
Automatically Detecting Package Clones and Inferring Security
Vulnerabilities

Silvio Cesare

Deakin University

<silvio.cesare@gmail.com>

 PhD Candidate at Deakin University, AU.

 Research interests:

 Malware detection

 Automated vulnerability detection

 Book author

 Software similarity and classification, Springer.

 http://www.springer.com/computer/security+and+cry
ptology/book/978-1-4471-2908-0

 http://www.FooCodeChu.com

http://www.springer.com/computer/security+and+cryptology/book/978-1-4471-2908-0
http://www.springer.com/computer/security+and+cryptology/book/978-1-4471-2908-0
http://www.springer.com/computer/security+and+cryptology/book/978-1-4471-2908-0
http://www.springer.com/computer/security+and+cryptology/book/978-1-4471-2908-0
http://www.springer.com/computer/security+and+cryptology/book/978-1-4471-2908-0
http://www.springer.com/computer/security+and+cryptology/book/978-1-4471-2908-0
http://www.springer.com/computer/security+and+cryptology/book/978-1-4471-2908-0
http://www.springer.com/computer/security+and+cryptology/book/978-1-4471-2908-0
http://www.springer.com/computer/security+and+cryptology/book/978-1-4471-2908-0
http://www.springer.com/computer/security+and+cryptology/book/978-1-4471-2908-0

Developers may “embed” or “clone” code

from 3rd party sources

 Static linking

 Maintaining a internal copy of a library.

 Forking a library.

 Lots of examples

 XML parsing  libxml in various programs

 Image processing  libpng in Firefox

 Networking  Open SSL in Cisco IOS

 Compression  zlib everywhere

 Linux policies generally disallow (image
below).

 It still happens.

Multiple versions of packages now exist.

 Each copy needs patches from upstream.

 Copies become insecure over time from
unapplied patches.

 Scan binaries for version strings.

Done in 2005 on mass scale for zlib in Debian

Linux.

tiffvers.h:#define TIFFLIB_VERSION_STR "LIBTIFF, Version

3.8.2\nCopyright (c) 1988-1996 Sam Leffler\nCopyright (c)

1991-1996 Silicon Graphics, Inc."

bzlib_private.h:#define BZ_VERSION "1.0.5, 10-Dec-2007"

png.h:#define PNG_HEADER_VERSION_STRING \

 " libpng version 1.2.27 - April 29, 2008\n"

 10,000 – 20,000 packages in Linux distros.

Debian tracks over 420 libraries (see below).

Most distros don’t track at all.

How many vulnerabilities are there?

How to automate?

1. Problem definition and our approach

2. Statistical classification

3. Scaling the analysis

4. Inferring security vulnerabilities

5. Implementation and evaluation

6. Discussion

7. Related work

8. Future work and conclusion

Remember to complete the Black Hat speaker feedback survey.

 Find package code re-use in sources.

 Infer vulns caused by out-of-date code .

Firefox Source

libpng Source

 Consider code re-use detection a binary

classification problem:

 Do packages A and B share code? Yes or no?

 Features for classification:

 Common filenames

 Hashes

 Fuzzy content

 Classification assigns classes to objects.

 Supervised learning.

Unsupervised learning.

object

Class 1 - Spam

Class 2 – Not Spam

?

 Feature vector 1. N_Filenames_A
2. N_Filenames_Source_A
3. N_Filenames_B
4. N_Filenames_Source_B
5. N_Common_Filenames
6. N_Common_Similar_Filenames
7. N_Common_FilenameHashes
8. N_Common_FilenameHash80
9. N_Common_ExactFilenameHash
10. N_Score_of_Common_Filename
11. N_Score_of_Common_Similar_Filename
12. N_Score_of_Common_FilenameHash
13. N_Score_of_Common_FilenameHash80
14. N_Score_of_Common_ExactFilenameHash80
15. N_Data_Common_Filenames
16. N_Data_Common_Similar_Filenames
17. N_Data_Common_FilenameHashes
18. N_Data_Common_FilenameHash80
19. N_Data_Common_ExactFilenameHash
20. N_Data_Score_of_Common_Filename
21. N_Data_Score_of_Common_Similar_Filename
22. N_Data_Score_of_Common_FilenameHash
23. N_Data_Score_of_Common_FilenameHash80
24. N_Data_Score_of_Common_ExactFilenameHash80
25. N_Common_ExactHash
26. N_Common_DataExactHash

 Source and data.

Normalize names.

expat-2.0.1/lib tla-1.3.5+dfsg/src/expat/lib/

amigaconfig.h

ascii.h ascii.h

asciitab.h asciitab.h

expat.dsp expat.dsp

expat_external.h expat_external.h

expat.h expat.h

expat_static.dsp expat_static.dsp

expatw.dsp expatw.dsp

expatw_static.dsp expatw_static.dsp

iasciitab.h iasciitab.h

internal.h internal.h

latin1tab.h latin1tab.h

libexpat.def libexpat.def

libexpatw.def libexpatw.def

macconfig.h macconfig.h

Makefile.MPW Makefile.MPW

nametab.h nametab.h

utf8tab.h utf8tab.h

winconfig.h winconfig.h

xmlparse.c xmlparse.c

xmlrole.c xmlrole.c

xmlrole.h xmlrole.h

xmltok.c xmltok.c

xmltok.h xmltok.h

xmltok_impl.c xmltok_impl.c

xmltok_impl.h xmltok_impl.h

xmltok_ns.c xmltok_ns.c

c

cpp

cxx

cc

php

inc

java

py

rb

js

pl

pm

ml

mli

lua

 Edit distance between filenames.

 Similarity >= 85%

))(),(max(

),(_
1),(

tlenslen

tsdistedit
tssimilarity 

Use fuzzy hashing (ssdeep).

Number of identical hashes.

Number of > 80% similar hashes.

Number of > 0% similar hashes.

ssdeep,1.0--blocksize:hash:hash,filename

96:KQhaGCVZGhr83h3bc0ok3892m12wzgnH5w2pw+sxNEI58:FIVkH4x73h39LH+2w+sxaD,"config.h"

96:MD9fHjsEuddrg31904l8bgx5ROg2MQZHZqpAlycowOsexbHDbk:MJwz/l2PqGqqbr2yk6pVgrwPV,"INSTALL"

96:EQOJvOl4ab3hhiNFXc4wwcweomr0cNJDBoqXjmAHKX8dEt001nfEhVIuX0dDcs:3mzpAsZpprbshfu3oujjdEN

dp21,"README"

 README filenames less important.

 libpng.c more important .

 Score filenames using ‘inverse document

frequency.’

 Sum scores of matching filenames.

}:{
log),(

dtDd

D
Dtidf




 Which similar filenames to match?

 Each matching has a cost – the filename score.

 Choose matchings to maximize sum of costs.

q
Weight(q)

p

Makefile.ca

png43.c

png.h

README

rules

Makefile

png.h

Makefile

png44.c

 Given two sets, A and T, of equal size, together with a weight function C: A × T → R. Find a
bijection f: A →T such that the cost function:

is optimal.

 Known in combinatorial optimisation as ‘the
assignment problem.’

 Solved optimally in cubic time.

 Greedy solution is faster.

 Aa
afaC))(,(

Not all features are important.

 Feature ranking.

 Subset selection.

We chose not to use it.

1. Feature1

2. Feature2

3. Feature3

1. Feature3 (0.80)

2. Feature1 (0.60)

3. Feature2 (0.01)



1. Feature1

2. Feature2

3. Feature3

1. Feature1

2. Feature2 

 Consider feature vectors as N-dimensional

points.

 Linear classifiers.

Non linear classifiers.

Decision trees.
Class B

Class A

 Speedup clone detection on a package.

Open MP.

 Embarrisingly parallel.

Clone Detection –

Package_X

Classify(Package_X, Package_1)

Classify(Package_X, Package_N)

Classify(Package_X, Package_2)

Open MPI.

 Single job is clone detection on package.

 Slaves consume jobs.

 Embarrassingly parallel.

Clone Detection

Clone Detection – Package_1

Clone Detection - Package_N

Clone Detection - Package_2

 4 Node Amazon EC2 Cluster

 Dual CPU

 8 cores per CPU

 88 EC2 compute units

 60.5G memory per node

 Clone detection on embedded libs known by

Debian.

 Store the results for later use.

 By package

Summary: Off-by-one error in the __opiereadrec

function in readrec.c in libopie in OPIE 2.4.1-test1

and earlier, as used on FreeBSD 6.4 through 8.1-
PRERELEASE and other platforms, allows remote
attackers to cause a denial of service (daemon crash)
or possibly execute arbitrary code via a long
username, as demonstrated by a long USER
command to the FreeBSD 8.0 ftpd.

1. Take CVE, match CPE name to Debian package.

2. Parse CVE summary and extract vuln filename.

3. Find clones of package with similar filename.

4. Trim dynamically linked clones.

5. Is vuln affected clone already being tracked?

 By CVE

 3,500 Lines of C++ and shell scripts.

Open Source

http://www.github.com/silviocesare/Clonew

ise

http://www.github.com/silviocesare/Clonewise
http://www.github.com/silviocesare/Clonewise

Ubuntu Linux

 3,077,063 unique filenames.

 Follows inverse power law distribution.

 R square value of regression analysis 0.928.

Debian Linux embedded-code-copies.txt.

 Not really machine readable.

 Cull entries which we can’t match to packages.

 761 labelled positives.

Negatives any packages not in positives

 475780 generated labelled negatives.

 Identified 34 previously unknown clones in

Debian.

 Lots more to do.

 Statistical classification

 Random Forest gave best accuracy.

 Increasing the decision threshold reduces FPs.

 Predict 3 FPs in 10,000 classifications.

 More likely an upper limit.

Classifier TP/FN FP/TN TP Rate FP Rate

Naïve Bayes 439/322 484/56296 57.69% 0.85%

Multilayer
Perceptron 204/557 48/56732 26.81% 0.08%

C4.5 523/238 86/56694 68.73% 0.15%

Random Forest 533/228 60/56720 70.04% 0.11%

Random Forest
(0.8) 446/315 15/56765 58.61% 0.03%

 4 hours on an Amazon HPC cluster.

MPI_Scatter to do static job assignment was

inefficient.

 Better to consume from a work queue.

Need to use multicore to balance load.

 Package Embedded Package

OpenSceneGraph lib3ds

mrpt-opengl lib3ds

mingw32-OpenSceneGraph lib3ds

libtlen expat

centerim expat

mcabber expat

udunits2 expat

libnodeupdown-backend-ganglia expat

libwmf gd

kadu mimetex

cgit git

tkimg libpng

tkimg libtiff

ser php-Smarty

pgpoolAdmin php-Smarty

sepostgresql postgresql

Package Embedded Package

boson lib3ds

libopenscenegraph7 lib3ds

libfreeimage libpng

libfreeimage libtiff

libfreeimage openexr

r-base-core libbz2

r-base-core-ra libbz2

lsb-rpm libbz2

criticalmass libcurl

albert expat

mcabber expat

centerim expat

wengophone gaim

libpam-opie libopie

pysol-sound-server libmikod

gnome-xcf-thumnailer xcftool

plt-scheme libgd

Write access to Debian’s security tracker.

 Red Hat embedded code copies wiki created.

Debian plan to integrate Clonewise into

infrastructure.

 Red Hat reference CVEs of embedded libs.

Not every vendor does.

 It would be nice if CVE supported this.

 Clonewise detects code reuse.

 If zlib embedded in packages X and Y:

 Clonewise detects clones between all X, Y, and zlib.

 What we really want to know is:

 X is not cloned in Y.

 Zlib is cloned in X and Y.

 Mitigation

 Clone detection on known embedded libraries.

Debian Linux zlib audit in 2005

 Plagiarism detection

 Attribute counting

 Structure-based

 Code clone detection

 Tokenization

 Abstract syntax trees

if

== return =

x 0 x 1

condition then else

 Source repositories

 Sourceforge

 Github

Other OSs – BSD etc

 Integration into build/packaging systems?

 Integration into Debian Linux infrastructure.

 More than just Clonewise..

 Simseer – Free flowgraph-based malware similarity and

families.

 110,000 LOC C++. Happy to talk to vendors.

 Vendors have 10,000+ packages.

 How to audit for clones?

 Clonewise can provide a solution.

 And help improve security.

 http://www.FooCodeChu.com

Remember to complete the Black Hat speaker feedback survey.

http://www.foocodechu.com/

