
were exactly the same.

§  But does that have to be the case?

Another Example: libTIFF
CVE-2006-3459 | CVE-2010-2067

static int
TIFFFetchShortPair(TIFF* tif, TIFFDirEntry* dir)
{

 switch (dir->tdir_type) {
 case TIFF_BYTE:
 case TIFF_SBYTE:
 {
 uint8 v[4];
 return TIFFFetchByteArray(tif, dir, v)
 && TIFFSetField(tif, dir->tdir_tag, v[0], v[1]);
 }
 case TIFF_SHORT:
 case TIFF_SSHORT:
 {
 uint16 v[2];
 return TIFFFetchShortArray(tif, dir, v)
 && TIFFSetField(tif, dir->tdir_tag, v[0], v[1]);
 }
 default:
 return 0;
 }
}

Another Example: libTIFF
CVE-2006-3459 | CVE-2010-2067

static int
TIFFFetchShortPair(TIFF* tif, TIFFDirEntry* dir)
{

 switch (dir->tdir_type) {
 case TIFF_BYTE:
 case TIFF_SBYTE:
 {
 uint8 v[4];
 return TIFFFetchByteArray(tif, dir, v)
 && TIFFSetField(tif, dir->tdir_tag, v[0], v[1]);
 }
 case TIFF_SHORT:
 case TIFF_SSHORT:
 {
 uint16 v[2];
 return TIFFFetchShortArray(tif, dir, v)
 && TIFFSetField(tif, dir->tdir_tag, v[0], v[1]);
 }
 default:
 return 0;
 }
}

static int
TIFFFetchSubjectDistance(TIFF* tif, TIFFDirEntry* dir)
{
 uint32 l[2];
 float v;
 int ok = 0;

 if (TIFFFetchData(tif, dir, (char *)l)
 && cvtRational(tif, dir, l[0], l[1], &v)) {
 /*
 * XXX: Numerator 0xFFFFFFFF means that we have infinite
 * distance. Indicate that with a negative floating point
 * SubjectDistance value.
 */
 ok = TIFFSetField(tif, dir->tdir_tag,
 (l[0] != 0xFFFFFFFF) ? v : -v);
 }

 return ok;
}

LibTIFF: Bug Analysis

§  TIFFFetchShortArray is actually a wrapper
around TIFFFetchData.

§  The two are pretty much synonyms.
§  These functions are part of an API local to

libTIFF.
§  Badly designed API: the amount of data to be

copied into the buffer is passed in one of the
fields of the dir-structure and not explicitly!

§  Developers missed this in both cases and it’s
hard to blame them.

 The times of “grep ‘memcpy’ ./*.c” may be
over. But that does not mean patterns of
API use that lead to vulnerabilities no
longer exist!

Vulnerability Extrapolation

§  Given a function known to be vulnerable,
determine functions similar to this one in
terms of application-specific API usage
patterns.
§  Why? Because these are most likely to contain

another incarnation of this bug.
§  Why? Because developers tend to make the same

mistakes over and over and over again.
§  Especially if motivated by a bad API.

§  Vulnerability Extrapolation exploits the
information leak you get every time a
vulnerability is disclosed!

What needs to be done

§ We need to be able to determine how
“similar” functions are in terms of these
programming patterns.

§ We need to find a way to extract these
programming patterns from a code-base in
the first place.

§  How do we do that?

Similarity – A decomposition

Signal Processing: Decomposition into
components of different frequencies: Noise is
suspected to be of high frequency while the
signal is of lower frequency.

Decomposition into
shape and rotation:
If rotation is just a
detail, these are
pretty similar. In Face-Recognition,

faces are decomposed
into weighted sums of
commonly found patterns
+ a noise-term.

Signal and Noise

§  Checking if two things are similar always
requires a decomposition into
 “The big picture” and “the details” or
“signal” and “noise”.

§  In general, if the big picture is the same
and only the details differ, things are
pretty similar.

§ What’s signal and what’s noise depends
on the problem you’re dealing with.

Decomposing Code

static int
TIFFFetchSubjectDistance(TIFF* tif, TIFFDirEntry* dir)
{
 uint32 l[2];
 float v;
 int ok = 0;

 if (TIFFFetchData(tif, dir, (char *)l)
 && cvtRational(tif, dir, l[0], l[1], &v)) {
 /*
 * XXX: Numerator 0xFFFFFFFF means that we have infinite
 * distance. Indicate that with a negative floating point
 * SubjectDistance value.
 */
 ok = TIFFSetField(tif, dir->tdir_tag,
 (l[0] != 0xFFFFFFFF) ? v : -v);
 }

 return ok;
}

detail

Big picture

§  Once you know a code-base, you start to
decompose automatically:
§  Dominant patterns of API use: Some FetchData-

Function followed by TIFFSetField
§  Symbols occurring in this function but not

necessarily in any of the other functions
employing the pattern

Function = Dominant Pattern + Noise

Think of it as
‘zooming out’

Decreasing dominance of pattern

Increasing level of detail/frequency

static int
TIFFFetchSubjectDistance(TIFF* tif, TIFFDirEntry* dir)
{
 uint32 l[2];
 float v;
 int ok = 0;

 if (TIFFFetchData(tif, dir, (char *)l)
 && cvtRational(tif, dir, l[0], l[1], &v)) {
 /*
 * XXX: Numerator 0xFFFFFFFF means that we have infinite
 * distance. Indicate that with a negative floating point
 * SubjectDistance value.
 */
 ok = TIFFSetField(tif, dir->tdir_tag,
 (l[0] != 0xFFFFFFFF) ? v : -v);
 }

 return ok;
}

Usage
Pattern

Usage
Pattern

Usage
Pattern

Linear approximation of each function by the most dominant API usage
patterns of the code-base it is contained in!

Extracting dominant patterns

 How do we identify the most dominant API
usage patterns of a code-base?

 How do other fields identify dominant
patterns in their data?

Principal Component Analysis
in Face Recognition

§  Images have a natural
vectorial
representation.

§  Each image can be
interpreted as a
$numberOfPixels-
dimensional vector.

§  Directions in this
space correspond to
dependencies among
pixels.

Brightness of first pixel

… of second pixel

… of last pixel

A set of images can
be represented by a
set of vectors.

Images with two pixels

Brightness of Pixel 1

Brightness of Pixel 2

§  The most dominant pattern: Either both pixels light up, or both don’t.
§  As opposed to, for example, either pixel 1 lights up and pixel 2 doesn’t and

vice versa.
§  Geometrically, this corresponds to the direction where the data varies most.
§  In other words, if you were to project onto the red vector, you’d best describe

the data with a single dimension.

We can make direct use of this!

§  Directions of highest variance correspond
to dominant patterns in the data.

§  These correspond to the eigenvectors of
the data covariance matrix.

§  A singular value decomposition can be
used to obtain these.

§  Let’s make use of this to determine
dominant API usage patterns!

Mapping code to
the vector space

§  Describe functions by the API-symbols they contain.
§  API-symbols are extracted using a fuzzy parser.
§  Each API-symbol is associated with a dimension.

func1(){
 int *ptr = malloc(64);
 fetchArray(pb, ptr);

}

Approximation of functions by most
dominant API usage patterns!

PCA implemented by truncated Singular
Value Decomposition.

Directions of
highest variance

Strength of pattern
on diagonal

Representation
of functions in
terms of these
dominant
patterns

A closer look at the decomposition

Data Matrix (Contains all function-vectors)

Representation of functions in terms
of the most dominant patterns

Each row is a representation
of an API-symbol in terms of
the most dominant patterns

Each column of U
is a dominant
pattern.

Strength of pattern

In summary

A toy problem to gain an intuition
Group 1

void guiFunc1(GtkWidget *widget)
{
 int j;
 gui_make_window(widget);
 GtkButton *button;
 button = gui_new_button();
 gui_show_window();
}

void guiFunc2(GtkWidget *widget)
{
 gui_make_window(widget);
 GtkButton *myButton;
 button1 = gui_new_button();
 button2 = gui_new_button();
 button3 = gui_new_button();

 for(int i = 10; i != i; i++)
 do_gui_stuff();
}

Group2

void netFunc1()
{
 int fd;
 int i = 0;
 struct sockaddr_in in;
 fd = socket(arguments);
 recv(fd, moreArguments);

 if(condition){
 i++;
 send(fd, i, arg);
 }
 send(fd, i, arg);
 close(fd);
}

void netFunc2()
{
 int fd;
 struct sockaddr_in in;
 hostent host;
 fd = socket(arguments);
 recv(fd, moreArguments);
 gethostbyname(host)

 if(condition){
 int i = 0;
 i++;
 send(fd, i, arg);
 }
 close(fd);
}

Group 3

void listFunc1(int elem)
{
 GList myList;
 if(! list_check(myList)){
 do_list_error_stuff();
 return;
 }
 list_add(myList, elem);
}

void listFunc2(int elem)
{
 GList myList;
 if(! list_check(myList)){
 do_list_error_stuff();
 return;
 }
 list_remove(myList, elem);
 list_delete(myList);
}

Projection onto the first
two principal components Core API

Occurs in this context
but does not constitute
the pattern

Functions

We get a lot more than just a
method to extrapolate!

§ We get a projection of all functions and
API symbols into a space where…
§ … API symbols constituting a pattern are

close to one another.
§ … functions using the same pattern are close

to one another.
§ … functions are close to the dominant API

symbols of their most dominant patterns.
§  You can browse code in this space.

But visualization isn’t the way to go
for real code-bases ;)

It turns out…

§ … tables don’t look as fancy but are a lot
more useful. At least if the visualization
you’re doing is as bare-bones as the one
just shown.

§  Let’s browse FFmpeg.

DecodingContexts: Synonyms

foo

§  Decoders in FFmpeg
form a group of
functions related by
API use.

§  Each decoder has its
own decoding-context.

§  They are thus ‘noise’-
terms to be found at a
similar angle.

foo

String-API in FFMpeg

foo

Functions similar to function -
Vulnerability Extrapolation

§  Take a function that used to be vulnerable
as an input.

§ Measure distances to other functions to
determine those functions, which are most
similar.

§  Let’s try that for FFmpeg.

Original bug: CVE-2010-3429

static int flic_decode_frame_8BPP(AVCodecContext *avctx,
 void *data, int *data_size,
 const uint8_t *buf, int buf_size)
{ [..]
 pixels = s->frame.data[0]; [..]
 case FLI_DELTA:
 y_ptr = 0;
 compressed_lines = AV_RL16(&buf[stream_ptr]);
 stream_ptr += 2;
 while (compressed_lines > 0) {
 line_packets = AV_RL16(&buf[stream_ptr]);
 stream_ptr += 2;
 if ((line_packets & 0xC000) == 0xC000) {
 // line skip opcode
 line_packets = -line_packets;
 y_ptr += line_packets * s->frame.linesize[0];
 } else if ((line_packets & 0xC000) == 0x4000) {

[..]
 } else if ((line_packets & 0xC000) == 0x8000) {
 // "last byte" opcode
 pixels[y_ptr + s->frame.linesize[0]-1] = line_packets & 0xff;
 } else {
 [..]
 y_ptr += s->frame.linesize[0];
 }
 }
 break;

[..]
}

unchecked index,
Write to arbitrary
location in memory.

Decoder-Pattern:

Usually a variable of
type AvCodecContext

AV_RL*-Functions
used as sources.

Lot’s of primitive types
with specified width
used.

Use of memcpy,
memset, etc.

Extrapolation

§  The closest match
contained the same
vulnerability but it was
fixed when the initial
function was fixed.

§  [You cannot expect
this decoder to be the
optimal prototype for
the decoder class, so
yes, it will find non-
decoders.] 0-Bug

0-Bug

static void vmd_decode(VmdVideoContext *s)
{
 [...]
 int frame_x, frame_y;
 int frame_width, frame_height;
 int dp_size;
 frame_x = AV_RL16(&s->buf[6]);
 frame_y = AV_RL16(&s->buf[8]);
 frame_width = AV_RL16(&s->buf[10]) - frame_x + 1;
 frame_height = AV_RL16(&s->buf[12]) - frame_y + 1;
 [...]
 if (s->size >= 0) {
 /* originally UnpackFrame in VAG's code */
 pb = p;
 meth = *pb++;
 [...]
 dp = &s->frame.data[0][frame_y * s->frame.linesize[0] + frame_x];
 dp_size = s->frame.linesize[0] * s->avctx->height;
 pp = &s->prev_frame.data[0][frame_y * s->prev_frame.linesize[0] + frame_x];
 switch (meth) {
 [...]

case 2:
 for (i = 0; i < frame_height; i++) {
 memcpy(dp, pb, frame_width);
 pb += frame_width;
 dp += s->frame.linesize[0];
 pp += s->prev_frame.linesize[0];
 }
 break;
 [...]
 }
 }
}

Decoder-Pattern:

Usually a variable of
type AvCodecContext

AV_RL*-Functions
used as sources.

Lot’s of primitive types
with specified width
used.

Use of memcpy,
memset, etc.

Again an unchecked
index into the pixel-
buffer!

From 0-Bug to 0-day

Demonstrate that this…

… can be turned into this.

Writing a binary exploit in 2011

§  Writing binary exploits in 2011 is an adventure you
do not want to miss.
§  ASLR and DEP have arrived to stay.
§  The heap is hardened.
§  Every bug is kind of different right now and new generic

techniques are just emerging.

But when you look deep into
the code and use it
creatively, you can get it
done J

The memory corruption aspect

static void vmd_decode(VmdVideoContext *s)
{
 [...]
 int frame_x, frame_y;
 int frame_width, frame_height;
 int dp_size;

 frame_x = AV_RL16(&s->buf[6]);
 frame_y = AV_RL16(&s->buf[8]);
 frame_width = AV_RL16(&s->buf[10]) - frame_x + 1;
 frame_height = AV_RL16(&s->buf[12]) - frame_y + 1;

 if ((frame_width == s->avctx->width && frame_height == s->avctx->height) &&
 (frame_x || frame_y)) {

 s->x_off = frame_x;
 s->y_off = frame_y;
 }
 frame_x -= s->x_off;
 frame_y -= s->y_off;

 if (frame_x || frame_y || (frame_width != s->avctx->width) ||
 (frame_height != s->avctx->height)) {

 memcpy(s->frame.data[0], s->prev_frame.data[0],
 s->avctx->height * s->frame.linesize[0]);
 }
 [...]
 if (s->size >= 0) {
 /* originally UnpackFrame in VAG's code */
 pb = p;
 meth = *pb++;
 [...]
 dp = &s->frame.data[0][frame_y * s->frame.linesize[0] + frame_x];
 dp_size = s->frame.linesize[0] * s->avctx->height;
 pp = &s->prev_frame.data[0][frame_y * s->prev_frame.linesize[0] + frame_x];
 switch (meth) {
 [...]

case 2:
 for (i = 0; i < frame_height; i++) {
 memcpy(dp, pb, frame_width);
 pb += frame_width;
 dp += s->frame.linesize[0];
 pp += s->prev_frame.linesize[0];
 }
 break;
 [...]
 }
 }
}

static void vmd_decode(VmdVideoContext *s)
{
 [...]
 int frame_x, frame_y;
 int frame_width, frame_height;
 int dp_size;
 frame_x = AV_RL16(&s->buf[6]);
 frame_y = AV_RL16(&s->buf[8]);
 frame_width = AV_RL16(&s->buf[10]) - frame_x + 1;
 frame_height = AV_RL16(&s->buf[12]) - frame_y + 1;
 [...]
 if (s->size >= 0) {
 /* originally UnpackFrame in VAG's code */
 pb = p;
 meth = *pb++;
 [...]
 dp = &s->frame.data[0][frame_y * s->frame.linesize[0] + frame_x];
 dp_size = s->frame.linesize[0] * s->avctx->height;
 pp = &s->prev_frame.data[0][frame_y * s->prev_frame.linesize[0] + frame_x];
 switch (meth) {
 [...]

case 2:
 for (i = 0; i < frame_height; i++) {
 memcpy(dp, pb, frame_width);
 pb += frame_width;
 dp += s->frame.linesize[0];
 pp += s->prev_frame.linesize[0];
 }
 break;
 [...]
 }
 }
}

Our Bug v.s. ASLR

§  Due to ASLR, the start-
address of the heap will
change from run to run.

§  The relative address of
the pixel-buffer within the
heap will not be affected
by ASLR.

§  As long as we choose an
offset that remains within
the boundaries of the
heap, ASLR does not hurt
us yet.

run n run n+1

What this bug gives us

§  The ability to write up to 65535 bytes of
data specified by us to a location relative
to the pixel-buffer.

§  Constraint: Offsets in the interval
 [-65535; -1] cannot be specified.

What do we overwrite?

static int vmdvideo_decode_frame(AVCodecContext *avctx,
 void *data, int *data_size,
 AVPacket *avpkt)
{
 [..]
 vmd_decode(s);

 /* make the palette available on the way out */
 memcpy(s->frame.data[1], s->palette, PALETTE_COUNT * 4);

 /* shuffle frames */
 FFSWAP(AVFrame, s->frame, s->prev_frame);
 if (s->frame.data[0])
 avctx->release_buffer(avctx, &s->frame);

 [..]
 return buf_size;
}

Overwrite the release_buffer pointer!
Of course, that’s in the interval of offsets we can’t use L

The state changing aspect

static void vmd_decode(VmdVideoContext *s)
{
 [...]
 int frame_x, frame_y;
 int frame_width, frame_height;
 int dp_size;

 frame_x = AV_RL16(&s->buf[6]);
 frame_y = AV_RL16(&s->buf[8]);
 frame_width = AV_RL16(&s->buf[10]) - frame_x + 1;
 frame_height = AV_RL16(&s->buf[12]) - frame_y + 1;

 if ((frame_width == s->avctx->width && frame_height == s->avctx->height) &&
 (frame_x || frame_y)) {

 s->x_off = frame_x;
 s->y_off = frame_y;
 }
 frame_x -= s->x_off;
 frame_y -= s->y_off;

 if (frame_x || frame_y || (frame_width != s->avctx->width) ||
 (frame_height != s->avctx->height)) {

 memcpy(s->frame.data[0], s->prev_frame.data[0],
 s->avctx->height * s->frame.linesize[0]);
 }
 [...]
 if (s->size >= 0) {
 /* originally UnpackFrame in VAG's code */
 pb = p;
 meth = *pb++;
 [...]
 dp = &s->frame.data[0][frame_y * s->frame.linesize[0] + frame_x];
 dp_size = s->frame.linesize[0] * s->avctx->height;
 pp = &s->prev_frame.data[0][frame_y * s->prev_frame.linesize[0] + frame_x];
 switch (meth) {
 [...]

case 2:
 for (i = 0; i < frame_height; i++) {
 memcpy(dp, pb, frame_width);

 pb += frame_width;
 dp += s->frame.linesize[0];
 pp += s->prev_frame.linesize[0];
 }
 break;
 [...]
 }
 }
}

static void vmd_decode(VmdVideoContext *s)
{
 [...]
 int frame_x, frame_y;
 int frame_width, frame_height;
 int dp_size;

 frame_x = AV_RL16(&s->buf[6]);
 frame_y = AV_RL16(&s->buf[8]);
 frame_width = AV_RL16(&s->buf[10]) - frame_x + 1;
 frame_height = AV_RL16(&s->buf[12]) - frame_y + 1;

 if ((frame_width == s->avctx->width && frame_height == s->avctx->height)
&&
 (frame_x || frame_y)) {

 s->x_off = frame_x;
 s->y_off = frame_y;
 }
 frame_x -= s->x_off;
 frame_y -= s->y_off;
 [...]
}

First frame

§ We exploit the bug using two
video frames.

§  First frame: Put the decoder
in a state where s->x_off
contains our desired sign-
inverted offset.

State 1:
s->x_off = $offset

State 2:
frame_x = -s->x_off

…
avctx=“echo ‘PWNED;’”

release_buffer=$ret

First frame

Second frame

Second frame

§  Second frame: Makes the
decoder set frame_x to –
s>x_off and thus we add a
negative offset to the pixel-
buffer.

§  At this negative offset, we
overwrite avctx:
§  First few 100 bytes: Shell-

Commands.
§  Last 4 byte: Address of

<system>-call.

State 1:
s->x_off = $offset

State 2:
frame_x = -s->x_off

…
avctx=“echo ‘PWNED;’”

release_buffer=$ret

First frame

Second frame

Now we can overwrite the pointer!

§  Specify the sign-inverted
desired offset in the first
frame’s frame_x and do not
trigger memory corruption.
The offset will be saved in s-
>x_off.

§  In the second frame, set
frame_x to 0 so that frame_x
will be set to –s->x_off.

§  Trigger memory corruption
with this second frame.

Now, where do we jump?

§ We’re in luck: the base image of mplayer
is not compiled as position-independent
code.

§  A small portion of code will be at constant
addresses despite ASLR!

What about this? J
0x080cc5c2: mov %eax, (%esp)
0x080cc5c5: call <system@plt>

When shellcode contains
shell-commands

§  When the call is made,
%eax has just been used
as an auxiliary register to
hold a pointer to avctx.

§  avctx will be interpreted
as a string of commands
for /bin/sh!

§  Lightly spray the heap
with avctx-structures
accordingly.

§  Of course, this is not
100% stable but works
remarkably well J

DEMO

Evaluation: How good does
it work in general?

§  Of course, if no further similar bug exists in
the code-base, this will not work.

§  Second: We did not look for the same bug
but for the same usage-pattern.

§  That does not mean the pattern has to be
used wrong in the cases we find as well.

§ We just know the things to look for with
this pattern.

What we can show

§  If we do API-discovery by hand, we can
check whether the method would have
found these groups as well.

§ Manually extracted code from the Linux
kernel and FFmpeg was used to evaluate
the method.

Evaluation

Before PCA After PCA

Summary

§  There are lots of patterns in your bugs.
§  There’s an info-leak when you disclose a

bug: You’re providing a sample of what
went wrong in this specific code-base.

§  Fixing a bug without performing proper
extrapolation may be contra-productive

§  You may be disclosing related 0-day!

Where to go from here

§ … for this method in particular.
§  This will probably work well on binaries.
§ While PCA was the vanilla algorithm to try

out, there are better representations: NMF
looks a lot more promising.

§ We’re currently investigating whether
structural features can improve the
method.

Some ideas

§ … and for security in general.
§  “Learn” context-free grammars from input

to generate fuzzers.
§  Cluster fuzz-traces to group input that hits

the same bug.
§ More robust OS- and rate-limiter detection

in port-scanning.
§  Heap-chunk usage patterns to identify how

APIs interact at runtime?

Final words

 Whenever you encounter patterns in
security research or need to make a fuzzy
decision, you may want to give machine
learning a shot.

 It can be beneficial and refreshing to find
ways of applying research from other
fields to your problems.

Questions?

Recurity Labs GmbH, Berlin, Germany
http://www.recurity-labs.com

Fabian Yamaguchi
Vulnerability Researcher

fabs@recurity-labs.com

