

Web Tracking for You

Gregory Fleischer

INTRODUCTION

Gregory Fleischer

Senior Security Consultant at FishNet Security

Disclaimer

Why do you hate _____?

dave dave photo1dave@hotmail.com

to me 🕶

Hello Gregory,

I am looking to find a script that can get a user's real IP address from a .onion site. Would you have anything that you can share with me. I am hope you can help on this request

Thank you very much for you help,

dave

Reasons For Tracking

- Traditional reasons for tracking web users
 - -Metrics and analytics
 - Behavioral advertising and traffic monetization
 - -Security mechanisms to identify legitimate users
- Monitor "malicious" users
 - —Bad actors
 - -Attackers
- Search for suspicious behavior

Types of Tracking

- First Party
 - -Web sites you visit directly
- Third Party
 - –Advertisers
 - Social network integration
- Analytics
 - –Counting is not tracking?
- Tracking is pervasive

DEMO:

COLLUSION FOR CHROME

Alternative Ways of Tracking

- Traffic inspection
 - –Look at the requests
 - Local network gateway and proxies
 - —Provider and host ISP levels
- Content modification
 - -Modify the responses
 - Advertising injection and rewriting
 - -Web bug and tracking code insertion

Key Tracking Concepts

- Fingerprinting
- Tracking
- Unmasking
- These are not mutually exclusive
 - -Information from each type can reinforce others
 - Discrepancies can be correlated

FINGERPRINTING

Goals of Fingerprinting

- Calculate a unique fingerprint based on the user's browser and OS characteristics
- Can be more resilient to explicit privacy actions taken by users
 - Private browsing mode
 - Cookie and cache clearing

Fingerprinting Types

- Passive
- Active
- Varies based on if plugins are installed and/or enabled

Passive Fingerprinting

- Information is captured passively
- Default data automatically sent that can be used to group users into broad categories
- Functions without needed to execute JavaScript or plugin content
- However, information is easily faked or obscured

Passive Fingerprinting Data

- User-agent string and order of request headers
- Browser feature-sets and content type support
 - –Anonymous FTP username
 - -CSP (Content Site Policy)
 - -Image types, CSS, SVG, etc.
- HTTPS handshake
 - -Cipher suites and supported extensions
 - -Timestamp from client machine

Passive Fingerprinting with Plugins

- Plugins may expose additional information
- Can reference content just by loading it
- Hosting site can track requests
- Plugins can include custom request header data
 - -Mozilla/4.0 (Linux 2.6.38-8-generic) Java/1.7.0_05
 - -X-Flash-Version: 11,3,370,178

Active Fingerprinting

- Information is actively gathered from browser using JavaScript and CSS
- Harder to fake or hide because of direct interaction
- Use feature set detection, not just based on reported browser user-agent

Active Fingerprint Data

- Standard items
 - -Navigator information and screen resolution
 - –Date and timezone
 - —Installed plugins and fonts
- Detecting browser extensions
 - Resource references
 - -Custom types

DEMO:

CUSTOM RESOURCE DETECTION

Active Fingerprinting with Plugins

- Many plugins expose their own additional API interface to JavaScript
- Plugins can be used to access:
 - Detailed system information
 - —Fonts
 - —Other installed plugins
- Example:
 - Adobe Acrobat PDF plugin can enumerate printers

DEMO:

ACTIVE PLUGIN FINGERPRINTING

TRACKING

Goals of Tracking

- Install a persistent tracking ID that can be used to correlate user activity
- Real world limitations require flexibility
 - –Should be compact, but verifiable
 - -Can be correlated
 - Doesn't always have to be transmitted or received with every request
 - Ideally, redundancy across different storage types

Web Browser Cookies

- Basic method implemented in every browser
- Browser cookie types:
 - –First-party
 - -"Second-party"
 - set by page dynamically
 - —Third-party
- Limitations of browsers and privacy restrictions

HTML5 Storage

- Modern browsers offer divergent support across several APIs
 - -localStorage
 - —IndexedDB
 - -FileSystem API
- Characteristics impact suitability for tracking
 - –Does user have to opt-in?
 - –How long does storage last?

Browser Cache

- Use embedded identifiers in cached content
- ETag references to track and correlate content
- Complicated approaches are fragile and often redundant
 - -Complex request sequences
 - –Redirect caching
 - -Embedded basic auth references

Plugin Dependent Storage

- Plugin dependent storage methods offer flexibility
- Improvements over web browser methods
 - -Usually cross-browser
 - –Some are not integrated with browser private modes
 - –May be harder for user to detect

Flash

- Flash Shared Objects
 - –Local shared object (LSO)
 - –Remote shared object
- Integrated with private browsing modes
- Cross-browser support is diverging
 - -~/.macromedia/Flash_Player/#SharedObjects/
 - —~/.config/google-chrome/Default/Pepper Data/ Shockwave Flash/WritableRoot/#SharedObjects/

DEMO:

FLASH REMOTE SHARED OBJECTS

Silverlight

- Silverlight exposes Isolated Storage
 - –Limited quota size
- Integrated with private browsing modes
- Most XAP loading use browser cache
 - -Some ability to embed resources streams
 - -Satellites and on-demand loading offer little benefit
- Decent cross-browser when available

- Java implements its own download cache
- Resource items and applets are cacheable
- Applets can read embedded resource streams
- Not integrated with private browsing modes
- Usually excellent cross-browser support
 - -When Java works ...

Java Failures

DEMO:

JAVA PERSISTENT TRACKING

Adobe Acrobat

- Adobe Acrobat Reader plugin
- setPersistent() function can be used for limited storage of global name/value data
- Some integration with private browsing modes
- Questionable cross-browser support
- Browsers are moving to native PDF display

DEMO:

ADOBE READER PDF TRACKING

Other Storage

- UserData
 - Internet Explorer specific
- Web SQL Database
 - -SQL database exposed to browser
 - -Standard abandoned, but still may be available

UNMASKING

Goals of Unmasking

- Identify web user's originating IP, network environment, and operating identity
- Some users attempt to obscure their true origins
 - –Network proxies
 - -VPN tunnels
- Determine originating user IP address
 - -Force direct connection using any available mechanism
 - -Correlate with additional GeoIP information

Detecting Proxy Usage

- Detect known proxies if possible
 - -e.g., Tor using TorDNSExitList tools
- Generate requests and examine responses to detect differences
- Request "magic" urls to detect any local network or browser proxy
- Send requests using XMLHttpRequest or WebSocket and examine responses

DEMO:

PROXY DETECTION

Proxy Bypasses

- Abuse browser functionality to bypass proxy
 - -Use resources that may not be properly proxied
 - –FTP and alternative browser requests
- In CGI style proxy, all content must be rewritten
- Some requests may be launched by browser
 - -e.g., Content Site Policy ("CSP") violation reports

Plugins and Proxies

- Various plugins can be made to leak information
- DNS leakage through unproxied UDP traffic
- Media requests may not respect host machine proxy settings
- Plugin may support direct method of communication that bypasses proxy
 - Requests that explicitly exclude proxy
 - Binary socket protocols

DEMO:

FLASH RTMP: CONNECTION

More Aggressive Approaches

- Use sparingly, because appear overtly malicious
- Injectable content that violates user privacy
 - -Capture text changes, keystrokes, images and HTML
 - -Monitor clicks and likes on social network badges
 - History stealing and forced navigation
 - –Abuse "trust" site status
 - -Port scanning local machine and local network
 - Embed additional exploits

COMPLICATIONS

Private Browsing Modes

- Modern browsers have a private browsing mode
 - -Cookies should not be persisted
 - Content not read from or stored in existing cache
- How to defeat?
 - —If possible, correlate cookie and page contents when switching from one to the other
 - Use plugin support to enable cross-browser communications and cross reference values

DEMO: SAFARI PRIVATE BROWSING

DEMO: LOCAL CONNECTIONS

Tracking Protection Lists

- Internet Explorer implements Tracking Protection Lists (TPL)
 - -Curated blacklists maintained by third-parties
 - Restricts content loaded on page
- How to defeat?
 - -Manually navigate browser to content
 - Use plugins to load from blocked locations

DEMO:

IE TRACKING PROTECTION LISTS

Third Party Cookie Restrictions

- Browser can block or restrict third-party cookies
 - -Safari has default blocking (limited to visited sites)
 - —Internet Explorer, Firefox and others are opt-in
- How to defeat?
 - —Use known workarounds to simulate user interactions
 - Cross-domain postMessage support to pass cookies between coordinating sites and store in localStorage

DEMO:

LOCAL STORAGE AND POSTMESSAGE

Do Not Track

- Do Not Track (DNT)
- Optional, sent as browser HTTP request header
 - -"Opt-in" signal to third parties not to track
 - -Think of it as the "Don't Track Me Bro" header
- How to defeat?
 - —Do nothing (or point and laugh)
 - –Use protocols that aren't HTTP (e.g., FTP, binary sockets) if technical restrictions ever enforced

TRACKING SERVER

Goals of Tracking Server

- Create suitable environment to track web users
- Approach is to be as "insecure" and open as possible
 - Support insecure protocols
 - -Allow all cross-domain requests
- Use separate domain, third-party location
- Bootstrap from first-party content if needed

Existing Sites

- BrowserSpy (http://browserspy.dk/)
- Panopticlick (https://panopticlick.eff.org/)
- Cross-browser fingerprinting test 2.0 (http://
 fingerprint.pet-portal.eu/)
- Evercookie (http://samy.pl/evercookie/)
- Metasploit Decloaking engine (http://decloak.net/)
- IP Check (http://ip-check.info/)

Existing Site Shortcomings

- Existing sites offer disjointed functionality
- Need purpose built tools to address weaknesses
 - -Interaction with an untrusted third-party site
 - -Storage in unknown locations and formats
 - Lack of comprehensiveness
- Some features little more than proof-of-concept
 - -Big difference between displaying and storing
 - -Integration capabilities missing or non-existent

Design Goals

- Design with correlation in mind
 - -Tracking tokens are cleared over time
 - -Fingerprinting may not yield unique results
- Combine and cross-reference collected data
- The larger the network view, the more effective
- Methods to inject web tracking code
 - -Embed in HTML on your web site
 - Use a transparent network proxy

Protocol Support

- Tracking server should support several protocols
 - **—FTP**
 - -DNS
 - **—HTTP**
 - **—HTTPS**
 - -Policy servers for Flash and Silverlight
 - –Binary sockets
 - -Media (RTMP, etc.)

Alpha Release

- Tracking server and utilities
 - -Tracking server suitable for network or local machine
 - Local, transparent HTTP proxy capable of injecting tracking code
- Open Source
- Written in Python, GPLv3 license
- Download: https://code.google.com/p/wtfy/
- Many features missing!

Conclusions

- Final Thoughts
 - -Web tracking is inevitable
 - Impractical to prevent web tracking between coordinating sites
- Questions?

Contact

- Send your feature requests and hate mail
- gfleischer@gmail.com

Feedback Forms

- Please complete the Speaker Feedback Surveys.
- This will help speakers to improve and for Black Hat to make better decisions regarding content and presenters for future events.

