


HERE

• Claudio “nex” Guarnieri @botherder

• Security Researcher at Rapid7 Labs

• Core member of The Shadowserver Foundation

• Core member of The Honeynet Project

• Creator of Cuckoo Sandbox

• Founder of Malwr.com



HERE

• Mark “rep” Schloesser @repmovsb

• Security Researcher at Rapid7 Labs

• Core Member of The Honeynet Project

• Core developer of Cuckoo Sandbox

• Developed other tools such as Dionaea



HERE

• Jurriaan “skier” Bremer @skier_t

• Freelance Security Researcher

• Core developer of Cuckoo Sandbox



NOT HERE

• Alessandro “jekil” Tanasi @jekil

• Core developer of Cuckoo Sandbox

• Co-founder of Malwr.com

• Creator of Hostmap

• Creator of ImageForensics.org



AGENDA

• Introduction to Sandboxing

• Introduction to Cuckoo

• Components of Cuckoo

• Anti-Anti-Virtualization

• Virtual Machine Introspection



SANDBOXING



How does a sandbox look like?
Software or hardware appliances
that receive suspicious files and 

returns an overview of their 
functionality.



PROBLEMS

• Process high volumes?

• Automate specific tasks?

• Integrate with defenses?

• Support your T1 analysts?

• Digital forensics/incident response?



PROS

• Automate the whole analysis process

• Process high volumes of malware

• Usable by virtually anyone

• Get the actual executed code

• Can be very effective if used smartly



CONS

• Can be expensive :-(

• Some portions of the code might not be 
triggered

• Environment could be detected

• Can be a complete waste



CUCKOO SANDBOX



Automated malware 
analysis system, easy to 

use and customize.



WHY?

• We believe in open source

• Empower students and researchers

• Open architecture for more flexibility and 
creativity



SOME NUMBERS

• Around 50000 lines of code, Python and C

• More than 2000 commits

• 4 core developers

• ~25 contributors over time

• ~15000 downloads in the last 6 months



BITS OF HISTORY

Aug 
2010 
0.1a

Jan 
2011 
0.1

Nov 
2011 
0.2

Dec 
2011 
0.3

Jul 
2012 
0.4

Dec 
2012 
0.5

Apr 
2013 
0.6

Aug 
2013 
1.0



WHAT YOU NEED TO KNOW

• Basic usage of Linux

• Basic usage of virtual machines

• Knowledge to leverage the results

• Windows APIs

• Malicious behaviors

• With Python you can get awesome!

• Customization

• Modules



HOW IT WORKS

Pull task
Prepare 
analysis

Instrument 
the guest

Execute 
and log

Process 
and report



KEY FEATURES

• Almost everything is a module

• Completely automated

• Run concurrent analysis

• Able to trace processes recursively

• Customize analysis process

• Create behavioral signatures

• Customize processing and reporting



GETTING STARTED



REQUIREMENTS AND EXPECTATIONS

• What is your goal?

• Who is going to use the sandbox?

• How are they going to consume the data?

• How many samples do you expect?

• What kind of results are mostly relevant?

• Do you need all features to meet your goal?



DESIGN YOUR ENVIRONMENT

• Do you want to run Office exploits?

• Do you want to run PDF exploits?

• Do you want to run 64 bit malware?

• Do you want to run URLs?

• Do you need script interpreters?



IDEAS

• Look for the most exploitable version of 
applications (metasploit, exploitdb, etc.)

• Create multiple VMs with multiple versions of 
applications

• Leave some fake credentials and tokens 
around

• Disguise the VM as much as possible



INSTALLATION IN A NUTSHELL

• Install VirtualBox, VMWare or QEMU/KVM

• Download & extract Cuckoo

• Install dependencies

• Create a virtual machine, copy over and run 
agent.py and take a snapshot (need to be able to 

communicate with the host).

• Configure the files in conf/

• $ python cuckoo.py



SETUP DISCLAIMERS

• It’s not point-and-click, you need to work a bit

• Virtualization software are not intended for 
massive and continuous restore

• There are some key steps to do, if one is 
skipped nothing works

• There’s an extensive documentation, mailing 
list and Q&A platform: check them out.



USAGE



SUBMISSION

• utils/submit.py

• utils/api.py

• Django Web Interface

• Python API



OPTIONS

• Analysis Package + Options

• Timeout

• Priority

• Machine

• Platform

• Memory Dump

• Enforce Timeout

• Clock



RESULTS

• Raw results stored in storage/analysis/<id>/

• Reports stored in 
storage/analysis/<id>/reports/

• Depends on what was enabled in 
conf/reporting.conf



RESULTS

• Trace of API calls

• File dumps

• Screenshots

• Network traffic

• Process memory dump

• System memory dump



CORE MODULES



MACHINERY MODULES

• In Core (under modules/machinery/)

• Python class

• Define interaction with the virtualization 
software

• Default:
• VirtualBox

• VMWare

• QEMU/KVM

• Generic LibVirt





AUXILIARY MODULES

• In Core (under modules/auxiliary/)

• Python class

• No specific use, just run concurrently to each 
analysis.

• Default:

• Network traffic capture





PROCESSING MODULES

• In Core (under modules/processing/)

• Python class

• Process raw results (sample, API logs, files, memory)

• Populate collection of results





SIGNATURES

• In Core (under analyzer/windows/modules/signatures/)

• Python class

• Isolate specific events

• Identify malware family

• Identify malicious behavior

• Extract configuration

• …







COMMUNITY SIGNATURES

• Community Repository

• https://github.com/cuckoobox/community

• utils/community.py –signatures (--force)



SHARING IS CARING!



REPORTING MODULES

• In Core (under analyzer/windows/modules/reporting/)

• Python class

• Make use of abstracted results

• Default:

• JSON

• HTML

• MAEC

• MongoDB





ANALYZER MODULES



ANALYSIS PACKAGES

• In Analyzer (under 

analyzer/windows/modules/packages/)

• Python modules

• Define how to interact with the malware and 
the system

• Can be used for scripting tasks





AUXILIARY MODULES

• In Analyzer (under 

analyzer/windows/modules/auxiliaries/)

• Python modules

• Run concurrently to the analysis

• Default:

• Screenshots

• Emulation of human interaction





CUSTOMIZATION: POISONIVY

• Leverage Cuckoo process dumping to 
automatically extract PoisonIvy configuration

• Custom Processing Module to match patterns 
in the dumps

• In case of successful extraction, upload to 
special server for further monitoring







CUCKOOMON



CUCKOOMON

• DLL Injection

• Inline Hooking

• Logging to the host over TCP connection

• Follow execution of child processes or 
injection of target processes



ANALYZER PACKAGE

• Analyzer is uploaded to the VM through the Agent

• By default the analysis package will:

• Start suspended process

• Inject CuckooMon

• Resume process



CHILD INJECTION



EVASION ARMS RACE

• Malware often injects into other processes to 
avoid detection (e.g. iexplore.exe)

• Also creates child processes for other 
purposes

• To track this, we monitor for such events and 
inject CuckooMon in 3rd processes too.



PROCESS INJECTION



API HOOKING OVERVIEW

• Cuckoo logs about 170 APIs

• Hook lowest APIs without loosing context

• Not CreateProcessA

• Not CreateProcessW

• Not CreateProcessInternalA

• But CreateProcessInternalW

• However also higher level APIs

• ShellExecute (protocol handlers, URLs)

• system (pipe multiple processes)



HOOKING + MAGIC = PROFIT

• Use standard inline hooking with a few twists
• Support for random preambles (jmp/push+ret/etc)

• First hook run is interesting, ignore recursive ones down on 
the callstack

• Transparently manage these situations in hooking mechanism



ASSEMBLY TRAMPOLINES



RESULTING HOOKS



WORK IN PROGRESS

• Return address + module tracking

• Only log when coming from interesting sources

(reduce noise when malware injects into other processes)

• StubDLL

• Don’t hook, shadow DLL that “overloads” 
functions

(avoid inline hooking countermeasures / detection)



ANTI-ANTI-SANDBOX



With sandboxes getting 
popular, malware writers 
are increasingly trying to 

bypass them.



COMMON TRICKS

• Sleep before main execution

• Monitor mouse events (SetWindowsHookEx 0x07, 

0x0E)

• Check for virtualization software:

• Files

• Processes

• Devices (CD-ROM, HDD)

• Registry keys



ANTI-SLEEP

• Cuckoo Sandbox skips sleeps that are 
launched within the first seconds of a process 
execution.



ANTI-MOUSE-MONITOR

• Cuckoo Sandbox emulates human interaction

• Move the mouse cursor

• Click on mouse buttons

• Click on dialogs



ANTI-VIRTUALIZATION

• It’s painful

• Depends on the virtualization software of 
your choice

• You can do something about it

• However you won’t be able to kill all 
indicators



VIRTUALBOX EXTRA DATA

• pcbios/0/Config/DmiBIOSFirmwareMajor

• pcbios/0/Config/DmiBIOSFirmwareMinor

• pcbios/0/Config/DmiBIOSReleaseDate

• pcbios/0/Config/DmiBIOSReleaseMajor

• pcbios/0/Config/DmiBIOSReleaseMinor

• pcbios/0/Config/DmiBIOSVendor

• pcbios/0/Config/DmiBIOSVersion

• pcbios/0/Config/DmiChassisAssetTag

• pcbios/0/Config/DmiChassisSerial

• pcbios/0/Config/DmiChassisVendor

• pcbios/0/Config/DmiChassisVersion

• pcbios/0/Config/DmiSystemFamily

• pcbios/0/Config/DmiSystemProduct

• pcbios/0/Config/DmiSystemSKU

• pcbios/0/Config/DmiSystemSerial

• pcbios/0/Config/DmiSystemUuid

• pcbios/0/Config/DmiSystemVendor

• pcbios/0/Config/DmiSystemVersion

• piix3ide/0/Config/Port0/ATAPIProductId

• piix3ide/0/Config/Port0/ATAPIRevision

• piix3ide/0/Config/Port0/ATAPIVendorId

• piix3ide/0/Config/PrimaryMaster/Firmwar
eRevision

• piix3ide/0/Config/PrimaryMaster/ModelN
umber

• piix3ide/0/Config/PrimaryMaster/SerialN
umber

$ VBoxManage setextradata <label> VBoxInternal/Devices/ +



DO NOT INSTALL 

THE GUEST ADDITIONS.



WINDOWS REGISTRY

• HKLM\HARDWARE\Description\System\Syste
mBiosVersion

• HKLM\HARDWARE\Description\System\Video
BiosVersion

• HKLM\HARDWARE\DEVICEMAP\Scsi\Scsi Port 
0\Scsi Bus 0\Target Id 0\Logical Unit Id 0

• HKLM\SYSTEM\CurrentControlSet\Enum\IDE\



CUCKOOVMI



ALTERNATIVE ANALYSIS TECHNIQUES

• CuckooMon: userland DLL injection
• comfortable, simple, still effective

• sadly easy to detect/circumvent

• Commercial sandboxes often kernel based 
tracing, sometimes combined with userland
components

• Even harder to detect: introspection from 
outside the OS

Cuckoo VMI?



GENERALIZING CUCKOO LOG DATA

• Necessary changes to Cuckoo

• Generalizing behavior semantics for Mac/Linux 
platforms anyway

• More visibility / possibilities with VMI

• Might need more flexible configuration of the 
analyzer engine



VIRTUAL MACHINE INTROSPECTION

• Observe the memory and execution flow 
from the outside

• Look at kernel structures to differentiate 
between processes / libraries

• Depending on virtualization technique use its 
features to pause VM execution and extract 
function arguments / memory contents



WINDOWS KERNEL DETAILS

• What do we need for inspecting Windows 
from the outside?

• Processes (track cr3)

• Libraries / Modules

• Kernel structures:

• EPROCESS (ActiveProcessHead list)

• Process Object Tables (HANDLE_TABLE)

• Virtual Address Descriptor tree (VAD tree)



WIP: CUCKOOVMI BASED ON QEMU

• QEMU: binary translation engine: TCG (Tiny 
Code Generator)

• Great base for both coarse- and fine-grained 
tracing of the guest and its processes

• Focus on Windows XP/7 – find kernel process 
structs and track their executable memory

• Full tracing or specific locations

• Never miss executed code



AUTOMATED FUNCTIONCALL LOGGING

• Windows APIs mostly use stdcall calling 
convention
• Callee cleans up the stack, EAX = returnvalue

• This allows for generic parameter logging
• Note stack pointer when entering function

• Note stack pointer when returning

• Everything in between was a parameter

• Still needs knowledge of types for special 
logging (Strings, structs, etc)



AUTOMATED LOGGING CONT.

• Type information can be automatically extracted from 
development headers

• Specify list of interesting variables in all those structs, 
generate dereference/offset code automatically

• Comes down to only implementing specific code for 
elementary types (char *, wchar_t *, UNICODE_STRING)

NTSTATUS NtCreateFile(HANDLE* FileHandle, FILE_ACCESS_MASK DesiredAccess, 
OBJECT_ATTRIBUTES* ObjectAttributes, IO_STATUS_BLOCK* IoStatusBlock, 
LARGE_INTEGER* AllocationSize, FILE_ATTRIBUTES_ULONG FileAttributes, FileShareMode 
ShareAccess, NtCreateDisposition CreateDisposition, NtCreateOptions CreateOptions, 
VOID* EaBuffer, ULONG EaLength)



CUCKOOVMI EXAMPLE



DEMO



RELATED WORK: DECAF PLATFORM

• Qemu based analysis framework out of Berkeley

• Base of Android analysis project “DroidScope”

• Also supports tracing / analysing x86 Windows guests

• Parts from closed TEMU and other related projects

• Rich hooking API
• Specific addresses, all basic blocks, memory write, etc

• Experimental taint tracking features

• Too many features and too invasive (outdated QEMU, 
etc) for our purpose



ALTERNATIVE VMI SOLUTIONS

• Thin hypervisor for VM performance
• Use page protection faults to trap to the 

hypervisor at interesting locations

• Other rootkit techniques? UEFI drivers?

• Cuckoo hopefully grows to other platforms 
and several analyzer techniques to choose 
from
• Brings even more customization / flexibility



CONCLUSIONS



SUMMING UP

• Open source solution (and will remain so)

• Flexible and customizable

• Easy to integrate

• Very actively developed



FUTURE

• Improve performances

• Continue work on VMI techniques

• Bare-metal support (almost done)

• Add Linux support

• Add Mac OS X support

• Feedback?



OTHER STUFF

• Malwr

• https://malwr.com

• VxCage

• https://github.com/cuckoobox/vxcage



www.cuckoosandbox.org
@cuckoosandbox


