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AGENDA

• Introduction to Sandboxing

• Introduction to Cuckoo

• Components of Cuckoo

• Anti-Anti-Virtualization

• Virtual Machine Introspection



SANDBOXING



How does a sandbox look like?
Software or hardware appliances
that receive suspicious files and 

returns an overview of their 
functionality.



PROBLEMS

• Process high volumes?

• Automate specific tasks?

• Integrate with defenses?

• Support your T1 analysts?

• Digital forensics/incident response?



PROS

• Automate the whole analysis process

• Process high volumes of malware

• Usable by virtually anyone

• Get the actual executed code

• Can be very effective if used smartly



CONS

• Can be expensive :-(

• Some portions of the code might not be 
triggered

• Environment could be detected

• Can be a complete waste



CUCKOO SANDBOX



Automated malware 
analysis system, easy to 

use and customize.



WHY?

• We believe in open source

• Empower students and researchers

• Open architecture for more flexibility and 
creativity



SOME NUMBERS

• Around 50000 lines of code, Python and C

• More than 2000 commits

• 4 core developers

• ~25 contributors over time

• ~15000 downloads in the last 6 months
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WHAT YOU NEED TO KNOW

• Basic usage of Linux

• Basic usage of virtual machines

• Knowledge to leverage the results

• Windows APIs

• Malicious behaviors

• With Python you can get awesome!

• Customization

• Modules



HOW IT WORKS

Pull task
Prepare 
analysis

Instrument 
the guest

Execute 
and log

Process 
and report



KEY FEATURES

• Almost everything is a module

• Completely automated

• Run concurrent analysis

• Able to trace processes recursively

• Customize analysis process

• Create behavioral signatures

• Customize processing and reporting



GETTING STARTED



REQUIREMENTS AND EXPECTATIONS

• What is your goal?

• Who is going to use the sandbox?

• How are they going to consume the data?

• How many samples do you expect?

• What kind of results are mostly relevant?

• Do you need all features to meet your goal?



DESIGN YOUR ENVIRONMENT

• Do you want to run Office exploits?

• Do you want to run PDF exploits?

• Do you want to run 64 bit malware?

• Do you want to run URLs?

• Do you need script interpreters?



IDEAS

• Look for the most exploitable version of 
applications (metasploit, exploitdb, etc.)

• Create multiple VMs with multiple versions of 
applications

• Leave some fake credentials and tokens 
around

• Disguise the VM as much as possible



INSTALLATION IN A NUTSHELL

• Install VirtualBox, VMWare or QEMU/KVM

• Download & extract Cuckoo

• Install dependencies

• Create a virtual machine, copy over and run 
agent.py and take a snapshot (need to be able to 

communicate with the host).

• Configure the files in conf/

• $ python cuckoo.py



SETUP DISCLAIMERS

• It’s not point-and-click, you need to work a bit

• Virtualization software are not intended for 
massive and continuous restore

• There are some key steps to do, if one is 
skipped nothing works

• There’s an extensive documentation, mailing 
list and Q&A platform: check them out.



USAGE



SUBMISSION

• utils/submit.py

• utils/api.py

• Django Web Interface

• Python API



OPTIONS

• Analysis Package + Options

• Timeout

• Priority

• Machine

• Platform

• Memory Dump

• Enforce Timeout

• Clock



RESULTS

• Raw results stored in storage/analysis/<id>/

• Reports stored in 
storage/analysis/<id>/reports/

• Depends on what was enabled in 
conf/reporting.conf



RESULTS

• Trace of API calls

• File dumps

• Screenshots

• Network traffic

• Process memory dump

• System memory dump



CORE MODULES



MACHINERY MODULES

• In Core (under modules/machinery/)

• Python class

• Define interaction with the virtualization 
software

• Default:
• VirtualBox

• VMWare

• QEMU/KVM

• Generic LibVirt





AUXILIARY MODULES

• In Core (under modules/auxiliary/)

• Python class

• No specific use, just run concurrently to each 
analysis.

• Default:

• Network traffic capture





PROCESSING MODULES

• In Core (under modules/processing/)

• Python class

• Process raw results (sample, API logs, files, memory)

• Populate collection of results





SIGNATURES

• In Core (under analyzer/windows/modules/signatures/)

• Python class

• Isolate specific events

• Identify malware family

• Identify malicious behavior

• Extract configuration

• …







COMMUNITY SIGNATURES

• Community Repository

• https://github.com/cuckoobox/community

• utils/community.py –signatures (--force)



SHARING IS CARING!



REPORTING MODULES

• In Core (under analyzer/windows/modules/reporting/)

• Python class

• Make use of abstracted results

• Default:

• JSON

• HTML

• MAEC

• MongoDB





ANALYZER MODULES



ANALYSIS PACKAGES

• In Analyzer (under 

analyzer/windows/modules/packages/)

• Python modules

• Define how to interact with the malware and 
the system

• Can be used for scripting tasks





AUXILIARY MODULES

• In Analyzer (under 

analyzer/windows/modules/auxiliaries/)

• Python modules

• Run concurrently to the analysis

• Default:

• Screenshots

• Emulation of human interaction





CUSTOMIZATION: POISONIVY

• Leverage Cuckoo process dumping to 
automatically extract PoisonIvy configuration

• Custom Processing Module to match patterns 
in the dumps

• In case of successful extraction, upload to 
special server for further monitoring







CUCKOOMON



CUCKOOMON

• DLL Injection

• Inline Hooking

• Logging to the host over TCP connection

• Follow execution of child processes or 
injection of target processes



ANALYZER PACKAGE

• Analyzer is uploaded to the VM through the Agent

• By default the analysis package will:

• Start suspended process

• Inject CuckooMon

• Resume process



CHILD INJECTION



EVASION ARMS RACE

• Malware often injects into other processes to 
avoid detection (e.g. iexplore.exe)

• Also creates child processes for other 
purposes

• To track this, we monitor for such events and 
inject CuckooMon in 3rd processes too.



PROCESS INJECTION



API HOOKING OVERVIEW

• Cuckoo logs about 170 APIs

• Hook lowest APIs without loosing context

• Not CreateProcessA

• Not CreateProcessW

• Not CreateProcessInternalA

• But CreateProcessInternalW

• However also higher level APIs

• ShellExecute (protocol handlers, URLs)

• system (pipe multiple processes)



HOOKING + MAGIC = PROFIT

• Use standard inline hooking with a few twists
• Support for random preambles (jmp/push+ret/etc)

• First hook run is interesting, ignore recursive ones down on 
the callstack

• Transparently manage these situations in hooking mechanism



ASSEMBLY TRAMPOLINES



RESULTING HOOKS



WORK IN PROGRESS

• Return address + module tracking

• Only log when coming from interesting sources

(reduce noise when malware injects into other processes)

• StubDLL

• Don’t hook, shadow DLL that “overloads” 
functions

(avoid inline hooking countermeasures / detection)



ANTI-ANTI-SANDBOX



With sandboxes getting 
popular, malware writers 
are increasingly trying to 

bypass them.



COMMON TRICKS

• Sleep before main execution

• Monitor mouse events (SetWindowsHookEx 0x07, 

0x0E)

• Check for virtualization software:

• Files

• Processes

• Devices (CD-ROM, HDD)

• Registry keys



ANTI-SLEEP

• Cuckoo Sandbox skips sleeps that are 
launched within the first seconds of a process 
execution.



ANTI-MOUSE-MONITOR

• Cuckoo Sandbox emulates human interaction

• Move the mouse cursor

• Click on mouse buttons

• Click on dialogs



ANTI-VIRTUALIZATION

• It’s painful

• Depends on the virtualization software of 
your choice

• You can do something about it

• However you won’t be able to kill all 
indicators



VIRTUALBOX EXTRA DATA

• pcbios/0/Config/DmiBIOSFirmwareMajor

• pcbios/0/Config/DmiBIOSFirmwareMinor

• pcbios/0/Config/DmiBIOSReleaseDate

• pcbios/0/Config/DmiBIOSReleaseMajor

• pcbios/0/Config/DmiBIOSReleaseMinor

• pcbios/0/Config/DmiBIOSVendor

• pcbios/0/Config/DmiBIOSVersion

• pcbios/0/Config/DmiChassisAssetTag

• pcbios/0/Config/DmiChassisSerial

• pcbios/0/Config/DmiChassisVendor

• pcbios/0/Config/DmiChassisVersion

• pcbios/0/Config/DmiSystemFamily

• pcbios/0/Config/DmiSystemProduct

• pcbios/0/Config/DmiSystemSKU

• pcbios/0/Config/DmiSystemSerial

• pcbios/0/Config/DmiSystemUuid

• pcbios/0/Config/DmiSystemVendor

• pcbios/0/Config/DmiSystemVersion

• piix3ide/0/Config/Port0/ATAPIProductId

• piix3ide/0/Config/Port0/ATAPIRevision

• piix3ide/0/Config/Port0/ATAPIVendorId

• piix3ide/0/Config/PrimaryMaster/Firmwar
eRevision

• piix3ide/0/Config/PrimaryMaster/ModelN
umber

• piix3ide/0/Config/PrimaryMaster/SerialN
umber

$ VBoxManage setextradata <label> VBoxInternal/Devices/ +



DO NOT INSTALL 

THE GUEST ADDITIONS.



WINDOWS REGISTRY

• HKLM\HARDWARE\Description\System\Syste
mBiosVersion

• HKLM\HARDWARE\Description\System\Video
BiosVersion

• HKLM\HARDWARE\DEVICEMAP\Scsi\Scsi Port 
0\Scsi Bus 0\Target Id 0\Logical Unit Id 0

• HKLM\SYSTEM\CurrentControlSet\Enum\IDE\



CUCKOOVMI



ALTERNATIVE ANALYSIS TECHNIQUES

• CuckooMon: userland DLL injection
• comfortable, simple, still effective

• sadly easy to detect/circumvent

• Commercial sandboxes often kernel based 
tracing, sometimes combined with userland
components

• Even harder to detect: introspection from 
outside the OS

Cuckoo VMI?



GENERALIZING CUCKOO LOG DATA

• Necessary changes to Cuckoo

• Generalizing behavior semantics for Mac/Linux 
platforms anyway

• More visibility / possibilities with VMI

• Might need more flexible configuration of the 
analyzer engine



VIRTUAL MACHINE INTROSPECTION

• Observe the memory and execution flow 
from the outside

• Look at kernel structures to differentiate 
between processes / libraries

• Depending on virtualization technique use its 
features to pause VM execution and extract 
function arguments / memory contents



WINDOWS KERNEL DETAILS

• What do we need for inspecting Windows 
from the outside?

• Processes (track cr3)

• Libraries / Modules

• Kernel structures:

• EPROCESS (ActiveProcessHead list)

• Process Object Tables (HANDLE_TABLE)

• Virtual Address Descriptor tree (VAD tree)



WIP: CUCKOOVMI BASED ON QEMU

• QEMU: binary translation engine: TCG (Tiny 
Code Generator)

• Great base for both coarse- and fine-grained 
tracing of the guest and its processes

• Focus on Windows XP/7 – find kernel process 
structs and track their executable memory

• Full tracing or specific locations

• Never miss executed code



AUTOMATED FUNCTIONCALL LOGGING

• Windows APIs mostly use stdcall calling 
convention
• Callee cleans up the stack, EAX = returnvalue

• This allows for generic parameter logging
• Note stack pointer when entering function

• Note stack pointer when returning

• Everything in between was a parameter

• Still needs knowledge of types for special 
logging (Strings, structs, etc)



AUTOMATED LOGGING CONT.

• Type information can be automatically extracted from 
development headers

• Specify list of interesting variables in all those structs, 
generate dereference/offset code automatically

• Comes down to only implementing specific code for 
elementary types (char *, wchar_t *, UNICODE_STRING)

NTSTATUS NtCreateFile(HANDLE* FileHandle, FILE_ACCESS_MASK DesiredAccess, 
OBJECT_ATTRIBUTES* ObjectAttributes, IO_STATUS_BLOCK* IoStatusBlock, 
LARGE_INTEGER* AllocationSize, FILE_ATTRIBUTES_ULONG FileAttributes, FileShareMode 
ShareAccess, NtCreateDisposition CreateDisposition, NtCreateOptions CreateOptions, 
VOID* EaBuffer, ULONG EaLength)



CUCKOOVMI EXAMPLE



DEMO



RELATED WORK: DECAF PLATFORM

• Qemu based analysis framework out of Berkeley

• Base of Android analysis project “DroidScope”

• Also supports tracing / analysing x86 Windows guests

• Parts from closed TEMU and other related projects

• Rich hooking API
• Specific addresses, all basic blocks, memory write, etc

• Experimental taint tracking features

• Too many features and too invasive (outdated QEMU, 
etc) for our purpose



ALTERNATIVE VMI SOLUTIONS

• Thin hypervisor for VM performance
• Use page protection faults to trap to the 

hypervisor at interesting locations

• Other rootkit techniques? UEFI drivers?

• Cuckoo hopefully grows to other platforms 
and several analyzer techniques to choose 
from
• Brings even more customization / flexibility



CONCLUSIONS



SUMMING UP

• Open source solution (and will remain so)

• Flexible and customizable

• Easy to integrate

• Very actively developed



FUTURE

• Improve performances

• Continue work on VMI techniques

• Bare-metal support (almost done)

• Add Linux support

• Add Mac OS X support

• Feedback?



OTHER STUFF

• Malwr

• https://malwr.com

• VxCage

• https://github.com/cuckoobox/vxcage



www.cuckoosandbox.org
@cuckoosandbox


