

COMPROMISING INDUSTRIAL FACILITIES FROM 40 MILES AWAY

Lucas Apa Carlos Mario Penagos

About Us

Lucas Apa

Argentina

Carlos Penagos

Colombia

Agenda

- Motivation
- Industries and Applications
- Wireless Standards
- Journey of Radio Encryption Keys
- Vendor1 Wireless Devices
- Vendor2 Wireless Devices
- Vendor3 Wireless Devices

Motivation

- Critical Infrastructures becoming targets
- Insider attacks (Lately)
 - Devices connected to Internet
 - Odays to reach the PLC, RTU, HMI...
- Stealth and precise attacks
- Incident response at hazardous sites

Industrial Wireless Automation

- Copper wires are used to monitor and control
 - Corrosion, Ductility, Thermal Conductivity
 - Cost of wires, trenching, mounting and installation
- Industrial Wireless Solutions
 - Eliminate cost of hardwiring, logistics, installation
 - Heavy machinery involved
 - Remote control and administration (Geography)
 - Minimize Safety Risk & Dangerous Boxes
 - Adds durability

Industries and Applications

- Plunger lift/artificial lift optimization
- Well-head automation
- RTU/EFM I/O extensions
- Cathodic protection monitoring
- Hydrogen sulfide (H2S) monitoring

Oil & Gas

Refined Petroleum Petrochemicals

- Tank level monitoring
- Pipeline cathodic protection
- Rectifier voltage monitoring
- Gas/liquid flow measurement
- Pipeline pressure and valve monitoring

Industries and Applications (2)

- Transformer temperature
- Natural gas flow
- Power outage reporting
- Capacitor bank control
- kV, Amp, MW, MVAR reading

Energy - Utilities

Waste & Waste <u>Water</u>

- Remote pumping stations
- Water treatment plants
- Water distribution systems
- Wastewater/sewer collection systems
- Water irrigation systems/agriculture

Industrial Wireless Challenges

- Defeat electromagnetic interference (EMI)
- Handle signal attenuation and reflections
- Reliability is far more important than Speed
- Higher transmitter power levels
- Site surveys to assess the consistency and reliability of the plant
- Mainly using 2.4Ghz or 900Mhz (ISM Band)
- No "business" protocols

Cryptographic Key Distribution (WSN)

- Distribute secrets on a large number of nodes
- Base stations with clusters surrounding
- Limitations:
 - Deployment in public or hostile locations
 - Post-deployment knowledge
 - Limited bandwidth and transmission power
- Methods for crypto key distribution:
 - Out-of-band
 - In-band
 - Factory pre-loaded

IEEE 802.15.4 Standard

- Wireless Radios (Low Power/Speed)
- Set the encryption algorithm and AES Key
- Upper Layer Responsibility
- Each node can have an ACL
- MAC for upper layers:
 - ZigBee
 - WirelessHart
 - ISA SP100
 - IETF IPv6 LoWPAN

ZigBee 2007 (Standard Security Mode)

- Suite of high level communication protocols
- Based on IEEE 802.15.4 (Low level layers)
- ISM radio bands
- Trust Center introduced in 2007
- Network Key (AES 128-bit)
 - Pre-installed (Factory Installed)
 - Individually Commissioned (Commissioning tool)
 - Managed by the Trust Center

ZigBee Pro 2007 (High Security Mode)

- Many enhancements
- More memory requirements
- New keys introduced
- Master Key
 - Unsecured Transport ⊗
 - Out-of-band Technique ©
 - Secure other keys
- 2 Link Key
 - Unicast
 - Unique between nodes
- 3 Network Key
 - Regenerated at Intervals
 - Needed to join the NWK

The Journey of Radio Encryption Keys

Reusing Radio Keys

- End-User Node Key Storage
 - Shared Secret
 - Same Firmware or Same Radio Key

- Buy same Device (Buy same Key)
- 2. Remove Radio Module
- 3. Connect to USB Interface
- 4. Interact: API & AT Command Mode
- Send frames using the unknown key

Exploiting Vendor1 Devices

- Company Profile (+1990)
- Frequency Hopping Wireless Devices
 - Great for long or short range wireless
 SCADA applications
 - Secure proprietary FHSS with 128 bit AES encryption
 - Hazardous location approvals, Perfect for outdoor Ethernet SCADA or indoor PLC messaging
 - 30+ miles point to point with high gain antennas

Vendor1 Key Distribution

"<Vendor1 Tool> is easy to use and intuitive. <u>Default values built into</u>
<u>the software work well for initial installation</u> and testing making it
easy for first-time users. <Vendor1 Tool> manages all important
settings to ensure that the network performs correctly." (User Guide)

- RF Encryption: A 128-bit encryption level key is suggested for the user.
 - Blank: No encrypted packets
 - **5-7 Chars:** Field is translated into a 40-bit encryption level.
 - 15-24 Chars: Field is translated into a 128-bit encryption level.

Reversing Passphrase Generation

Compiled C++ Binary:

- srand seeds PRNG
- time returns epoch
- srand(time(NULL))
 - Low Entropy Seed
 - Same algorithm
- rand()
 - Bad ANSI C function

Attacking Weak PRNG

```
void *printPassphrase(time_t epoch)
    char buff[100];
    strftime (buff, 100, "%Y-%m-%d %H:%M:%S", (int*)localtime(&epoch));
    printf ("%s => ", buff);
    char passphrase[25] = "\0";
    srand(epoch);
    int block_counter = 8;
    do{
        int i = rand();
        int counter = 3;
           int i2 = i \& 0x1f;
           if(i2 >= 0x0a){
                i2 = i2 + 0x57;
                i2 = i2 + 0 \times 30;
            appendchar(passphrase, size of passphrase, (char) i2);
            i = i >> 5;
            counter--;
        }while(counter>0);
        block_counter--;
    }while(block_counter>0);
    printf("%d => %s\r\n",epoch, strrev(passphrase));
    return:
```

C:\>passgen.exe

2013-04-04 21:39:08 => 1365136748 => knc6gadr40565d3j8hbrs6o0

The Oldest Passphrase

Help File

C:\>passgen.exe

2013-04-04 21:39:08 => 1365136748 => knc6gadr40565d3j8hbrs6o0 2013-04-04 21:39:07 => 1365136747 => nir3f1a0dm2sdt41q91c06nt

•••

2008-04-17 15:20:47 => 1208470847 => re84q92vssgd671pd2smj8ig

Comissioning Tool Audit

- Easily breakable by an outsider
- Further Research with the Devices
- Comissioning Tools needs deep testing

Vendor2 Wireless Devices

- Market leadership: Oil & Gas
- Wireless and wired solutions for the digital oil field automation
- Trusted by top companies in different industries
- Family System (Point to Multipoint):
 - Wireless Gateways
 - Wireless Transmitters
 - I/O Expansion Modules
 - Hardwire Sensors

IOActive COMPREHENSIVE COMPUTER SECURITY SERVICES

An Extended Family of Devices IOActive

Applications

- Oil & Gas
- Refining / Petro Chemicals
- Water & Waste Water
- Utilities
- Industrial Process Monitoring

Transmitters

- RTD Temperature Transmitter
- Analog/Discrete Transmitter
- Flow Totalizer Transmitter
- Pressure Transmitter
- Hydrostatic Level Transmitter
- Many more..

Tool and Project Files

- How the devices access the wireless information?
- "Enhanced Site Security Key"

The Enhanced Site Security feature designed to provide an additional **level of protection** for **RF packets** sent and received between <Vendor2> devices and minimizes the possibility of interference from other devices in this area. This feature is **not available on some older versions** of legacy devices.

- Security Key == Encryption Key ???
- Legacy Devices Without Encryption????

Key Generation and Distribution

- Create a "Project File" and update all Nodes
- From documentation:

"If the project file name is **changed**, a new **Site Security Key** will be assigned"

Possible Scheme: Per-Site Encryption

This Key MUST be somewhere on the Project File.

File Name Change => New Key

```
mov ecx, [ebx+20B4h] ; Check if file path has changed mov edi, [ecx+esi*4] test edi, edi jz short not_changed
```

```
: Time
push
call.
        time64
                                      ; Determine the current calendar time
add
        eax, esi
agu
        [esp+18h+var_4], edx
mov
        edx, [edi]
mov
push
        eax
        eax, [edx+10h]
mov
        ecx, edi
mov
call.
                                      ; eax = &update key
        eax, [esp+18h+security_enabled]
mov
```


Project File Binary Diffing

0x00000080

0x00000090

0x000000a0

ProjectA

\x17\x58\x4f\x51

1364154391

Sun, 24 Mar 2013 19:46:31 GMT

ProjectB

\x51\x58\x4f\x51

1364154449

Sun, 24 Mar 2013 19:47:29 GMT

```
-- offset -
                                                        0123456789ABCDEF
0x00000000
                                                 0800
0x00000010
                                            8403 0000
                            6465
                                  0000
                                                        FileNode......
0x00000020
                                  0000
                                       0000 0000 0010
0x00000030
                                  6374
                                                        ...ProjectA.C:\.
                             6a65
                                         .<u>⊎3 433a 5</u>C⊎I
0x00000040
                       0004 0053 6974
                                             584f 5101
                                                        ......Site.X0Q.
0x00000050
                             3100
                                  0000
0x00000060
             0000
                             0800
                                  -0b00
0x00000070
                                  0084 0300 0001 0000
0x00000080
0x00000090
                       0010
                                  0100
                                                  0000
0x000000a0
                                       0000 0000 €842
                             0010
                                  0000
0x000000b0
                                       0000 c842 0300
                       0010 0000
                                  0000
                                                         0123456789ABCDEF
  offset -
0x00000000
                                             0800 0800
0x00000010
                                        0000 8403 0000
                                                         FileNode.....
                                  0000
0x00000020
                                  0000
                                       0000 0000 0010
0x00000030
                                                         ...ProjectB.C:\.
             0000
                  0850
                            6a65
                                  6374
0x00000040
             00ff
                       0004 0053
                                  6974
                                                         ......SiteQX0Q.
0x00000050
                             3100
                                  0000
0x00000060
                             0800
                                  0b00
0x0000007
                                  0084 0300 0001 0000
```

0000 0000

0000 c842

0000 1600 0000

7465

0010

0009 4761

..Gateway 1.....

Component Identification

- Support Center
 - Firmware Images & Documentation
 - Radio Modules, Architectures & Processors

HARDWARE FEATURES	
Device Functionality	· Wireless Gateway
Embedded Controller	\cdot 32-bit Low Power ARM7 Microcontroller with Internal FLASH
	(Field Upgradeable)

HARDWARE FEATURES	
Device Functionality	· RTD Temperature Monitor w/ Built-In Wireless Transmitter
Embedded Controller	· Ultra-low Power RISC Microcontroller with Internal FLASH (Field Upgradeable)

Understanding Firmware Image (RISC)

- Industry Standard Format
 - @Address and content
 - Incomplete Image (Update)
 - Only compiler strings

1 @1200
2 4F 43 4E 43 00 3C F2 B0 40 00 02 00 FC 27 5D 42
3 76 00 4F 4D D2 C2 76 00 02 00 7F 90 7E 00 F2 23
4 30 41 4F 43 7E 40 5A 00 D2 93 AA 07 17 28 F2 90
5 06 00 AA 07 13 2C 4F 43 03 3C 5E EF AA 07 5F 53
6 5D 42 A9 07 1D 83 0F 9D F8 3B 5D 42 A9 07 CD 9E
7 A9 07 02 24 4F 43 03 3C 5F 43 01 3C 4F 43 30 41
8 4F 43 00 3C F2 B0 40 00 02 00 FC 27 5E 42 76 00
9 C2 4E A9 07 00 3C F2 B0 40 00 02 00 FC 27 4E 4F
10 5F 53 4E 4E 5D 42 76 00 CE 4D AA 07 F2 F0 BF 00
11 02 00 5F 92 A9 07 EE 2B 30 41 0B 12 0A 12 4A 43
12 5B 42 AA 07 5B 93 0B 20 5F 43 92 12 AC 02 F2 40
13 06 00 77 00 00 3C D2 B3 71 00 FD 27 21 3C 6B 93

Online Search

CrossWorks for MSP430

Component Identification

430F14

YouTube (XT09 and 802.15.4)

No Per-Client Key

Dear <<Reseller Sales Eng>>,

We are going to **borrow a used** "Analog Transmitter" from one of our partners,

We are going to test it for a few weeks and let you know if we decide to **buy a new one**.

Are there any specific concern we might take into account when deploying this device to connect it with our <Device>? Or just upgrade all project configuration files?

Thank you

Per-Client Radio Key (1000\$)

Device Company Key

Per-Client Key

Site Encryption Key

Lucas,

You just need to upgrade the configuration files.

Thanks.

Finding Embedded Keys

- Two kind of Firmwares (ARM and MSP430)
 - One possible hardcoded key in both firmwares
 - Binary Equaling

```
calculate crc
                            SP1, {R4}
                            R2, #0
                            R3, #0
                                             ; cmp size of data
                                              MOV
                                                      RO.
                                                          R2
                                                      SP1, {R4}
MOV
                                                                       ; return cr
LDRB
                                                End of function calculate_crc
            [R0],#1
               #0xFF
            =lookup table
            R4, R2,LSL#1
            R2,LSR#16
           R3,LSL#16
```

```
        0
        1
        2
        3
        4
        5
        6
        7
        8
        9
        A
        B
        C
        D
        E
        F

        0
        0000
        C1C0
        81C1
        4001
        01C3
        C003
        8002
        41C2
        01C6
        C006
        8007
        41C7
        0005
        C1C5
        81C4
        4004

        1
        01CC
        C00C
        800D
        41CD
        000F
        C1CF
        81CE
        400E
        000A
        C1CA
        81CB
        400B
        01C9
        C009
        8008
        41CB

        2
        01D8
        C01B
        8019
        41D9
        001B
        C1DB
        81DA
        401A
        001E
        C1DE
        81DF
        401F
        01DD
        C01D
        801C
        41DC

        3
        011
        C1D4
        81D5
        01D7
        C017
        8016
        41D6
        01D2
        C012
        8013
        41D0
        01D
        C01D
        801C
        41DC
        01D
        001D
        C01D
        801D
        41DD
        001D
        001D
        001D
        001D</td
```


Acquiring the Devices

- RTD Temperature Transmitter
 - Integrates Platinum 100 ohm RTD Sensor
 - Ideal for use in various mission-critical industrial applications.
 - Ideal for Monitoring Air, Gas, Water, or Liquid Temperatures
 - Wireless Gateway
 - Gateways are responsible for receiving/collecting data from wireless end nodes
 - The collected data can be communicated with third-party Modbus device such as a RTU, PLC, EFM, HMI, or DCS

Resilience and Node Capture

FF 41 0A 00 0A 00 00 00 04 00 AB D0 9A 51 B0 ...

A crypto attack disappointment

- Protocol Reverse Engineering
 - Device has a debug interface
 - Developed a custom tool to receive and send 802.15.4 data
 - 2.4ghz Transceiver (Modified Firmware and Reflashed by JTAG)
 - PyUsb, IPython, Scapy Dissectors, etc.
 - Borrowed KillerBee Frame Check Sequence Code
 - Against the perfect scheme: Per-Site Encryption Key
 - Key not really used for data encryption
 - Key only used to "authenticate" devices
 - No integrity and confidentiality

Temperature Injection Live Demo

- Developed an HMI Project
- Chemical Safety Board (US) background video
- Modbus RTU Driver
- Arduino and SimpleModbus
- Rotary Actuator
- Cost of the attack: \$40 USD
- Live Demo

KEEP CALM AND GET TO THE CHOPPA!

Remote Memory Corruption

- Identify all the protocol fields
- Memory corruption bug using unhandled values.
- Remotely exploitable over the air

```
Plant Killer =>
```

```
17:45:13.608- RF Node Timeout: Group 0, Node 1, Timeout 00:01:00. 17:46:13.954- RF Node Timeout: Group 0, Node 1, Timeout 00:01:00. 17:47:14.337- RF Node Timeout: Group 0, Node 1, Timeout 00:01:00. 17:48:14.662- RF Node Timeout: Group 0, Node 1, Timeout 00:01:00.
```

- Also could be useful to dump firmware or memory.
- We recorded a demo

Vendor3 Devices

Company Profile

- Self-proclaimed leader in process and industrial automation
- Clients: Nearly all manufacturing companies from Fortune 500
- 22.000 different products across 40 industries
- Wireless System (Family)
 - Wireless Gateway
 - Master device used to control network timing and comm traffic
 - Nodes
 - Collect data -> TX Gateway

IOActive[™]

USA 2013

Research

Wireless Family Technical Note:

"Multi-layer security protocol protects your data"

- Network Security
- Data Security
- Data Integrity and Control Reliability

"The wireless I/O systems provide a level of security, data integrity, and reliability far exceeding most wireless systems on the market today"

Quotes (Network Security)

"<Family> is designed to completely eliminate all Internet Protocol (IP) based security threats. Wi-Fi access points have the potential to route any and all data packets, which is why these systems use encryption"

Quotes (Data Security)

"The protocol only carries sensor data values.

Only I/O data is transmitted in the wireless layer."

Quotes (Comm Protocols)

"Widely used open protocols such as Wi-Fi have serious security issues. Even a high degree of encryption may not protect your data. It is common for new encryption schemes to be hacked within months of implementation. Proprietary systems are more difficult to hack than an open standard."

Quotes (Comm Protocols)

"<Vendor3> achieves data security by using a proprietary protocol, pseudo-random frequency hopping, and generic data transfer. The <Family> protocol only carries I/O data, making it impossible for a malicious executable file to be transmitted."

Quotes (Comm Protocols)

"This protocol does not operate like an open protocol such as Wi-Fi and is not subject to the risks of an open protocol."

Conclusions (Securing the scheme)

- Out of bands methods
 - Pre-share a strong secret for the initial link (eg: serial comm)
 - Also 802.15.4 AES Encryption at lower layers (MAC)
- Secure the Node Physical Access (Mainly KDC)
- Use hardware Anti-tamper mechanisms
- Audit Source Code // Audit Site regularly
- ICS-CERT Hardening Guides

Conclusions

- Problem space has always been an open topic
- The journey of keys allows practical attacks
- WSN's standards maturity is growing
- Vendors can fail at implementing them
- No evidence of previous security reviews
- Testing the field location is possible with the proper Hardware and open source Software

RZUSB

TelosB

HackRF

Aknowledgements

- ICS/CERT US/CERT
- References: Piotr Szcezechowiak, Haowen Chan, A. Perrig, Seyit A. Camtepe, Bulent Yener, Rob Havelt, Travis Goodspeed, Joshua Wright...
- IOActive, Inc.

THANK YOU!

Lucas Apa (lucas.apa@ioactive.com)
Carlos Penagos (carlos.hollman@ioactive.com)

